Esempio n. 1
0
File: libmpc.py Progetto: vks/sympy
def mpc_reciprocal(z, prec, rnd=round_fast):
    """Calculate 1/z efficiently"""
    a, b = z
    m = mpf_add(mpf_mul(a, a), mpf_mul(b, b), prec + 10)
    re = mpf_div(a, m, prec, rnd)
    im = mpf_neg(mpf_div(b, m, prec, rnd))
    return re, im
Esempio n. 2
0
def mpf_cos_sin_pi(x, prec, rnd=round_fast):
    """Accurate computation of (cos(pi*x), sin(pi*x))
    for x close to an integer"""
    sign, man, exp, bc = x
    if not man:
        return cos_sin(x, prec, rnd)
    # Exactly an integer or half-integer?
    if exp >= -1:
        if exp == -1:
            c = fzero
            s = (fone, fnone)[bool(man & 2) ^ sign]
        elif exp == 0:
            c, s = (fnone, fzero)
        else:
            c, s = (fone, fzero)
        return c, s
    # Close to 0 ?
    size = exp + bc
    if size < -(prec+5):
        return (fone, mpf_mul(x, mpf_pi(wp), prec, rnd))
    if sign:
        man = -man
    # Subtract nearest integer (= modulo pi)
    nint = ((man >> (-exp-1)) + 1) >> 1
    man = man - (nint << (-exp))
    x = from_man_exp(man, exp, prec)
    x = mpf_mul(x, mpf_pi(prec), prec)
    # Shifted an odd multiple of pi ?
    if nint & 1:
        c, s = cos_sin(x, prec, negative_rnd[rnd])
        return mpf_neg(c), mpf_neg(s)
    else:
        return cos_sin(x, prec, rnd)
Esempio n. 3
0
def mpf_ellipe(x, prec, rnd=round_fast):
    # http://functions.wolfram.com/EllipticIntegrals/
    # EllipticK/20/01/0001/
    # E = (1-m)*(K'(m)*2*m + K(m))
    sign, man, exp, bc = x
    if not man:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return finf
        if x == fnan:
            return x
        if x == finf:
            raise ComplexResult
    if x == fone:
        return fone
    wp = prec + 20
    mag = exp + bc
    if mag < -wp:
        return mpf_shift(mpf_pi(prec, rnd), -1)
    # Compute a finite difference for K'
    p = max(mag, 0) - wp
    h = mpf_shift(fone, p)
    K = mpf_ellipk(x, 2 * wp)
    Kh = mpf_ellipk(mpf_sub(x, h), 2 * wp)
    Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
    t = mpf_sub(fone, x)
    b = mpf_mul(Kdiff, mpf_shift(x, 1), wp)
    return mpf_mul(t, mpf_add(K, b), prec, rnd)
Esempio n. 4
0
def mpf_cos_sin_pi(x, prec, rnd=round_fast):
    """Accurate computation of (cos(pi*x), sin(pi*x))
    for x close to an integer"""
    sign, man, exp, bc = x
    if not man:
        return cos_sin(x, prec, rnd)
    # Exactly an integer or half-integer?
    if exp >= -1:
        if exp == -1:
            c = fzero
            s = (fone, fnone)[bool(man & 2) ^ sign]
        elif exp == 0:
            c, s = (fnone, fzero)
        else:
            c, s = (fone, fzero)
        return c, s
    # Close to 0 ?
    size = exp + bc
    if size < -(prec + 5):
        return (fone, mpf_mul(x, mpf_pi(wp), prec, rnd))
    if sign:
        man = -man
    # Subtract nearest integer (= modulo pi)
    nint = ((man >> (-exp - 1)) + 1) >> 1
    man = man - (nint << (-exp))
    x = from_man_exp(man, exp, prec)
    x = mpf_mul(x, mpf_pi(prec), prec)
    # Shifted an odd multiple of pi ?
    if nint & 1:
        c, s = cos_sin(x, prec, negative_rnd[rnd])
        return mpf_neg(c), mpf_neg(s)
    else:
        return cos_sin(x, prec, rnd)
Esempio n. 5
0
def mpc_reciprocal(z, prec, rnd=round_fast):
    """Calculate 1/z efficiently"""
    a, b = z
    m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10)
    re = mpf_div(a, m, prec, rnd)
    im = mpf_neg(mpf_div(b, m, prec, rnd))
    return re, im
Esempio n. 6
0
def mpc_mpf_div(p, z, prec, rnd=round_fast):
    """Calculate p/z where p is real efficiently"""
    a, b = z
    m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10)
    re = mpf_div(mpf_mul(a,p), m, prec, rnd)
    im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd)
    return re, im
Esempio n. 7
0
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MP_ZERO
    fac = from_int(4)
    t = ONE = MP_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2 * n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 100:
        #    print n, nstr(ln(term))
        s += term
        t += ONE // (2 * n + 1) - ONE // (2 * n)
        n += 1
        fac = mpf_mul_int(fac, (2 * n) * (2 * n - 1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K
Esempio n. 8
0
def mpc_exp(z, prec, rnd=round_fast):
    """
    Complex exponential function.

    We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
    for the computation. This formula is very nice because it is
    pefectly stable; since we just do real multiplications, the only
    numerical errors that can creep in are single-ulp rounding errors.

    The formula is efficient since mpmath's real exp is quite fast and
    since we can compute cos and sin simultaneously.

    It is no problem if a and b are large; if the implementations of
    exp/cos/sin are accurate and efficient for all real numbers, then
    so is this function for all complex numbers.
    """
    a, b = z
    if a == fzero:
        return mpf_cos_sin(b, prec, rnd)
    if b == fzero:
        return mpf_exp(a, prec, rnd), fzero
    mag = mpf_exp(a, prec + 4, rnd)
    c, s = mpf_cos_sin(b, prec + 4, rnd)
    re = mpf_mul(mag, c, prec, rnd)
    im = mpf_mul(mag, s, prec, rnd)
    return re, im
Esempio n. 9
0
File: libmpc.py Progetto: vks/sympy
def mpc_exp(z, prec, rnd=round_fast):
    """
    Complex exponential function.

    We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
    for the computation. This formula is very nice because it is
    pefectly stable; since we just do real multiplications, the only
    numerical errors that can creep in are single-ulp rounding errors.

    The formula is efficient since mpmath's real exp is quite fast and
    since we can compute cos and sin simultaneously.

    It is no problem if a and b are large; if the implementations of
    exp/cos/sin are accurate and efficient for all real numbers, then
    so is this function for all complex numbers.
    """
    a, b = z
    if a == fzero:
        return mpf_cos_sin(b, prec, rnd)
    if b == fzero:
        return mpf_exp(a, prec, rnd), fzero
    mag = mpf_exp(a, prec + 4, rnd)
    c, s = mpf_cos_sin(b, prec + 4, rnd)
    re = mpf_mul(mag, c, prec, rnd)
    im = mpf_mul(mag, s, prec, rnd)
    return re, im
Esempio n. 10
0
def mpf_ellipe(x, prec, rnd=round_fast):
    # http://functions.wolfram.com/EllipticIntegrals/
    # EllipticK/20/01/0001/
    # E = (1-m)*(K'(m)*2*m + K(m))
    sign, man, exp, bc = x
    if not man:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return finf
        if x == fnan:
            return x
        if x == finf:
            raise ComplexResult
    if x == fone:
        return fone
    wp = prec+20
    mag = exp+bc
    if mag < -wp:
        return mpf_shift(mpf_pi(prec, rnd), -1)
    # Compute a finite difference for K'
    p = max(mag, 0) - wp
    h = mpf_shift(fone, p)
    K = mpf_ellipk(x, 2*wp)
    Kh = mpf_ellipk(mpf_sub(x, h), 2*wp)
    Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
    t = mpf_sub(fone, x)
    b = mpf_mul(Kdiff, mpf_shift(x,1), wp)
    return mpf_mul(t, mpf_add(K, b), prec, rnd)
Esempio n. 11
0
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MPZ_ZERO
    fac = from_int(4)
    t = ONE = MPZ_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2*n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 10:
        #    print n, math.log(int(abs(term)))
        s += term
        t += ONE//(2*n+1) - ONE//(2*n)
        n += 1
        fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K
Esempio n. 12
0
File: libmpc.py Progetto: vks/sympy
def mpc_mpf_div(p, z, prec, rnd=round_fast):
    """Calculate p/z where p is real efficiently"""
    a, b = z
    m = mpf_add(mpf_mul(a, a), mpf_mul(b, b), prec + 10)
    re = mpf_div(mpf_mul(a, p), m, prec, rnd)
    im = mpf_div(mpf_neg(mpf_mul(b, p)), m, prec, rnd)
    return re, im
Esempio n. 13
0
def twinprime_fixed(prec):
    def I(n):
        return sum(
            moebius(d) << (n // d) for d in xrange(1, n + 1) if not n % d) // n

    wp = 2 * prec + 30
    res = fone
    primes = [from_rational(1, p, wp) for p in [2, 3, 5, 7]]
    ppowers = [mpf_mul(p, p, wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec + 10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3 * 15 * 35), wp)
    res = mpf_div(res, from_int(4 * 16 * 36), wp)
    return to_fixed(res, prec)
Esempio n. 14
0
def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast):
    """
    Multiply the mpc value z by I*x where x is an mpf value.
    """
    a, b = z
    re = mpf_neg(mpf_mul(b, x, prec, rnd))
    im = mpf_mul(a, x, prec, rnd)
    return re, im
Esempio n. 15
0
File: libmpc.py Progetto: vks/sympy
def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast):
    """
    Multiply the mpc value z by I*x where x is an mpf value.
    """
    a, b = z
    re = mpf_neg(mpf_mul(b, x, prec, rnd))
    im = mpf_mul(a, x, prec, rnd)
    return re, im
Esempio n. 16
0
def mpc_square(z, prec, rnd=round_fast):
    # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
    a, b = z
    p = mpf_mul(a,a)
    q = mpf_mul(b,b)
    r = mpf_mul(a,b, prec, rnd)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_shift(r, 1)
    return re, im
Esempio n. 17
0
File: libmpc.py Progetto: vks/sympy
def mpc_square(z, prec, rnd=round_fast):
    # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
    a, b = z
    p = mpf_mul(a, a)
    q = mpf_mul(b, b)
    r = mpf_mul(a, b, prec, rnd)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_shift(r, 1)
    return re, im
Esempio n. 18
0
def mpf_bernoulli_huge(n, prec, rnd=None):
    wp = prec + 10
    piprec = wp + int(math.log(n,2))
    v = mpf_gamma_int(n+1, wp)
    v = mpf_mul(v, mpf_zeta_int(n, wp), wp)
    v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp))
    v = mpf_shift(v, 1-n)
    if not n & 3:
        v = mpf_neg(v)
    return mpf_pos(v, prec, rnd or round_fast)
Esempio n. 19
0
def mpf_bernoulli_huge(n, prec, rnd=None):
    wp = prec + 10
    piprec = wp + int(math.log(n, 2))
    v = mpf_gamma_int(n + 1, wp)
    v = mpf_mul(v, mpf_zeta_int(n, wp), wp)
    v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp))
    v = mpf_shift(v, 1 - n)
    if not n & 3:
        v = mpf_neg(v)
    return mpf_pos(v, prec, rnd or round_fast)
Esempio n. 20
0
File: libmpc.py Progetto: vks/sympy
def mpc_expj(z, prec, rnd="f"):
    re, im = z
    if im == fzero:
        return mpf_cos_sin(re, prec, rnd)
    if re == fzero:
        return mpf_exp(mpf_neg(im), prec, rnd), fzero
    ey = mpf_exp(mpf_neg(im), prec + 10)
    c, s = mpf_cos_sin(re, prec + 10)
    re = mpf_mul(ey, c, prec, rnd)
    im = mpf_mul(ey, s, prec, rnd)
    return re, im
Esempio n. 21
0
def mpc_expj(z, prec, rnd='f'):
    re, im = z
    if im == fzero:
        return mpf_cos_sin(re, prec, rnd)
    if re == fzero:
        return mpf_exp(mpf_neg(im), prec, rnd), fzero
    ey = mpf_exp(mpf_neg(im), prec + 10)
    c, s = mpf_cos_sin(re, prec + 10)
    re = mpf_mul(ey, c, prec, rnd)
    im = mpf_mul(ey, s, prec, rnd)
    return re, im
Esempio n. 22
0
def mpc_sin_pi(z, prec, rnd=round_fast):
    a, b = z
    b = mpf_mul(b, mpf_pi(prec + 5), prec + 5)
    if a == fzero:
        return fzero, mpf_sinh(b, prec, rnd)
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(s, ch, prec, rnd)
    im = mpf_mul(c, sh, prec, rnd)
    return re, im
Esempio n. 23
0
def mpc_sin_pi(z, prec, rnd=round_fast):
    a, b = z
    b = mpf_mul(b, mpf_pi(prec+5), prec+5)
    if a == fzero:
        return fzero, mpf_sinh(b, prec, rnd)
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(s, ch, prec, rnd)
    im = mpf_mul(c, sh, prec, rnd)
    return re, im
Esempio n. 24
0
File: libmpc.py Progetto: vks/sympy
def mpc_cos_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        return mpf_cos_pi(a, prec, rnd), fzero
    b = mpf_mul(b, mpf_pi(prec + 5), prec + 5)
    if a == fzero:
        return mpf_cosh(b, prec, rnd), fzero
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(c, ch, prec, rnd)
    im = mpf_mul(s, sh, prec, rnd)
    return re, mpf_neg(im)
Esempio n. 25
0
def mpc_cos_sin(z, prec, rnd=round_fast):
    a, b = z
    if a == fzero:
        ch, sh = mpf_cosh_sinh(b, prec, rnd)
        return (ch, fzero), (sh, fzero)
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    cre = mpf_mul(c, ch, prec, rnd)
    cim = mpf_mul(s, sh, prec, rnd)
    sre = mpf_mul(s, ch, prec, rnd)
    sim = mpf_mul(c, sh, prec, rnd)
    return (cre, mpf_neg(cim)), (sre, sim)
Esempio n. 26
0
def mpc_cos_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        return mpf_cos_pi(a, prec, rnd), fzero
    b = mpf_mul(b, mpf_pi(prec + 5), prec + 5)
    if a == fzero:
        return mpf_cosh(b, prec, rnd), fzero
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(c, ch, prec, rnd)
    im = mpf_mul(s, sh, prec, rnd)
    return re, mpf_neg(im)
Esempio n. 27
0
def mpc_cos_sin(z, prec, rnd=round_fast):
    a, b = z
    if a == fzero:
        ch, sh = mpf_cosh_sinh(b, prec, rnd)
        return (ch, fzero), (sh, fzero)
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    cre = mpf_mul(c, ch, prec, rnd)
    cim = mpf_mul(s, sh, prec, rnd)
    sre = mpf_mul(s, ch, prec, rnd)
    sim = mpf_mul(c, sh, prec, rnd)
    return (cre, mpf_neg(cim)), (sre, sim)
Esempio n. 28
0
def mpc_sin(z, prec, rnd=round_fast):
    """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) +
    cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional
    comments."""
    a, b = z
    if a == fzero:
        return fzero, mpf_sinh(b, prec, rnd)
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(s, ch, prec, rnd)
    im = mpf_mul(c, sh, prec, rnd)
    return re, im
Esempio n. 29
0
def mpc_sin(z, prec, rnd=round_fast):
    """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) +
    cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional
    comments."""
    a, b = z
    if a == fzero:
        return fzero, mpf_sinh(b, prec, rnd)
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(s, ch, prec, rnd)
    im = mpf_mul(c, sh, prec, rnd)
    return re, im
Esempio n. 30
0
def mpf_zeta(s, prec, rnd=round_fast):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp, 2) + 2)):
        if rnd in (round_up, round_ceiling):
            return mpf_add(fone, mpf_shift(fone, -wp - 10), prec, rnd)
        return fone
    elif exp >= 0:
        return mpf_zeta_int(to_int(s), prec, rnd)
    # Less than 0.5?
    if sign or (exp + bc) < 0:
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10 * wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp + bc)
        pi = mpf_pi(wp + wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a, mpf_mul(b, mpf_mul(c, d, wp), wp), prec, rnd)
    t = MP_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MP_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf * log_int_fixed(k + 1, wp), -2 * wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
    return mpf_div(t, q, prec, rnd)
Esempio n. 31
0
def mpi_square(s, prec=0):
    sa, sb = s
    if mpf_ge(sa, fzero):
        a = mpf_mul(sa, sa, prec, round_floor)
        b = mpf_mul(sb, sb, prec, round_ceiling)
    elif mpf_le(sb, fzero):
        a = mpf_mul(sb, sb, prec, round_floor)
        b = mpf_mul(sa, sa, prec, round_ceiling)
    else:
        sa = mpf_neg(sa)
        sa, sb = mpf_min_max([sa, sb])
        a = fzero
        b = mpf_mul(sb, sb, prec, round_ceiling)
    return a, b
Esempio n. 32
0
def mpf_zeta(s, prec, rnd=round_fast):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp,2) + 2)):
        if rnd in (round_up, round_ceiling):
            return mpf_add(fone, mpf_shift(fone,-wp-10), prec, rnd)
        return fone
    elif exp >= 0:
        return mpf_zeta_int(to_int(s), prec, rnd)
    # Less than 0.5?
    if sign or (exp+bc) < 0:
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10*wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp+bc)
        pi = mpf_pi(wp+wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd)
    t = MP_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MP_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf*log_int_fixed(k+1, wp), -2*wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
    return mpf_div(t, q, prec, rnd)
Esempio n. 33
0
def mpi_square(s, prec=0):
    sa, sb = s
    if mpf_ge(sa, fzero):
        a = mpf_mul(sa, sa, prec, round_floor)
        b = mpf_mul(sb, sb, prec, round_ceiling)
    elif mpf_le(sb, fzero):
        a = mpf_mul(sb, sb, prec, round_floor)
        b = mpf_mul(sa, sa, prec, round_ceiling)
    else:
        sa = mpf_neg(sa)
        sa, sb = mpf_min_max([sa, sb])
        a = fzero
        b = mpf_mul(sb, sb, prec, round_ceiling)
    return a, b
Esempio n. 34
0
def mpc_expjpi(z, prec, rnd='f'):
    re, im = z
    if im == fzero:
        return mpf_cos_sin_pi(re, prec, rnd)
    sign, man, exp, bc = im
    wp = prec + 10
    if man:
        wp += max(0, exp + bc)
    im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp))
    if re == fzero:
        return mpf_exp(im, prec, rnd), fzero
    ey = mpf_exp(im, prec + 10)
    c, s = mpf_cos_sin_pi(re, prec + 10)
    re = mpf_mul(ey, c, prec, rnd)
    im = mpf_mul(ey, s, prec, rnd)
    return re, im
Esempio n. 35
0
def exp_newton(x, prec):
    extra = 10
    r = mpf_exp(x, 60)
    start = 50
    prevp = start
    for p in giant_steps(start, prec+extra, 4):
        h = mpf_sub(x, mpf_log(r, p), p)
        h2 = mpf_mul(h, h, p)
        h3 = mpf_mul(h2, h, p)
        h4 = mpf_mul(h2, h2, p)
        t = mpf_add(h, mpf_shift(h2, -1), p)
        t = mpf_add(t, mpf_div(h3, from_int(6, p), p), p)
        t = mpf_add(t, mpf_div(h4, from_int(24, p), p), p)
        t = mpf_mul(r, t, p)
        r = mpf_add(r, t, p)
    return r
Esempio n. 36
0
def mpf_pow(s, t, prec, rnd=round_fast):
    """
    Compute s**t. Raises ComplexResult if s is negative and t is
    fractional.
    """
    ssign, sman, sexp, sbc = s
    tsign, tman, texp, tbc = t
    if ssign and texp < 0:
        raise ComplexResult("negative number raised to a fractional power")
    if texp >= 0:
        return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
    # s**(n/2) = sqrt(s)**n
    if texp == -1:
        if tman == 1:
            if tsign:
                return mpf_div(fone, mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), prec, rnd)
            return mpf_sqrt(s, prec, rnd)
        else:
            if tsign:
                return mpf_pow_int(mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), -tman, prec, rnd)
            return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
    # General formula: s**t = exp(t*log(s))
    # TODO: handle rnd direction of the logarithm carefully
    c = mpf_log(s, prec+10, rnd)
    return mpf_exp(mpf_mul(t, c), prec, rnd)
Esempio n. 37
0
def mpf_acosh(x, prec, rnd=round_fast):
    # acosh(x) = log(x+sqrt(x**2-1))
    wp = prec + 15
    if mpf_cmp(x, fone) == -1:
        raise ComplexResult("acosh(x) is real only for x >= 1")
    q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp)
    return mpf_log(mpf_add(x, q, wp), prec, rnd)
Esempio n. 38
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc+exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    flag_nr = True
    if prec < 1000 or exp+bc < -13:
        flag_nr = False
    else:
        ebc = exp + bc
        if ebc < -13:
            flag_nr = False
        elif ebc < -3:
            if prec < 3000:
                flag_nr = False
    if not flag_nr:
        # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
        wp = prec + 15
        a = mpf_mul(x, x)
        b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
        c = mpf_div(x, b, wp)
        return mpf_shift(mpf_atan(c, prec, rnd), 1)
    # use Newton's method
    extra = 10
    extra_p = 10
    prec2 = prec + extra
    r = math.asin(to_float(x))
    r = from_float(r, 50, rnd)
    for p in giant_steps(50, prec2):
        wp = p + extra_p
        c, s = cos_sin(r, wp, rnd)
        tmp = mpf_sub(x, s, wp, rnd)
        tmp = mpf_div(tmp, c, wp, rnd)
        r = mpf_add(r, tmp, wp, rnd)
    sign, man, exp, bc = r
    return normalize(sign, man, exp, bc, prec, rnd)
Esempio n. 39
0
def mpf_acosh(x, prec, rnd=round_fast):
    # acosh(x) = log(x+sqrt(x**2-1))
    wp = prec + 15
    if mpf_cmp(x, fone) == -1:
        raise ComplexResult("acosh(x) is real only for x >= 1")
    q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp)
    return mpf_log(mpf_add(x, q, wp), prec, rnd)
Esempio n. 40
0
def mpf_psi0(x, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a real argument.
    """
    sign, man, exp, bc = x
    wp = prec + 10
    if not man:
        if x == finf:
            return x
        if x == fninf or x == fnan:
            return fnan
    if x == fzero or (exp >= 0 and sign):
        raise ValueError("polygamma pole")
    # Reflection formula
    if sign and exp + bc > 3:
        c, s = mpf_cos_sin_pi(x, wp)
        q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp)
        p = mpf_psi0(mpf_sub(fone, x, wp), wp)
        return mpf_sub(p, q, prec, rnd)
    # The logarithmic term is accurate enough
    if (not sign) and bc + exp > wp:
        return mpf_log(mpf_sub(x, fone, wp), prec, rnd)
    # Initial recurrence to obtain a large enough x
    m = to_int(x)
    n = int(0.11 * wp) + 2
    s = MP_ZERO
    x = to_fixed(x, wp)
    one = MP_ONE << wp
    if m < n:
        for k in xrange(m, n):
            s -= (one << wp) // x
            x += one
    x -= one
    # Logarithmic term
    s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp)
    # Endpoint term in Euler-Maclaurin expansion
    s += (one << wp) // (2 * x)
    # Euler-Maclaurin remainder sum
    x2 = (x * x) >> wp
    t = one
    prev = 0
    k = 1
    while 1:
        t = (t * x2) >> wp
        bsign, bman, bexp, bbc = mpf_bernoulli(2 * k, wp)
        offset = bexp + 2 * wp
        if offset >= 0:
            term = (bman << offset) // (t * (2 * k))
        else:
            term = (bman >> (-offset)) // (t * (2 * k))
        if k & 1:
            s -= term
        else:
            s += term
        if k > 2 and term >= prev:
            break
        prev = term
        k += 1
    return from_man_exp(s, -wp, wp, rnd)
Esempio n. 41
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc+exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    flag_nr = True
    if prec < 1000 or exp+bc < -13:
        flag_nr = False
    else:
        ebc = exp + bc
        if ebc < -13:
            flag_nr = False
        elif ebc < -3:
            if prec < 3000:
                flag_nr = False
    if not flag_nr:
        # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
        wp = prec + 15
        a = mpf_mul(x, x)
        b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
        c = mpf_div(x, b, wp)
        return mpf_shift(mpf_atan(c, prec, rnd), 1)
    # use Newton's method
    extra = 10
    extra_p = 10
    prec2 = prec + extra
    r = math.asin(to_float(x))
    r = from_float(r, 50, rnd)
    for p in giant_steps(50, prec2):
        wp = p + extra_p
        c, s = cos_sin(r, wp, rnd)
        tmp = mpf_sub(x, s, wp, rnd)
        tmp = mpf_div(tmp, c, wp, rnd)
        r = mpf_add(r, tmp, wp, rnd)
    sign, man, exp, bc = r
    return normalize(sign, man, exp, bc, prec, rnd)
Esempio n. 42
0
def mpc_agm(a, b, prec, rnd=round_fast):
    """
    Complex AGM.

    TODO:
    * check that convergence works as intended
    * optimize
    * select a nonarbitrary branch
    """
    if mpc_is_infnan(a) or mpc_is_infnan(b):
        return fnan, fnan
    if mpc_zero in (a, b):
        return fzero, fzero
    if mpc_neg(a) == b:
        return fzero, fzero
    wp = prec+20
    eps = mpf_shift(fone, -wp+10)
    while 1:
        a1 = mpc_shift(mpc_add(a, b, wp), -1)
        b1 = mpc_sqrt(mpc_mul(a, b, wp), wp)
        a, b = a1, b1
        size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1]
        err = mpc_abs(mpc_sub(a, b, 10), 10)
        if size == fzero or mpf_lt(err, mpf_mul(eps, size)):
            return a
Esempio n. 43
0
def mpf_pow(s, t, prec, rnd=round_fast):
    """
    Compute s**t. Raises ComplexResult if s is negative and t is
    fractional.
    """
    ssign, sman, sexp, sbc = s
    tsign, tman, texp, tbc = t
    if ssign and texp < 0:
        raise ComplexResult("negative number raised to a fractional power")
    if texp >= 0:
        return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
    # s**(n/2) = sqrt(s)**n
    if texp == -1:
        if tman == 1:
            if tsign:
                return mpf_div(fone, mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), prec, rnd)
            return mpf_sqrt(s, prec, rnd)
        else:
            if tsign:
                return mpf_pow_int(mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), -tman, prec, rnd)
            return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
    # General formula: s**t = exp(t*log(s))
    # TODO: handle rnd direction of the logarithm carefully
    c = mpf_log(s, prec+10, rnd)
    return mpf_exp(mpf_mul(t, c), prec, rnd)
Esempio n. 44
0
def mpc_agm(a, b, prec, rnd=round_fast):
    """
    Complex AGM.

    TODO:
    * check that convergence works as intended
    * optimize
    * select a nonarbitrary branch
    """
    if mpc_is_infnan(a) or mpc_is_infnan(b):
        return fnan, fnan
    if mpc_zero in (a, b):
        return fzero, fzero
    if mpc_neg(a) == b:
        return fzero, fzero
    wp = prec + 20
    eps = mpf_shift(fone, -wp + 10)
    while 1:
        a1 = mpc_shift(mpc_add(a, b, wp), -1)
        b1 = mpc_sqrt(mpc_mul(a, b, wp), wp)
        a, b = a1, b1
        size = sorted([mpc_abs(a, 10), mpc_abs(a, 10)], cmp=mpf_cmp)[1]
        err = mpc_abs(mpc_sub(a, b, 10), 10)
        if size == fzero or mpf_lt(err, mpf_mul(eps, size)):
            return a
Esempio n. 45
0
File: libmpc.py Progetto: vks/sympy
def mpc_expjpi(z, prec, rnd="f"):
    re, im = z
    if im == fzero:
        return mpf_cos_sin_pi(re, prec, rnd)
    sign, man, exp, bc = im
    wp = prec + 10
    if man:
        wp += max(0, exp + bc)
    im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp))
    if re == fzero:
        return mpf_exp(im, prec, rnd), fzero
    ey = mpf_exp(im, prec + 10)
    c, s = mpf_cos_sin_pi(re, prec + 10)
    re = mpf_mul(ey, c, prec, rnd)
    im = mpf_mul(ey, s, prec, rnd)
    return re, im
Esempio n. 46
0
def mpc_cos(z, prec, rnd=round_fast):
    """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
    sin(a)*sinh(b)*i.

    The same comments apply as for the complex exp: only real
    multiplications are pewrormed, so no cancellation errors are
    possible. The formula is also efficient since we can compute both
    pairs (cos, sin) and (cosh, sinh) in single stwps."""
    a, b = z
    if a == fzero:
        return mpf_cosh(b, prec, rnd), fzero
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(c, ch, prec, rnd)
    im = mpf_mul(s, sh, prec, rnd)
    return re, mpf_neg(im)
Esempio n. 47
0
def mpc_cos_sin_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        c, s = mpf_cos_sin_pi(a, prec, rnd)
        return (c, fzero), (s, fzero)
    b = mpf_mul(b, mpf_pi(prec + 5), prec + 5)
    if a == fzero:
        ch, sh = mpf_cosh_sinh(b, prec, rnd)
        return (ch, fzero), (fzero, sh)
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    cre = mpf_mul(c, ch, prec, rnd)
    cim = mpf_mul(s, sh, prec, rnd)
    sre = mpf_mul(s, ch, prec, rnd)
    sim = mpf_mul(c, sh, prec, rnd)
    return (cre, mpf_neg(cim)), (sre, sim)
Esempio n. 48
0
def mpc_mul(z, w, prec, rnd=round_fast):
    """
    Complex multiplication.

    Returns the real and imaginary part of (a+bi)*(c+di), rounded to
    the specified precision. The rounding mode applies to the real and
    imaginary parts separately.
    """
    a, b = z
    c, d = w
    p = mpf_mul(a, c)
    q = mpf_mul(b, d)
    r = mpf_mul(a, d)
    s = mpf_mul(b, c)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_add(r, s, prec, rnd)
    return re, im
Esempio n. 49
0
File: libmpc.py Progetto: vks/sympy
def mpc_cos_sin_pi(z, prec, rnd=round_fast):
    a, b = z
    if b == fzero:
        c, s = mpf_cos_sin_pi(a, prec, rnd)
        return (c, fzero), (s, fzero)
    b = mpf_mul(b, mpf_pi(prec + 5), prec + 5)
    if a == fzero:
        ch, sh = mpf_cosh_sinh(b, prec, rnd)
        return (ch, fzero), (fzero, sh)
    wp = prec + 6
    c, s = mpf_cos_sin_pi(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    cre = mpf_mul(c, ch, prec, rnd)
    cim = mpf_mul(s, sh, prec, rnd)
    sre = mpf_mul(s, ch, prec, rnd)
    sim = mpf_mul(c, sh, prec, rnd)
    return (cre, mpf_neg(cim)), (sre, sim)
Esempio n. 50
0
File: libmpc.py Progetto: vks/sympy
def mpc_mul(z, w, prec, rnd=round_fast):
    """
    Complex multiplication.

    Returns the real and imaginary part of (a+bi)*(c+di), rounded to
    the specified precision. The rounding mode applies to the real and
    imaginary parts separately.
    """
    a, b = z
    c, d = w
    p = mpf_mul(a, c)
    q = mpf_mul(b, d)
    r = mpf_mul(a, d)
    s = mpf_mul(b, c)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_add(r, s, prec, rnd)
    return re, im
Esempio n. 51
0
def mpc_cos(z, prec, rnd=round_fast):
    """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
    sin(a)*sinh(b)*i.

    The same comments apply as for the complex exp: only real
    multiplications are pewrormed, so no cancellation errors are
    possible. The formula is also efficient since we can compute both
    pairs (cos, sin) and (cosh, sinh) in single stwps."""
    a, b = z
    if a == fzero:
        return mpf_cosh(b, prec, rnd), fzero
    wp = prec + 6
    c, s = mpf_cos_sin(a, wp)
    ch, sh = mpf_cosh_sinh(b, wp)
    re = mpf_mul(c, ch, prec, rnd)
    im = mpf_mul(s, sh, prec, rnd)
    return re, mpf_neg(im)
Esempio n. 52
0
def mpf_agm(a, b, prec, rnd=round_fast):
    """
    Computes the arithmetic-geometric mean agm(a,b) for
    nonnegative mpf values a, b.
    """
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if asign or bsign:
        raise ComplexResult("agm of a negative number")
    # Handle inf, nan or zero in either operand
    if not (aman and bman):
        if a == fnan or b == fnan:
            return fnan
        if a == finf:
            if b == fzero:
                return fnan
            return finf
        if b == finf:
            if a == fzero:
                return fnan
            return finf
        # agm(0,x) = agm(x,0) = 0
        return fzero
    wp = prec + 20
    amag = aexp + abc
    bmag = bexp + bbc
    mag_delta = amag - bmag
    # Reduce to roughly the same magnitude using floating-point AGM
    abs_mag_delta = abs(mag_delta)
    if abs_mag_delta > 10:
        while abs_mag_delta > 10:
            a, b = mpf_shift(mpf_add(a,b,wp),-1), \
                mpf_sqrt(mpf_mul(a,b,wp),wp)
            abs_mag_delta //= 2
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        amag = aexp + abc
        bmag = bexp + bbc
        mag_delta = amag - bmag
    #print to_float(a), to_float(b)
    # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1
    min_mag = min(amag, bmag)
    max_mag = max(amag, bmag)
    n = 0
    # If too small, we lose precision when going to fixed-point
    if min_mag < -8:
        n = -min_mag
    # If too large, we waste time using fixed-point with large numbers
    elif max_mag > 20:
        n = -max_mag
    if n:
        a = mpf_shift(a, n)
        b = mpf_shift(b, n)
    #print to_float(a), to_float(b)
    af = to_fixed(a, wp)
    bf = to_fixed(b, wp)
    g = agm_fixed(af, bf, wp)
    return from_man_exp(g, -wp - n, prec, rnd)
Esempio n. 53
0
def mpf_agm(a, b, prec, rnd=round_fast):
    """
    Computes the arithmetic-geometric mean agm(a,b) for
    nonnegative mpf values a, b.
    """
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if asign or bsign:
        raise ComplexResult("agm of a negative number")
    # Handle inf, nan or zero in either operand
    if not (aman and bman):
        if a == fnan or b == fnan:
            return fnan
        if a == finf:
            if b == fzero:
                return fnan
            return finf
        if b == finf:
            if a == fzero:
                return fnan
            return finf
        # agm(0,x) = agm(x,0) = 0
        return fzero
    wp = prec + 20
    amag = aexp+abc
    bmag = bexp+bbc
    mag_delta = amag - bmag
    # Reduce to roughly the same magnitude using floating-point AGM
    abs_mag_delta = abs(mag_delta)
    if abs_mag_delta > 10:
        while abs_mag_delta > 10:
            a, b = mpf_shift(mpf_add(a,b,wp),-1), \
                mpf_sqrt(mpf_mul(a,b,wp),wp)
            abs_mag_delta //= 2
        asign, aman, aexp, abc = a
        bsign, bman, bexp, bbc = b
        amag = aexp+abc
        bmag = bexp+bbc
        mag_delta = amag - bmag
    #print to_float(a), to_float(b)
    # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1
    min_mag = min(amag,bmag)
    max_mag = max(amag,bmag)
    n = 0
    # If too small, we lose precision when going to fixed-point
    if min_mag < -8:
        n = -min_mag
    # If too large, we waste time using fixed-point with large numbers
    elif max_mag > 20:
        n = -max_mag
    if n:
        a = mpf_shift(a, n)
        b = mpf_shift(b, n)
    #print to_float(a), to_float(b)
    af = to_fixed(a, wp)
    bf = to_fixed(b, wp)
    g = agm_fixed(af, bf, wp)
    return from_man_exp(g, -wp-n, prec, rnd)
Esempio n. 54
0
def mpf_cos_sin_pi(x, prec, rnd=round_fast):
    """Accurate computation of (cos(pi*x), sin(pi*x))
    for x close to an integer"""
    sign, man, exp, bc = x
    if not man:
        return cos_sin(x, prec, rnd)
    # Exactly an integer or half-integer?
    if exp >= -1:
        if exp == -1:
            c = fzero
            s = (fone, fnone)[bool(man & 2) ^ sign]
        elif exp == 0:
            c, s = (fnone, fzero)
        else:
            c, s = (fone, fzero)
        return c, s
    # Close to 0 ?
    size = exp + bc
    if size < -(prec+5):
        c = mpf_perturb(fone, 1, prec, rnd)
        s = mpf_perturb(mpf_mul(x, mpf_pi(prec)), sign, prec, rnd)
        return c, s
    if sign:
        man = -man
    # Subtract nearest half-integer (= modulo pi/2)
    nhint = ((man >> (-exp-2)) + 1) >> 1
    man = man - (nhint << (-exp-1))
    x = from_man_exp(man, exp, prec)
    x = mpf_mul(x, mpf_pi(prec), prec)
    # XXX: with some more work, could call calc_cos_sin,
    # to save some time and to get rounding right
    case = nhint % 4
    if case == 0:
        c, s = cos_sin(x, prec, rnd)
    elif case == 1:
        s, c = cos_sin(x, prec, rnd)
        c = mpf_neg(c)
    elif case == 2:
        c, s = cos_sin(x, prec, rnd)
        c = mpf_neg(c)
        s = mpf_neg(s)
    else:
        s, c = cos_sin(x, prec, rnd)
        s = mpf_neg(s)
    return c, s
Esempio n. 55
0
def mpf_gamma(x, prec, rounding=round_fast, p1=1):
    """
    Computes the gamma function of a real floating-point argument.
    With p1=0, computes a factorial instead.
    """
    sign, man, exp, bc = x
    if not man:
        if x == finf:
            return finf
        if x == fninf or x == fnan:
            return fnan
    # More precision is needed for enormous x. TODO:
    # use Stirling's formula + Euler-Maclaurin summation
    size = exp + bc
    if size > 5:
        size = int(size * math.log(size,2))
    wp = prec + max(0, size) + 15
    if exp >= 0:
        if sign or (p1 and not man):
            raise ValueError("gamma function pole")
        # A direct factorial is fastest
        if exp + bc <= 10:
            return from_int(ifac((man<<exp)-p1), prec, rounding)
    reflect = sign or exp+bc < -1
    if p1:
        # Should be done exactly!
        x = mpf_sub(x, fone)
    # x < 0.25
    if reflect:
        # gamma = pi / (sin(pi*x) * gamma(1-x))
        wp += 15
        pix = mpf_mul(x, mpf_pi(wp), wp)
        t = mpf_sin_pi(x, wp)
        g = mpf_gamma(mpf_sub(fone, x), wp)
        return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_real(x, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    xpa = mpf_add(x, from_int(a), wp)
    logxpa = mpf_log(xpa, wp)
    xph = mpf_add(x, fhalf, wp)
    t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp)
    t = mpf_mul(mpf_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 56
0
def mpf_gamma(x, prec, rounding=round_fast, p1=1):
    """
    Computes the gamma function of a real floating-point argument.
    With p1=0, computes a factorial instead.
    """
    sign, man, exp, bc = x
    if not man:
        if x == finf:
            return finf
        if x == fninf or x == fnan:
            return fnan
    # More precision is needed for enormous x. TODO:
    # use Stirling's formula + Euler-Maclaurin summation
    size = exp + bc
    if size > 5:
        size = int(size * math.log(size, 2))
    wp = prec + max(0, size) + 15
    if exp >= 0:
        if sign or (p1 and not man):
            raise ValueError("gamma function pole")
        # A direct factorial is fastest
        if exp + bc <= 10:
            return from_int(int_fac((man << exp) - p1), prec, rounding)
    reflect = sign or exp + bc < -1
    if p1:
        # Should be done exactly!
        x = mpf_sub(x, fone, bc - exp + 2)
    # x < 0.25
    if reflect:
        # gamma = pi / (sin(pi*x) * gamma(1-x))
        wp += 15
        pix = mpf_mul(x, mpf_pi(wp), wp)
        t = mpf_sin_pi(x, wp)
        g = mpf_gamma(mpf_sub(fone, x, wp), wp)
        return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_real(x, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    xpa = mpf_add(x, from_int(a), wp)
    logxpa = mpf_log(xpa, wp)
    xph = mpf_add(x, fhalf, wp)
    t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp)
    t = mpf_mul(mpf_exp(t, wp), s, prec, rounding)
    return t
Esempio n. 57
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc + exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
    c = mpf_div(x, b, wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)
Esempio n. 58
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc + exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
    c = mpf_div(x, b, wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)