def get_value(self, t): params = deepcopy(original_params) a_rs, inc = duration_to_otherparams(params.per, self.duration, self.b, np.sqrt(self.depth), params.ecc, params.w) params.rp = self.depth**0.5 params.t0 = self.t0 + mid_transit_answer params.inc = inc params.a = a_rs return self.amp * transit_model(t + mid_transit_answer, params)
def get_value(self, t): params = deepcopy(original_params) params.rp = self.depth**0.5 params.t0 = self.t0 return self.amp * transit_model(t, params)
def get_value(self, t): params = deepcopy(trappist1('b')) params.rp = self.depth**0.5 return self.amp * transit_model(t, params)
skip = 1 mu, var = gp.predict(obs_flux, obs_time, return_var=True) std = np.sqrt(var) # samples = np.vstack([obs_planet.samples_amp, obs_planet.samples_depth, # obs_planet.samples_t0, obs_planet.samples_log_omega0, obs_planet.samples_log_S0]) # # from corner import corner # corner(samples.T, labels=['amp', 'depth', 't0', 'log_omega0', 'log_S0']) # plt.show() transit_params = params(planet) transit_params.rp = np.sqrt(np.median(obs_planet.samples_depth)) transit_params.t0 = np.median(obs_planet.samples_t0) amp = np.median(obs_planet.samples_amp) best_transit_model = amp * transit_model(obs_time, transit_params) transitless_gp_mean = mu - best_transit_model transitless_obs_flux = obs_flux - best_transit_model # fig, ax = plt.subplots(2, 1, figsize=(5, 8)) # ax[0].errorbar(obs_time, obs_flux, obs_err, fmt='.', color='k', ecolor='silver', ms=2, alpha=0.5) # ax[0].plot(obs_time, mu, 'r', zorder=10) # ax[0].fill_between(obs_time, mu-std, mu+std, color='r', alpha=0.5, zorder=10) # ax[0].set_title(Time((obs_time + original_params.t0).min(), format='jd').datetime.date()) # ax[0].set_ylabel('NIRSpec Counts') # ax[0].set_xlabel('Time [d]') # model_residual = amp * (obs_planet.fluxes[mask] + obs_planet.spitzer_var[mask] - 2) # model_residual -= np.median(model_residual) # ax[1].plot(obs_time, model_residual, 'r', lw=2, zorder=10, label='microvar + spots')
del obs.archive[planet] group = obs.archive.create_group(planet) u1, u2 = params.u #duration = transit_duration(transit_params(planet)) spectrum_photo = IRTFTemplate(sptype_phot) spectrum_spots = IRTFTemplate(sptype_spot) print('midtransit', midtransit) times = np.arange(midtransit - (8 * np.random.rand() + 2) * duration, midtransit + (8 * np.random.rand() + 2) * duration, exptime.to(u.day).value) # times = np.arange(midtransit - 1*duration, midtransit, exptime.to(u.day).value) transit = transit_model(times, params) #all_transits(times) subgroup = group.create_group("{0}".format( Time(midtransit, format='jd').isot)) star = Star.with_k296_spot_distribution() star.rotation_period = rotation_period * u.day area = star.spotted_area(times) fluxes = star.fractional_flux(times) spitzer_var = spitzer_variability(times)[:, np.newaxis] spectrum_photo_flux = spectrum_photo.interp_flux(wl) spectrum_spots_flux = spectrum_spots.interp_flux(wl) combined_spectra = ( (transit[:, np.newaxis] - area[:, np.newaxis]) * spectrum_photo_flux +