Esempio n. 1
0
def train_model(N, sparsity):
    W = np.random.normal(0, 1, [N, N])
    W = W * (RHO / np.max(np.abs(np.linalg.eig(W)[0])))
    WI = random.uniform(-TAU, TAU, N)

    # make sparse
    bef = np.count_nonzero(W)
    for i in range(N):
        for j in range(N):
            if i != j and random.random() < sparsity:
                W[i, j] = 0.0
    W = W * (RHO / np.max(np.abs(np.linalg.eig(W)[0])))

    mc_max = -inf

    af = np.count_nonzero(W)
    print('sparsity', 1.0 - af / bef)

    # W = learn_orthonormal(W, eta)
    W = learn_orthogonal(W, eta)
    af = np.count_nonzero(W)
    print('sparsity', 1.0 - af / bef)
    while True:
        # W = learn_orthonormal(W, eta)
        W = learn_orthogonal(W, eta)
        af = np.count_nonzero(W)
        print('sparsity', 1.0 - af / bef)
        last_mc = mc(WI, W, iters_skip=N, iters_train=10 * N, iters_test=1000)
        print(last_mc)
        if mc_max < last_mc:
            mc_max = last_mc

        if mc_max > last_mc:
            return mc_max
Esempio n. 2
0
def train_model(N, eta):
    W = np.random.normal(0, 1, [N, N])
    W = W * (RHO / np.max(np.abs(np.linalg.eig(W)[0])))
    WI = random.uniform(-TAU, TAU, N)

    mc_max = -inf
    opt_iters = 0

    W = learn_orthogonal(W, eta)
    while True:
        W = learn_orthogonal(W, eta)
        last_mc = mc(WI, W, iters_skip=N, iters_train=10*N, iters_test=1000)
        print('N={}, eta={}, mc={}'.format(N, eta, last_mc))
        if mc_max < last_mc:
            mc_max = last_mc

        if mc_max > last_mc:
            print()
            return mc_max, opt_iters

        # W = learn_orthonormal(W, eta)
        opt_iters += 1
Esempio n. 3
0
def train_model(N, sparsity):
    W = np.random.normal(0, 1, [N, N])
    W = W * (RHO / np.max(np.abs(np.linalg.eig(W)[0])))
    WI = random.uniform(-TAU, TAU, N)

    # make sparse
    for i in range(N):
        for j in range(N):
            if i != j and random.random() < sparsity:
                W[i, j] = 0.0
    W = W * (RHO / np.max(np.abs(np.linalg.eig(W)[0])))

    mc_max = -inf

    W = learn_orthogonal(W, eta)
    while True:
        W = learn_orthogonal(W, eta)
        last_mc = mc(WI, W, iters_skip=N, iters_train=10*N, iters_test=1000)
        if mc_max < last_mc:
            mc_max = last_mc

        if mc_max > last_mc:
            return mc_max
                           iterations=iterations,
                           iterations_coef_measure=1000,
                           use_input=False,
                           target_later=True,
                           calc_lyapunov=False)


mc_mean = np.zeros([len(reservoir_sizes), len(taus)])
mc_std = np.zeros([len(reservoir_sizes), len(taus)])

for tau_idx, tau in enumerate(taus):
    print(tau_idx)
    for rsi, N in enumerate(reservoir_sizes):
        mc = np.zeros(INSTANCES)
        for inst in range(INSTANCES):
            W = random.normal(0, 1, [N, N])
            W = W * (rho / np.max(np.abs(np.linalg.eig(W)[0])))
            WI = random.uniform(-tau, tau, N)

            for _ in range(ORTHOPROCESS_ITERATIONS):
                W = learn_orthogonal(W, eta)

            mc[inst], _ = measure_mc(W, WI, iterations=10 * N)
            print(N, mc[inst])

        mc_mean[rsi, tau_idx] = np.average(mc)
        mc_std[rsi, tau_idx] = np.std(mc)

        np.save('mcm', mc_mean)
        np.save('mcs', mc_std)
                           memory_max=int(1.1*WI.shape[0]),
                           iterations=1200,
                           iterations_coef_measure=1000,
                           use_input=False,
                           target_later=True,
                           calc_lyapunov=False)


mc_mean = np.zeros([len(reservoir_sizes), len(taus)])
mc_std = np.zeros([len(reservoir_sizes), len(taus)])

for tau_idx, tau in enumerate(taus):
    print(tau_idx)
    for rsi, N in enumerate(reservoir_sizes):
        mc = np.zeros(INSTANCES)
        for inst in range(INSTANCES):
            W = random.normal(0, 1, [N, N])
            W = W * (rho / np.max(np.abs(np.linalg.eig(W)[0])))
            WI = random.uniform(-tau, tau, N)

            for _ in range(ORTHOPROCESS_ITERATIONS):
                W = learn_orthogonal(W, eta)

            mc[inst], _ = measure_mc(W, WI)

        mc_mean[rsi, tau_idx] = np.average(mc)
        mc_std[rsi, tau_idx] = np.std(mc)

        np.save('mcm', mc_mean)
        np.save('mcs', mc_std)
    WI = np.random.uniform(-tau, tau, N)
    WG = W

    mc_gon = np.zeros(ORTHO_ITERATIONS + 1)
    les = []
    mc_gon[0], le = measure_mc(WG, WI, True)
    les.append(le)

    eigen_values = np.zeros([ORTHO_ITERATIONS + 1, N])
    singular_values = np.zeros([ORTHO_ITERATIONS + 1, N])

    eigen_values[0, :] = np.sort(np.abs(np.linalg.eig(W)[0]))
    singular_values[0, :] = np.linalg.svd(W, compute_uv=False)

    for it in range(ORTHO_ITERATIONS):
        WG = learn_orthogonal(WG, eta)

        mc_gon[it + 1], le = measure_mc(WG, WI, True)
        les.append(le)

        eigen_values[it + 1, :] = np.sort(np.abs(np.linalg.eig(WG)[0]))
        singular_values[it + 1, :] = np.linalg.svd(WG, compute_uv=False)

    MCs.append(mc_gon)
    EVs.append(eigen_values)
    SVs.append(singular_values)
    LEs.append(les)

print()
np.save('mc', MCs)
np.save('ev', EVs)
eigenvaluesG = np.zeros([ORTHO_ITERATIONS + 1, N])
singular_valuesG = np.zeros([ORTHO_ITERATIONS + 1, N])
eigenvaluesN = np.zeros([ORTHO_ITERATIONS + 1, N])
singular_valuesN = np.zeros([ORTHO_ITERATIONS + 1, N])

mc_gon[0] = measure_mc(WG, WI)
mc_nor[0] = measure_mc(WN, WI)
eigenvaluesG[0, :] = np.sort(np.abs(np.linalg.eig(W)[0]))
singular_valuesG[0, :] = np.linalg.svd(W, compute_uv=False)
eigenvaluesN[0, :] = np.sort(np.abs(np.linalg.eig(W)[0]))
singular_valuesN[0, :] = np.linalg.svd(W, compute_uv=False)

for it in range(ORTHO_ITERATIONS):
    print('\riteration', it, 'of', ORTHO_ITERATIONS, end='')
    WG = learn_orthogonal(WG, eta)
    WN = learn_orthonormal(WN, eta)

    mc_gon[it + 1] = measure_mc(WG, WI)
    mc_nor[it + 1] = measure_mc(WN, WI)

    eigenvaluesG[it + 1, :] = np.sort(np.abs(np.linalg.eig(WG)[0]))
    singular_valuesG[it + 1, :] = np.linalg.svd(WG, compute_uv=False)

    eigenvaluesN[it + 1, :] = np.sort(np.abs(np.linalg.eig(WN)[0]))
    singular_valuesN[it + 1, :] = np.linalg.svd(WN, compute_uv=False)

print()


def replot():