Esempio n. 1
0
 def _calc(self, Y, w, k):
     wY = lag_spatial(w, Y)
     dx = Y[:, -1] - Y[:, 0]
     dy = wY[:, -1] - wY[:, 0]
     self.wY = wY
     self.Y = Y
     r = np.sqrt(dx * dx + dy * dy)
     theta = np.arctan2(dy, dx)
     neg = theta < 0.0
     utheta = theta * (1 - neg) + neg * (2 * np.pi + theta)
     counts, bins = np.histogram(utheta, self.cuts)
     results = {}
     results['counts'] = counts
     results['theta'] = theta
     results['bins'] = bins
     results['r'] = r
     results['lag'] = wY
     results['dx'] = dx
     results['dy'] = dy
     return results
Esempio n. 2
0
def moran_loc_bv_scatterplot(moran_loc_bv, p=None,
                             ax=None, scatter_kwds=None, fitline_kwds=None):
    """
    Moran Bivariate Scatterplot with option of coloring of Local Moran Statistics

    Parameters
    ----------
    moran_loc : esda.moran.Moran_Local_BV instance
        Values of Moran's I Local Autocorrelation Statistics
    p : float, optional
        If given, the p-value threshold for significance. Points will
        be colored by significance. By default it will not be colored.
        Default =None.
    ax : Matplotlib Axes instance, optional
        If given, the Moran plot will be created inside this axis.
        Default =None.
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline.
        Default =None.

    Returns
    -------
    fig : Matplotlib Figure instance
        Bivariate Moran Local scatterplot figure
    ax : matplotlib Axes instance
        Axes in which the figure is plotted

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> import geopandas as gpd
    >>> import libpysal.api as lp
    >>> from libpysal import examples
    >>> from esda.moran import Moran_Local_BV
    >>> from splot.esda import moran_loc_bv_scatterplot
    
    Load data and calculate Moran Local statistics
    
    >>> link = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link)
    >>> x = gdf['Suicids'].values
    >>> y = gdf['Donatns'].values
    >>> w = lp.Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    >>> m = Moran_Local_BV(x, y, w)
    
    Plot
    
    >>> moran_loc_bv_scatterplot(m)
    
    Customize plot
    
    >>> moran_loc_bv_scatterplot(m, p=0.05,
    ...                          fitline_kwds=dict(color='#4393c3')))
    >>> plt.show()
    
    """
    # to set default as an empty dictionary that is later filled with defaults
    if scatter_kwds is None:
        scatter_kwds = dict()
    if fitline_kwds is None:
        fitline_kwds = dict()
        
    if p is not None:
        if not isinstance(moran_loc_bv, Moran_Local_BV):
            raise ValueError("`moran_loc_bv` is not a\n" +
                             "esda.moran.Moran_Local_BV instance")
        if 'color' in scatter_kwds or 'cmap' in scatter_kwds:
            warnings.warn("To change the color use cmap with a colormap of 5,\n" +
                          "c defines the LISA category, color will interfere with c")

        # colors
        spots_bv = moran_hot_cold_spots(moran_loc_bv, p)
        hmap = colors.ListedColormap(['#bababa', '#d7191c', '#abd9e9',
                                      '#2c7bb6', '#fdae61'])

    # define customization
    scatter_kwds.setdefault('alpha', 0.6)
    scatter_kwds.setdefault('s', 40)
    fitline_kwds.setdefault('alpha', 0.9)

    # get fig and ax
    fig, ax = _create_moran_fig_ax(ax, figsize=(7,7))
    
    # set labels
    ax.set_xlabel('Attribute')
    ax.set_ylabel('Spatial Lag')
    ax.set_title('Moran BV Local Scatterplot')

    # plot and set standards
    lag = lp.lag_spatial(moran_loc_bv.w, moran_loc_bv.zy)
    fit = OLS(moran_loc_bv.zy[:, None], lag[:, None])
    # v- and hlines
    ax.axvline(0, alpha=0.5, color='k', linestyle='--')
    ax.axhline(0, alpha=0.5, color='k', linestyle='--')
    if p is not None:
        fitline_kwds.setdefault('color', 'k')
        scatter_kwds.setdefault('cmap', hmap)
        scatter_kwds.setdefault('c', spots_bv)
        ax.plot(lag, fit.predy, **fitline_kwds)
        ax.scatter(moran_loc_bv.zx, fit.predy,
                   **scatter_kwds)
    else:
        scatter_kwds.setdefault('color', splot_colors['moran_base'])
        fitline_kwds.setdefault('color', splot_colors['moran_fit'])
        ax.plot(lag, fit.predy, **fitline_kwds)
        ax.scatter(moran_loc_bv.zy, fit.predy, **scatter_kwds)
    return fig, ax
Esempio n. 3
0
def moran_scatterplot(moran, zstandard=True, ax=None,
                      scatter_kwds=None, fitline_kwds=None):
    """
    Global Moran's I Scatterplot.

    Parameters
    ----------
    moran : esda.moran.Moran instance
        Values of Moran's I Global Autocorrelation Statistics
    zstandard : bool, optional
        If True, Moran Scatterplot will show z-standardized attribute and
        spatial lag values. Default =True.
    ax : Matplotlib Axes instance, optional
        If given, the Moran plot will be created inside this axis.
        Default =None.
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline.
        Default =None.

    Returns
    -------
    fig : Matplotlib Figure instance
        Moran scatterplot figure
    ax : matplotlib Axes instance
        Axes in which the figure is plotted

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> import libpysal.api as lp
    >>> from libpysal import examples
    >>> import geopandas as gpd
    >>> from esda.moran import Moran
    >>> from splot.esda import moran_scatterplot
    
    Load data and calculate weights
    
    >>> link_to_data = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link_to_data)
    >>> y = gdf['Donatns'].values
    >>> w = lp.Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    
    Calculate Global Moran
    
    >>> moran = Moran(y, w)
    
    plot
    
    >>> moran_scatterplot(moran)
    >>> plt.show()
    
    customize plot
    
    >>> fig, ax = moran_scatterplot(moran, zstandard=False,
    ...                             fitline_kws=dict(color='#4393c3'))
    >>> ax.set_xlabel('Donations')
    >>> plt.show()
    
    """
    # to set default as an empty dictionary that is later filled with defaults
    if scatter_kwds is None:
        scatter_kwds = dict()
    if fitline_kwds is None:
        fitline_kwds = dict()

    # define customization defaults
    scatter_kwds.setdefault('alpha', 0.6)
    scatter_kwds.setdefault('color', splot_colors['moran_base'])
    scatter_kwds.setdefault('s', 40)
    
    fitline_kwds.setdefault('alpha', 0.9)
    fitline_kwds.setdefault('color', splot_colors['moran_fit'])
    
    # get fig and ax
    fig, ax = _create_moran_fig_ax(ax, figsize=(7, 7))
    
    # set labels
    ax.set_xlabel('Attribute')
    ax.set_ylabel('Spatial Lag')
    ax.set_title('Moran Scatterplot' +
                 ' (' + str(round(moran.I, 2)) + ')')

    # plot and set standards
    if zstandard is True:
        lag = lp.lag_spatial(moran.w, moran.z)
        fit = OLS(moran.z[:, None], lag[:, None])
        # plot
        ax.scatter(moran.z, lag, **scatter_kwds)
        ax.plot(lag, fit.predy, **fitline_kwds)
        # v- and hlines
        ax.axvline(0, alpha=0.5, color='k', linestyle='--')
        ax.axhline(0, alpha=0.5, color='k', linestyle='--')
    else:
        lag = lp.lag_spatial(moran.w, moran.y)
        b, a = np.polyfit(moran.y, lag, 1)
        # plot
        ax.scatter(moran.y, lag, **scatter_kwds)
        ax.plot(moran.y, a + b*moran.y, **fitline_kwds)
        # dashed vert at mean of the attribute
        ax.vlines(moran.y.mean(), lag.min(), lag.max(), alpha=0.5,
                  linestyle='--')
        # dashed horizontal at mean of lagged attribute
        ax.hlines(lag.mean(), moran.y.min(), moran.y.max(), alpha=0.5,
                  linestyle='--')
    return fig, ax
Esempio n. 4
0
def plot_local_autocorrelation(moran_loc, gdf, attribute, p=0.05,
                               region_column=None, mask=None,
                               mask_color='#636363', quadrant=None,
                               legend=True, scheme='Quantiles',
                               cmap='YlGnBu', figsize=(15, 4),
                               scatter_kwds=None, fitline_kwds=None):
    '''
    Produce three-plot visualisation of Moran Scatteprlot, LISA cluster
    and Choropleth maps, with Local Moran region and quadrant masking

    Parameters
    ----------
    moran_loc : esda.moran.Moran_Local instance
        Values of Moran's Local Autocorrelation Statistic
    gdf : geopandas dataframe
        The Dataframe containing information to plot the two maps.
    attribute : str
        Column name of attribute which should be depicted in Choropleth map.
    p : float, optional
        The p-value threshold for significance. Points and polygons will
        be colored by significance. Default = 0.05.
    region_column: string, optional
        Column name containing mask region of interest. Default = None
    mask: str, optional
        Identifier or name of the region to highlight. Default = None
    mask_color: str, optional
        Color of mask. Default = '#636363'
    quadrant : int, optional
        Quadrant 1-4 in scatterplot masking values in LISA cluster and
        Choropleth maps. Default = None
    figsize: tuple, optional
        W, h of figure. Default = (15,4)
    legend: boolean, optional
        If True, legend for maps will be depicted. Default = True
    scheme: str, optional
        Name of PySAL classifier to be used. Default = 'Quantiles'
    cmap: str, optional
        Name of matplotlib colormap used for plotting the Choropleth.
        Default = 'YlGnBU'
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline
        in the scatterplot. Default =None.

    Returns
    -------
    fig : Matplotlib figure instance
        Moran Scatterplot, LISA cluster map and Choropleth.
    axs : list of Matplotlib axes
        Lisat of Matplotlib axes plotted.

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> import libpysal.api as lp
    >>> from libpysal import examples
    >>> import geopandas as gpd
    >>> from esda.moran import Moran_Local
    >>> from splot.esda import plot_local_autocorrelation

    Data preparation and analysis
    
    >>> link = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link)
    >>> y = gdf['Donatns'].values
    >>> w = lp.Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    >>> moran_loc = Moran_Local(y, w)

    Plotting with quadrant mask and region mask
    
    >>> fig = plot_local_autocorrelation(moran_loc, gdf, 'HOVAL', p=0.05,
    ...                                  region_column='POLYID',
    ...                                  mask=['1', '2', '3'], quadrant=1)
    >>> plt.show()
    
    '''
    fig, axs = plt.subplots(1, 3, figsize=figsize,
                            subplot_kw={'aspect': 'equal'})
    # Moran Scatterplot
    if isinstance (moran_loc, Moran_Local):
        moran_loc_scatterplot(moran_loc, p=p, ax=axs[0],
                              scatter_kwds=scatter_kwds, fitline_kwds=fitline_kwds)
    else:
        moran_loc_bv_scatterplot(moran_loc, p=p, ax=axs[0],
                                 scatter_kwds=scatter_kwds, fitline_kwds=fitline_kwds)
    axs[0].set_aspect('auto')

    # Lisa cluster map
    # TODO: Fix legend_kwds: display boxes instead of points
    lisa_cluster(moran_loc, gdf, p=p, ax=axs[1], legend=legend,
                 legend_kwds={'loc': 'upper left',
                 'bbox_to_anchor': (0.92, 1.05)})
    axs[1].set_aspect('equal')

    # Choropleth for attribute
    gdf.plot(column=attribute, scheme=scheme, cmap=cmap,
             legend=legend, legend_kwds={'loc': 'upper left',
                                         'bbox_to_anchor': (0.92, 1.05)},
             ax=axs[2], alpha=1)
    axs[2].set_axis_off()
    axs[2].set_aspect('equal')

    # MASKING QUADRANT VALUES
    if quadrant is not None:
        # Quadrant masking in Scatterplot
        mask_angles = {1: 0, 2: 90, 3: 180, 4: 270}   # rectangle angles
        # We don't want to change the axis data limits, so use the current ones
        xmin, xmax = axs[0].get_xlim()
        ymin, ymax = axs[0].get_ylim()
        # We are rotating, so we start from 0 degrees and
        # figured out the right dimensions for the rectangles for other angles
        mask_width = {1: abs(xmax),
                      2: abs(ymax),
                      3: abs(xmin),
                      4: abs(ymin)}
        mask_height = {1: abs(ymax),
                       2: abs(xmin),
                       3: abs(ymin),
                       4: abs(xmax)}
        axs[0].add_patch(patches.Rectangle((0, 0), width=mask_width[quadrant],
                                           height=mask_height[quadrant],
                                           angle=mask_angles[quadrant],
                                           color='grey', zorder=-1, alpha=0.8))
        # quadrant selection in maps
        non_quadrant = ~(moran_loc.q == quadrant)
        mask_quadrant = gdf[non_quadrant]
        df_quadrant = gdf.iloc[~non_quadrant]
        union2 = df_quadrant.unary_union.boundary

        # LISA Cluster mask and cluster boundary
        mask_quadrant.plot(column=attribute, scheme=scheme, color='white',
                           ax=axs[1], alpha=0.7, zorder=1)
        gpd.GeoSeries([union2]).plot(linewidth=2, ax=axs[1], color='darkgrey')

        # CHOROPLETH MASK
        mask_quadrant.plot(column=attribute, scheme=scheme, color='white',
                           ax=axs[2], alpha=0.7, zorder=1)
        gpd.GeoSeries([union2]).plot(linewidth=2, ax=axs[2], color='darkgrey')

    # REGION MASKING
    if region_column is not None:
        # masking inside axs[0] or Moran Scatterplot
        ix = gdf[region_column].isin(mask)
        df_mask = gdf[ix]
        x_mask = moran_loc.z[ix]
        y_mask = lp.lag_spatial(moran_loc.w, moran_loc.z)[ix]
        axs[0].plot(x_mask, y_mask, color=mask_color, marker='o',
                    markersize=14, alpha=.8, linestyle="None", zorder=-1)

        # masking inside axs[1] or Lisa cluster map
        union = df_mask.unary_union.boundary
        gpd.GeoSeries([union]).plot(linewidth=2, ax=axs[1], color=mask_color)

        # masking inside axs[2] or Chloropleth
        gpd.GeoSeries([union]).plot(linewidth=2, ax=axs[2], color=mask_color)
    return fig, axs
Esempio n. 5
0
def moran_bv_scatterplot(moran_bv, ax=None, scatter_kwds=None, fitline_kwds=None):
    """
    Bivariate Moran Scatterplot.

    Parameters
    ----------
    moran_bv : esda.moran.Moran_BV instance
        Values of Bivariate Moran's I Autocorrelation Statistics
    ax : Matplotlib Axes instance, optional
        If given, the Moran plot will be created inside this axis.
        Default =None.
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline.
        Default =None.

    Returns
    -------
    fig : Matplotlib Figure instance
        Bivariate moran scatterplot figure
    ax : matplotlib Axes instance
        Axes in which the figure is plotted

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> import libpysal.api as lp
    >>> from libpysal import examples
    >>> import geopandas as gpd
    >>> from esda.moran import Moran_BV
    >>> from splot.esda import moran_bv_scatterplot
    
    Load data and calculate weights
    
    >>> link_to_data = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link_to_data)
    >>> x = gdf['Suicids'].values
    >>> y = gdf['Donatns'].values
    >>> w = lp.Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    
    Calculate Bivariate Moran
    
    >>> moran_bv = Moran_BV(x, y, w)
    
    plot
    
    >>> moran_bv_scatterplot(moran_bv)
    >>> plt.show()
    
    customize plot
    
    >>> moran_bv_scatterplot(moran_bv, zstandard=False,
    ...                      fitline_kwds=dict(color='#4393c3'))
    >>> plt.show()
    
    """
    # to set default as an empty dictionary that is later filled with defaults
    if scatter_kwds is None:
        scatter_kwds = dict()
    if fitline_kwds is None:
        fitline_kwds = dict()

    # define customization
    scatter_kwds.setdefault('alpha', 0.6)
    scatter_kwds.setdefault('color', splot_colors['moran_base'])
    scatter_kwds.setdefault('s', 40)
    
    fitline_kwds.setdefault('alpha', 0.9)
    fitline_kwds.setdefault('color', splot_colors['moran_fit'])

    # get fig and ax
    fig, ax = _create_moran_fig_ax(ax, figsize=(7,7))
    
    # set labels
    ax.set_xlabel('Attribute X')
    ax.set_ylabel('Spatial Lag of Y')
    ax.set_title('Bivariate Moran Scatterplot' +
                 ' (' + str(round(moran_bv.I, 2)) + ')')

    # plot and set standards
    lag = lp.lag_spatial(moran_bv.w, moran_bv.zy)
    fit = OLS(moran_bv.zy[:, None], lag[:, None])
    # plot
    ax.scatter(moran_bv.zx, lag, **scatter_kwds)
    ax.plot(lag, fit.predy, **fitline_kwds)
    # v- and hlines
    ax.axvline(0, alpha=0.5, color='k', linestyle='--')
    ax.axhline(0, alpha=0.5, color='k', linestyle='--')
    return fig, ax