Esempio n. 1
0
def __early_downsample(y, sr, hop_length, res_type, n_octaves, nyquist,
                       filter_cutoff, scale):
    '''Perform early downsampling on an audio signal, if it applies.'''

    downsample_count = __early_downsample_count(nyquist, filter_cutoff,
                                                hop_length, n_octaves)

    if downsample_count > 0 and res_type == 'kaiser_fast':
        downsample_factor = 2**(downsample_count)

        hop_length //= downsample_factor

        if len(y) < downsample_factor:
            raise ParameterError('Input signal length={:d} is too short for '
                                 '{:d}-octave CQT'.format(len(y), n_octaves))

        new_sr = sr / float(downsample_factor)
        y = audio.resample(y, sr, new_sr, res_type=res_type, scale=True)

        # If we're not going to length-scale after CQT, we
        # need to compensate for the downsampling factor here
        if not scale:
            y *= np.sqrt(downsample_factor)

        sr = new_sr

    return y, sr, hop_length
Esempio n. 2
0
def main():
    from nara_wpe import project_root
    import soundfile as sf
    from nara_wpe.utils import stft
    from nara_wpe.utils import istft as istft
    from nara_wpe.utils import get_stft_center_frequencies
    from tqdm import tqdm
    from librosa.core.audio import resample

    channels = 8

    parameter_set = 'Katka'

    if parameter_set == 'Katka':
        sampling_rate = 16000
        stft_size, stft_shift = 512, 128
        delay = 3
        iterations = 5

        def get_K(f):
            return 10

    elif parameter_set == 'Yoshioka2012GeneralWPE':
        sampling_rate = 8000
        stft_size, stft_shift = 128, 64
        delay = 2
        iterations = 2

        def get_K(f):
            if center_frequencies[f] < 800:
                K = 18
            elif center_frequencies[f] < 1500:
                K = 15
            else:
                K = 12
            return K

    else:
        raise ValueError

    file_template = 'AMI_WSJ20-Array1-{}_T10c0201.wav'
    signal_list = [
        sf.read(str(project_root / 'data' / file_template.format(d + 1)))[0]
        for d in range(channels)
    ]
    signal_list = [resample(x_, 16000, sampling_rate) for x_ in signal_list]
    y = np.stack(signal_list, axis=0)

    center_frequencies = get_stft_center_frequencies(stft_size, sampling_rate)

    Y = stft(y, size=stft_size, shift=stft_shift)

    X = np.copy(Y)
    D, T, F = Y.shape
    for f in tqdm(range(F), total=F):
        K = get_K(f)
        X[:, :, f] = wpe_v5(Y[:, :, f],
                            K=K,
                            delay=delay,
                            iterations=iterations)

    x = istft(X, size=stft_size, shift=stft_shift)

    sf.write(str(project_root / 'data' / 'wpe_out.wav'),
             x[0],
             samplerate=sampling_rate)
Esempio n. 3
0
def main(channels, sampling_rate, file_template, taps_frequency_dependent,
         delay, iterations):
    """
    User interface for WPE. The defaults of the command line interface are
    suited for example audio files of nara_wpe.

     'Yoshioka2012GeneralWPE'
        sampling_rate = 8000
        delay = 2
        iterations = 2

    """
    from nara_wpe import project_root
    import soundfile as sf
    from nara_wpe.utils import stft
    from nara_wpe.utils import istft
    from nara_wpe.utils import get_stft_center_frequencies
    from tqdm import tqdm
    from librosa.core.audio import resample

    stft_options = dict(size=512,
                        shift=128,
                        window_length=None,
                        fading=True,
                        pad=True,
                        symmetric_window=False)

    def get_taps(f, mode=taps_frequency_dependent):
        if mode:
            if center_frequencies[f] < 800:
                taps = 18
            elif center_frequencies[f] < 1500:
                taps = 15
            else:
                taps = 12
        else:
            taps = 10
        return taps

    if file_template == 'AMI_WSJ20-Array1-{}_T10c0201.wav':
        signal_list = [
            sf.read(str(project_root / 'data' /
                        file_template.format(d + 1)))[0]
            for d in range(channels)
        ]
    else:
        signal = sf.read(file_template)[0].transpose(1, 0)
        signal_list = list(signal)
    signal_list = [resample(x_, 16000, sampling_rate) for x_ in signal_list]
    y = np.stack(signal_list, axis=0)

    center_frequencies = get_stft_center_frequencies(stft_options['size'],
                                                     sampling_rate)

    Y = stft(y, **stft_options)

    X = np.copy(Y)
    D, T, F = Y.shape
    for f in tqdm(range(F), total=F):
        taps = get_taps(f)
        X[:, :, f] = wpe_v7(Y[:, :, f],
                            taps=taps,
                            delay=delay,
                            iterations=iterations)

    x = istft(X, size=stft_options['size'], shift=stft_options['shift'])

    sf.write(str(project_root / 'data' / 'wpe_out.wav'),
             x[0],
             samplerate=sampling_rate)
    print('Output in {}'.format(str(project_root / 'data' / 'wpe_out.wav')))
Esempio n. 4
0
def icqt(C,
         sr=22050,
         hop_length=512,
         fmin=None,
         n_bins=84,
         bins_per_octave=12,
         filter_scale=1,
         norm=1,
         sparsity=0.01,
         window='hann',
         scale=True,
         pad_mode='reflect',
         use_smoothing=True):

    tuning = 0.0
    # How many octaves are we dealing with?
    n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
    n_filters = min(bins_per_octave, n_bins)

    if scale:
        lengths = filters.constant_q_lengths(sr,
                                             fmin,
                                             n_bins=n_bins,
                                             bins_per_octave=bins_per_octave,
                                             tuning=tuning,
                                             window=window,
                                             filter_scale=filter_scale)
        C *= np.sqrt(lengths[:, np.newaxis])

    if fmin is None:
        # C1 by default
        fmin = note_to_hz('C1')

    # First thing, get the freqs of the top octave
    freqs = cqt_frequencies(n_bins, fmin,
                            bins_per_octave=bins_per_octave)[-bins_per_octave:]

    fmin_t = np.min(freqs)
    fmax_t = np.max(freqs)

    # Determine required resampling quality
    Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1)
    filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q)
    nyquist = sr / 2.0
    if filter_cutoff < audio.BW_FASTEST * nyquist:
        res_type = 'kaiser_fast'
    else:
        res_type = 'kaiser_best'

    y = np.zeros((1000, ))
    y, sr, hop_length = __early_downsample(y, sr, hop_length, res_type,
                                           n_octaves, nyquist, filter_cutoff,
                                           scale)

    cqt_resp = []

    for i in range(n_octaves):
        cqt_resp += [
            C[i * bins_per_octave:i * bins_per_octave + bins_per_octave, :]
        ]

    cqt_resp = cqt_resp[::-1]

    if res_type != 'kaiser_fast':

        # Do the top octave before resampling to allow for fast resampling
        fft_basis, n_fft, _ = __cqt_filter_fft(sr,
                                               fmin_t,
                                               n_filters,
                                               bins_per_octave,
                                               tuning,
                                               filter_scale,
                                               norm,
                                               sparsity,
                                               window=window)

        fft_basis = np.linalg.pinv(fft_basis)
        # Compute the CQT filter response and append it to the stack
        y = __icqt_response(cqt_resp[0], n_fft, hop_length, fft_basis,
                            pad_mode)

        fmin_t /= 2
        fmax_t /= 2
        n_octaves -= 1

        filter_cutoff = fmax_t * (1 +
                                  0.5 * filters.window_bandwidth(window) / Q)

        res_type = 'kaiser_fast'

    # Make sure our hop is long enough to support the bottom octave
    num_twos = __num_two_factors(hop_length)
    if num_twos < n_octaves - 1:
        raise ParameterError('hop_length must be a positive integer '
                             'multiple of 2^{0:d} for {1:d}-octave CQT'.format(
                                 n_octaves - 1, n_octaves))

    # Now do the recursive bit
    fft_basis, n_fft, _ = __cqt_filter_fft(sr,
                                           fmin_t,
                                           n_filters,
                                           bins_per_octave,
                                           tuning,
                                           filter_scale,
                                           norm,
                                           sparsity,
                                           window=window)

    fft_basis = np.linalg.pinv(fft_basis)

    my_y, my_sr, my_hop = y, sr, hop_length

    y = 0.0
    # Iterate down the octaves
    for i in range(n_octaves):

        # Resample (except first time)
        if i > 0:

            #my_y = audio_resample_tf(my_y, my_sr, my_sr/2.0,
            #                      res_type=res_type,
            #                      scale=True, use_smoothing=use_smoothing)

            # The re-scale the filters to compensate for downsampling
            fft_basis /= np.sqrt(2)

            my_sr /= 2.0
            my_hop //= 2

            # Compute the cqt filter response and append to the stack
            my_y = __icqt_response(cqt_resp[i], n_fft, my_hop, fft_basis,
                                   pad_mode)
            my_y = audio.resample(my_y,
                                  my_sr,
                                  sr,
                                  res_type=res_type,
                                  scale=True)
            y += my_y

        else:
            my_y = __icqt_response(cqt_resp[i], n_fft, my_hop, fft_basis,
                                   pad_mode)
            y += my_y

        print('Octave:', i)
        print('y.size:', my_y.size)
        print('SR:', my_sr)
        print('Hop:', my_hop)
        print('New SR:', sr)
    return y
Esempio n. 5
0
def icqt(C,
         sr=22050,
         hop_length=512,
         fmin=None,
         bins_per_octave=12,
         tuning=0.0,
         filter_scale=1,
         norm=1,
         sparsity=0.01,
         window='hann',
         scale=True,
         amin=1e-6):
    '''Compute the inverse constant-Q transform.
    Given a constant-Q transform representation `C` of an audio signal `y`,
    this function produces an approximation `y_hat`.
    .. warning:: This implementation is unstable, and subject to change in
                 future versions of librosa.  We recommend that its use be
                 limited to sonification and diagnostic applications.
    Parameters
    ----------
    C : np.ndarray, [shape=(n_bins, n_frames)]
        Constant-Q representation as produced by `core.cqt`
    hop_length : int > 0 [scalar]
        number of samples between successive frames
    fmin : float > 0 [scalar]
        Minimum frequency. Defaults to C1 ~= 32.70 Hz
    tuning : float in `[-0.5, 0.5)` [scalar]
        Tuning offset in fractions of a bin (cents).
    filter_scale : float > 0 [scalar]
        Filter scale factor. Small values (<1) use shorter windows
        for improved time resolution.
    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See `librosa.util.normalize`.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, number, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    scale : bool
        If `True`, scale the CQT response by square-root the length
        of each channel's filter. This is analogous to `norm='ortho'` in FFT.
        If `False`, do not scale the CQT. This is analogous to `norm=None`
        in FFT.
    amin : float or None
        When applying squared window normalization, sample positions with
        coefficients below `amin` will left as is.
        If `None`, then `amin` is inferred as the smallest valid floating
        point value.
    Returns
    -------
    y : np.ndarray, [shape=(n_samples), dtype=np.float]
        Audio time-series reconstructed from the CQT representation.
    See Also
    --------
    cqt
    Notes
    -----
    This function caches at level 40.
    Examples
    --------
    Using default parameters
    >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15)
    >>> C = librosa.cqt(y=y, sr=sr)
    >>> y_hat = librosa.icqt(C=C, sr=sr)
    Or with a different hop length and frequency resolution:
    >>> hop_length = 256
    >>> bins_per_octave = 12 * 3
    >>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave,
    ...                 bins_per_octave=bins_per_octave)
    >>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length,
    ...                 bins_per_octave=bins_per_octave)
    '''
    warnings.warn(
        'librosa.icqt is unstable, and subject to change in future versions. '
        'Please use with caution.')

    n_bins, n_frames = C.shape
    n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))

    if amin is None:
        amin = util.tiny(C)

    if fmin is None:
        fmin = note_to_hz('C1')

    freqs = cqt_frequencies(n_bins,
                            fmin,
                            bins_per_octave=bins_per_octave,
                            tuning=tuning)[-bins_per_octave:]

    fmin_t = np.min(freqs)

    # Make the filter bank
    basis, lengths = filters.constant_q(sr=sr,
                                        fmin=fmin_t,
                                        n_bins=bins_per_octave,
                                        bins_per_octave=bins_per_octave,
                                        filter_scale=filter_scale,
                                        tuning=tuning,
                                        norm=norm,
                                        window=window,
                                        pad_fft=True)
    n_fft = basis.shape[1]

    # The extra factor of lengths**0.5 corrects for within-octave tapering
    basis = basis * np.sqrt(lengths[:, np.newaxis])

    # Estimate the gain per filter
    bdot = basis.conj().dot(basis.T)
    bscale = np.sum(np.abs(bdot), axis=1)

    n_trim = basis.shape[1] // 2

    if scale:
        Cnorm = np.ones(n_bins)[:, np.newaxis]
    else:
        Cnorm = filters.constant_q_lengths(sr=sr,
                                           fmin=fmin,
                                           n_bins=n_bins,
                                           bins_per_octave=bins_per_octave,
                                           filter_scale=filter_scale,
                                           tuning=tuning,
                                           window=window)[:, np.newaxis]**0.5

    y = None

    # Revised algorithm:
    #   for each octave
    #      upsample old octave
    #      @--numba accelerate this loop?
    #      for each basis
    #         convolve with activation (valid-mode)
    #         divide by window sumsquare
    #         trim and add to total

    for octave in range(n_octaves - 1, -1, -1):
        # Compute the slice index for the current octave
        slice_ = slice(-(octave + 1) * bins_per_octave - 1,
                       -(octave) * bins_per_octave - 1)

        # Project onto the basis
        C_oct = C[slice_] / Cnorm[slice_]
        basis_oct = basis[-C_oct.shape[0]:]

        y_oct = None

        # Make a dummy activation
        oct_hop = hop_length // 2**octave
        n = n_fft + (C_oct.shape[1] - 1) * oct_hop

        for i in range(basis_oct.shape[0] - 1, -1, -1):
            wss = filters.window_sumsquare(window,
                                           n_frames,
                                           hop_length=oct_hop,
                                           win_length=int(lengths[i]),
                                           n_fft=n_fft,
                                           norm=norm)

            wss *= lengths[i]**2

            # Construct the response for this filter
            y_oct_i = np.zeros(n, dtype=C_oct.dtype)
            __activation_fill(y_oct_i, basis_oct[i], C_oct[i], oct_hop)
            # Retain only the real part
            # Only do window normalization for sufficiently large window
            # coefficients
            y_oct_i = y_oct_i.real / np.maximum(amin, wss)

            if y_oct is None:
                y_oct = y_oct_i
            else:
                y_oct += y_oct_i

        # Remove the effects of zero-padding
        y_oct = y_oct[n_trim:-n_trim] * bscale[i]

        if y is None:
            y = y_oct
        else:
            # Up-sample the previous buffer and add in the new one
            # Scipy-resampling is fast here, since it's a power-of-two relation
            y = audio.resample(y, 1, 2, scale=True, res_type='scipy') + y_oct

    return y
Esempio n. 6
0
def cqt(y,
        sr=22050,
        hop_length=512,
        fmin=None,
        n_bins=84,
        bins_per_octave=12,
        tuning=0.0,
        filter_scale=1,
        norm=1,
        sparsity=0.01,
        window='hann',
        scale=True,
        pad_mode='reflect',
        res_type='scipy'):
    '''Compute the constant-Q transform of an audio signal.
    This implementation is based on the recursive sub-sampling method
    described by [1]_.
    .. [1] Schoerkhuber, Christian, and Anssi Klapuri.
        "Constant-Q transform toolbox for music processing."
        7th Sound and Music Computing Conference, Barcelona, Spain. 2010.
    Parameters
    ----------
    y : np.ndarray [shape=(n,)]
        audio time series
    sr : number > 0 [scalar]
        sampling rate of `y`
    hop_length : int > 0 [scalar]
        number of samples between successive CQT columns.
    fmin : float > 0 [scalar]
        Minimum frequency. Defaults to C1 ~= 32.70 Hz
    n_bins : int > 0 [scalar]
        Number of frequency bins, starting at `fmin`
    bins_per_octave : int > 0 [scalar]
        Number of bins per octave
    tuning : None or float in `[-0.5, 0.5)`
        Tuning offset in fractions of a bin (cents).
        If `None`, tuning will be automatically estimated from the signal.
    filter_scale : float > 0
        Filter scale factor. Small values (<1) use shorter windows
        for improved time resolution.
    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See `librosa.util.normalize`.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, number, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    scale : bool
        If `True`, scale the CQT response by square-root the length of
        each channel's filter.  This is analogous to `norm='ortho'` in FFT.
        If `False`, do not scale the CQT. This is analogous to
        `norm=None` in FFT.
    pad_mode : string
        Padding mode for centered frame analysis.
        See also: `librosa.core.stft` and `np.pad`.
    Returns
    -------
    CQT : np.ndarray [shape=(n_bins, t), dtype=np.complex or np.float]
        Constant-Q value each frequency at each time.
    Raises
    ------
    ParameterError
        If `hop_length` is not an integer multiple of
        `2**(n_bins / bins_per_octave)`
        Or if `y` is too short to support the frequency range of the CQT.
    See Also
    --------
    librosa.core.resample
    librosa.util.normalize
    Notes
    -----
    This function caches at level 20.
    Examples
    --------
    Generate and plot a constant-Q power spectrum
    >>> import matplotlib.pyplot as plt
    >>> y, sr = librosa.load(librosa.util.example_audio_file())
    >>> C = np.abs(librosa.cqt(y, sr=sr))
    >>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max),
    ...                          sr=sr, x_axis='time', y_axis='cqt_note')
    >>> plt.colorbar(format='%+2.0f dB')
    >>> plt.title('Constant-Q power spectrum')
    >>> plt.tight_layout()
    Limit the frequency range
    >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
    ...                 n_bins=60))
    >>> C
    array([[  8.827e-04,   9.293e-04, ...,   3.133e-07,   2.942e-07],
           [  1.076e-03,   1.068e-03, ...,   1.153e-06,   1.148e-06],
           ...,
           [  1.042e-07,   4.087e-07, ...,   1.612e-07,   1.928e-07],
           [  2.363e-07,   5.329e-07, ...,   1.294e-07,   1.611e-07]])
    Using a higher frequency resolution
    >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
    ...                 n_bins=60 * 2, bins_per_octave=12 * 2))
    >>> C
    array([[  1.536e-05,   5.848e-05, ...,   3.241e-07,   2.453e-07],
           [  1.856e-03,   1.854e-03, ...,   2.397e-08,   3.549e-08],
           ...,
           [  2.034e-07,   4.245e-07, ...,   6.213e-08,   1.463e-07],
           [  4.896e-08,   5.407e-07, ...,   9.176e-08,   1.051e-07]])
    '''

    # How many octaves are we dealing with?
    n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
    n_filters = min(bins_per_octave, n_bins)

    len_orig = len(y)

    if fmin is None:
        # C1 by default
        fmin = note_to_hz('C1')

    if tuning is None:
        tuning = estimate_tuning(y=y, sr=sr)

    # First thing, get the freqs of the top octave
    freqs = cqt_frequencies(n_bins, fmin,
                            bins_per_octave=bins_per_octave)[-bins_per_octave:]

    fmin_t = np.min(freqs)
    fmax_t = np.max(freqs)

    # Determine required resampling quality
    Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1)
    filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q)
    nyquist = sr / 2.0

    y, sr, hop_length = __early_downsample(y, sr, hop_length, res_type,
                                           n_octaves, nyquist, filter_cutoff,
                                           scale)

    cqt_resp = []

    if res_type != 'kaiser_fast':

        # Do the top octave before resampling to allow for fast resampling
        fft_basis, n_fft, _ = __cqt_filter_fft(sr,
                                               fmin_t,
                                               n_filters,
                                               bins_per_octave,
                                               tuning,
                                               filter_scale,
                                               norm,
                                               sparsity,
                                               window=window)

        # Compute the CQT filter response and append it to the stack
        cqt_resp.append(
            __cqt_response(y, n_fft, hop_length, fft_basis, pad_mode))

        fmin_t /= 2
        fmax_t /= 2
        n_octaves -= 1

        filter_cutoff = fmax_t * (1 +
                                  0.5 * filters.window_bandwidth(window) / Q)

        res_type = 'kaiser_fast'

    # Make sure our hop is long enough to support the bottom octave
    num_twos = __num_two_factors(hop_length)
    if num_twos < n_octaves - 1:
        raise ParameterError('hop_length must be a positive integer '
                             'multiple of 2^{0:d} for {1:d}-octave CQT'.format(
                                 n_octaves - 1, n_octaves))

    # Now do the recursive bit
    fft_basis, n_fft, _ = __cqt_filter_fft(sr,
                                           fmin_t,
                                           n_filters,
                                           bins_per_octave,
                                           tuning,
                                           filter_scale,
                                           norm,
                                           sparsity,
                                           window=window)

    my_y, my_sr, my_hop = y, sr, hop_length

    # Iterate down the octaves
    for i in range(n_octaves):

        # Resample (except first time)
        if i > 0:
            if len(my_y) < 2:
                raise ParameterError('Input signal length={} is too short for '
                                     '{:d}-octave CQT'.format(
                                         len_orig, n_octaves))

            my_y = audio.resample(my_y,
                                  my_sr,
                                  my_sr / 2.0,
                                  res_type=res_type,
                                  scale=True)
            # The re-scale the filters to compensate for downsampling
            fft_basis[:] *= np.sqrt(2)

            my_sr /= 2.0
            my_hop //= 2

        # Compute the cqt filter response and append to the stack
        cqt_resp.append(
            __cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode))

    C = __trim_stack(cqt_resp, n_bins)

    if scale:
        lengths = filters.constant_q_lengths(sr,
                                             fmin,
                                             n_bins=n_bins,
                                             bins_per_octave=bins_per_octave,
                                             tuning=tuning,
                                             window=window,
                                             filter_scale=filter_scale)
        C /= np.sqrt(lengths[:, np.newaxis])

    return C