Esempio n. 1
0
def discriminator(x, phase_train=False, n_features=64, reuse=False):
    """
    dimensions:
    """
    with tf.variable_scope("discriminator", reuse=reuse):
        with tf.variable_scope("0", reuse=reuse):
            conv0, W0 = utils.conv2d(x, n_features, name='d_h0_conv')
            h0 = utils.lrelu(conv0)

        with tf.variable_scope("1", reuse=reuse):
            conv1, W1 = utils.conv2d(h0, n_features * 2, name='d_h1_conv')
            norm1 = utils.batch_norm()
            norm1_1 = norm1(conv1, phase_train)
            h1 = utils.lrelu(norm1_1)

        with tf.variable_scope("2", reuse=reuse):
            conv2, W2 = utils.conv2d(h1, n_features * 4, name='d_h2_conv')
            norm2 = utils.batch_norm()
            norm2_1 = norm2(conv2, phase_train)
            h2 = utils.lrelu(norm2_1)

        with tf.variable_scope("3", reuse=reuse):
            conv3, W3 = utils.conv2d(h2, n_features * 8, name='d_h3_conv')
            norm3 = utils.batch_norm()
            norm3_1 = norm3(conv3, phase_train)
            h3 = utils.lrelu(norm3_1)

        with tf.variable_scope("4", reuse=reuse):
            h4, W4 = utils.linear(tf.reshape(h3, [-1, 8192]),
                                  n_output=1,
                                  name='d_h3_lin')

    return tf.nn.sigmoid(h4), h4
Esempio n. 2
0
def generator(x, name='upsample'):
    with tf.variable_scope(name):
        # forcing the input to have a known name
        x = tf.identity(x, name='x')

        shape = x.get_shape()
        height = shape[1].value
        width = shape[2].value
        output_channels = shape[3].value

        with tf.variable_scope('residuals_lo'):
            with tf.variable_scope('prepass'):
                h, _ = conv2d(x, n_output=32, d_h=1, d_w=1, name='1')
                h = tf.nn.elu(h, name='1/elu')
                x = h

                h, _ = conv2d(h, n_output=32, d_h=2, d_w=2, name='2')
                h = tf.nn.elu(h, name='2/elu')

            channels = [32, 64, 32]
            for i, c in enumerate(channels):
                h, _ = conv2d(h,
                              n_output=c,
                              d_h=1,
                              d_w=1,
                              name='conv/{}'.format(i))
                h = tf.nn.elu(h, name='conv/{}/elu'.format(i))

            h, _ = deconv2d(h,
                            n_output_h=height,
                            n_output_w=width,
                            n_output_ch=32,
                            name='upscaling')
            h = tf.nn.elu(h, name='upscaling/elu')

            h = tf.add(h, x, name='join')

        with tf.variable_scope('clean_pass'):
            h, _ = conv2d(h, n_output=output_channels, d_h=1, d_w=1)
            h = tf.nn.relu(h, name='relu')

        # forcing the output to have a known name
        y = tf.identity(h, name='y')
        return y
Esempio n. 3
0
def createConvNet(Xs, windowSize, n_classes):
    # ---------- create ConvNet
    tf.reset_default_graph()

    X = tf.placeholder(name='X',
                       shape=(None, Xs.shape[1], Xs.shape[2], Xs.shape[3]),
                       dtype=tf.float32)
    Y = tf.placeholder(name='Y', shape=(None, n_classes), dtype=tf.float32)

    # TODO:  Explore different numbers of layers, and sizes of the network
    n_filters = [20, 20, 20]

    # Now let's loop over our n_filters and create the deep convolutional neural network
    H = X
    for layer_i, n_filters_i in enumerate(n_filters):
        # Let's use the helper function to create our connection to the next layer:
        # TODO: explore changing the parameters here:
        H, W = utils.conv2d(H,
                            n_filters_i,
                            k_h=2,
                            k_w=2,
                            d_h=2,
                            d_w=2,
                            name=str(layer_i))

        # And use a nonlinearity
        # TODO: explore changing the activation here:
        H = tf.nn.softplus(H)

        # Just to check what's happening:
        print(H.get_shape().as_list())

    # Connect the last convolutional layer to a fully connected network
    fc, W = utils.linear(H, n_output=100, name="fcn1", activation=tf.nn.relu)
    # fc2, W = utils.linear(fc, n_output=50, name="fcn2", activation=tf.nn.relu)
    # fc3, W = utils.linear(fc, n_output=10, name="fcn3", activation=tf.nn.relu)

    # And another fully connceted network, now with just n_classes outputs, the number of outputs that our
    # one hot encoding has
    Y_pred, W = utils.linear(fc,
                             n_output=n_classes,
                             name="pred",
                             activation=tf.nn.sigmoid)

    return X, Y, Y_pred
Esempio n. 4
0
def encoder(x,
            is_training,
            channels,
            filter_sizes,
            activation=tf.nn.tanh,
            reuse=None):
    # Set the input to a common variable name, h, for hidden layer
    h = x

    print('encoder/input:', h.get_shape().as_list())
    # Now we'll loop over the list of dimensions defining the number
    # of output filters in each layer, and collect each hidden layer
    hs = []
    for layer_i in range(len(channels)):

        with tf.variable_scope('layer{}'.format(layer_i + 1), reuse=reuse):
            # Convolve using the utility convolution function
            # This requirs the number of output filter,
            # and the size of the kernel in `k_h` and `k_w`.
            # By default, this will use a stride of 2, meaning
            # each new layer will be downsampled by 2.
            h, W = utils.conv2d(h,
                                channels[layer_i],
                                k_h=filter_sizes[layer_i],
                                k_w=filter_sizes[layer_i],
                                d_h=2,
                                d_w=2,
                                reuse=reuse)

            h = utils.batch_norm(h, is_training)

            # Now apply the activation function
            h = activation(h)
            print('layer:', layer_i, ', shape:', h.get_shape().as_list())

            # Store each hidden layer
            hs.append(h)

    # Finally, return the encoding.
    return h, hs
Esempio n. 5
0
def VAE(input_shape=[None, 784],
        output_shape=[None, 784],
        n_filters=[64, 64, 64],
        filter_sizes=[4, 4, 4],
        n_hidden=32,
        n_code=2,
        activation=tf.nn.tanh,
        dropout=False,
        denoising=False,
        convolutional=False,
        variational=False,
        softmax=False,
        classifier='alexnet_v2'):
    """(Variational) (Convolutional) (Denoising) Autoencoder.

    Uses tied weights.

    Parameters
    ----------
    input_shape : list, optional
        Shape of the input to the network. e.g. for MNIST: [None, 784].
    n_filters : list, optional
        Number of filters for each layer.
        If convolutional=True, this refers to the total number of output
        filters to create for each layer, with each layer's number of output
        filters as a list.
        If convolutional=False, then this refers to the total number of neurons
        for each layer in a fully connected network.
    filter_sizes : list, optional
        Only applied when convolutional=True.  This refers to the ksize (height
        and width) of each convolutional layer.
    n_hidden : int, optional
        Only applied when variational=True.  This refers to the first fully
        connected layer prior to the variational embedding, directly after
        the encoding.  After the variational embedding, another fully connected
        layer is created with the same size prior to decoding.  Set to 0 to
        not use an additional hidden layer.
    n_code : int, optional
        Only applied when variational=True.  This refers to the number of
        latent Gaussians to sample for creating the inner most encoding.
    activation : function, optional
        Activation function to apply to each layer, e.g. tf.nn.relu
    dropout : bool, optional
        Whether or not to apply dropout.  If using dropout, you must feed a
        value for 'keep_prob', as returned in the dictionary.  1.0 means no
        dropout is used.  0.0 means every connection is dropped.  Sensible
        values are between 0.5-0.8.
    denoising : bool, optional
        Whether or not to apply denoising.  If using denoising, you must feed a
        value for 'corrupt_rec', as returned in the dictionary.  1.0 means no
        corruption is used.  0.0 means every feature is corrupted.  Sensible
        values are between 0.5-0.8.
    convolutional : bool, optional
        Whether or not to use a convolutional network or else a fully connected
        network will be created.  This effects the n_filters parameter's
        meaning.
    variational : bool, optional
        Whether or not to create a variational embedding layer.  This will
        create a fully connected layer after the encoding, if `n_hidden` is
        greater than 0, then will create a multivariate gaussian sampling
        layer, then another fully connected layer.  The size of the fully
        connected layers are determined by `n_hidden`, and the size of the
        sampling layer is determined by `n_code`.

    Returns
    -------
    model : dict
        {
            'cost': Tensor to optimize.
            'Ws': All weights of the encoder.
            'x': Input Placeholder
            'z': Inner most encoding Tensor (latent features)
            'y': Reconstruction of the Decoder
            'keep_prob': Amount to keep when using Dropout
            'corrupt_rec': Amount to corrupt when using Denoising
            'train': Set to True when training/Applies to Batch Normalization.
        }
    """
    # network input / placeholders for train (bn) and dropout
    x = tf.placeholder(tf.float32, input_shape, 'x')
    t = tf.placeholder(tf.float32, output_shape, 't')
    label = tf.placeholder(tf.int32, [None], 'label')
    phase_train = tf.placeholder(tf.bool, name='phase_train')
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    corrupt_rec = tf.placeholder(tf.float32, name='corrupt_rec')
    corrupt_cls = tf.placeholder(tf.float32, name='corrupt_cls')

    # input of the reconstruction network
    # np.tanh(2) = 0.964
    current_input1 = utils.corrupt(x)*corrupt_rec + x*(1-corrupt_rec) \
        if (denoising and phase_train is not None) else x
    current_input1.set_shape(x.get_shape())
    # 2d -> 4d if convolution
    current_input1 = utils.to_tensor(current_input1) \
        if convolutional else current_input1

    Ws = []
    shapes = []

    # Build the encoder
    for layer_i, n_output in enumerate(n_filters):
        with tf.variable_scope('encoder/{}'.format(layer_i)):
            shapes.append(current_input1.get_shape().as_list())
            if convolutional:
                h, W = utils.conv2d(x=current_input1,
                                    n_output=n_output,
                                    k_h=filter_sizes[layer_i],
                                    k_w=filter_sizes[layer_i])
            else:
                h, W = utils.linear(x=current_input1, n_output=n_output)
            h = activation(batch_norm(h, phase_train, 'bn' + str(layer_i)))
            if dropout:
                h = tf.nn.dropout(h, keep_prob)
            Ws.append(W)
            current_input1 = h

    shapes.append(current_input1.get_shape().as_list())

    with tf.variable_scope('variational'):
        if variational:
            dims = current_input1.get_shape().as_list()
            flattened = utils.flatten(current_input1)

            if n_hidden:
                h = utils.linear(flattened, n_hidden, name='W_fc')[0]
                h = activation(batch_norm(h, phase_train, 'fc/bn'))
                if dropout:
                    h = tf.nn.dropout(h, keep_prob)
            else:
                h = flattened

            z_mu = utils.linear(h, n_code, name='mu')[0]
            z_log_sigma = 0.5 * utils.linear(h, n_code, name='log_sigma')[0]
            # modified by yidawang
            # s, u, v = tf.svd(z_log_sigma)
            # z_log_sigma = tf.matmul(
            #        tf.matmul(u, tf.diag(s)), tf.transpose(v))
            # end yidawang

            # Sample from noise distribution p(eps) ~ N(0, 1)
            epsilon = tf.random_normal(tf.stack([tf.shape(x)[0], n_code]))

            # Sample from posterior
            z = z_mu + tf.multiply(epsilon, tf.exp(z_log_sigma))

            if n_hidden:
                h = utils.linear(z, n_hidden, name='fc_t')[0]
                h = activation(batch_norm(h, phase_train, 'fc_t/bn'))
                if dropout:
                    h = tf.nn.dropout(h, keep_prob)
            else:
                h = z

            size = dims[1] * dims[2] * dims[3] if convolutional else dims[1]
            h = utils.linear(h, size, name='fc_t2')[0]
            current_input1 = activation(batch_norm(h, phase_train, 'fc_t2/bn'))
            if dropout:
                current_input1 = tf.nn.dropout(current_input1, keep_prob)

            if convolutional:
                current_input1 = tf.reshape(
                    current_input1,
                    tf.stack([
                        tf.shape(current_input1)[0], dims[1], dims[2], dims[3]
                    ]))
        else:
            z = current_input1

    shapes.reverse()
    n_filters.reverse()
    Ws.reverse()

    n_filters += [input_shape[-1]]

    # %%
    # Decoding layers
    for layer_i, n_output in enumerate(n_filters[1:]):
        with tf.variable_scope('decoder/{}'.format(layer_i)):
            shape = shapes[layer_i + 1]
            if convolutional:
                h, W = utils.deconv2d(x=current_input1,
                                      n_output_h=shape[1],
                                      n_output_w=shape[2],
                                      n_output_ch=shape[3],
                                      n_input_ch=shapes[layer_i][3],
                                      k_h=filter_sizes[layer_i],
                                      k_w=filter_sizes[layer_i])
            else:
                h, W = utils.linear(x=current_input1, n_output=n_output)
            h = activation(batch_norm(h, phase_train, 'dec/bn' + str(layer_i)))
            if dropout:
                h = tf.nn.dropout(h, keep_prob)
            current_input1 = h

    y = current_input1
    t_flat = utils.flatten(t)
    y_flat = utils.flatten(y)

    # l2 loss
    loss_x = tf.reduce_mean(
        tf.reduce_sum(tf.squared_difference(t_flat, y_flat), 1))
    loss_z = 0

    if variational:
        # Variational lower bound, kl-divergence
        loss_z = tf.reduce_mean(-0.5 * tf.reduce_sum(
            1.0 + 2.0 * z_log_sigma - tf.square(z_mu) -
            tf.exp(2.0 * z_log_sigma), 1))

        # Add l2 loss
        cost_vae = tf.reduce_mean(loss_x + loss_z)
    else:
        # Just optimize l2 loss
        cost_vae = tf.reduce_mean(loss_x)

    # Alexnet for clasification based on softmax using TensorFlow slim
    if softmax:
        axis = list(range(len(x.get_shape())))
        mean1, variance1 = tf.nn.moments(t, axis) \
            if (phase_train is True) else tf.nn.moments(x, axis)
        mean2, variance2 = tf.nn.moments(y, axis)
        var_prob = variance2 / variance1

        # Input of the classification network
        current_input2 = utils.corrupt(x)*corrupt_cls + \
            x*(1-corrupt_cls) \
            if (denoising and phase_train is True) else x
        current_input2.set_shape(x.get_shape())
        current_input2 = utils.to_tensor(current_input2) \
            if convolutional else current_input2

        y_concat = tf.concat([current_input2, y], 3)
        with tf.variable_scope('deconv/concat'):
            shape = shapes[layer_i + 1]
            if convolutional:
                # Here we set the input of classification network is
                # the twice of
                # the input of the reconstruction network
                # 112->224 for alexNet and 150->300 for inception v3 and v4
                y_concat, W = utils.deconv2d(
                    x=y_concat,
                    n_output_h=y_concat.get_shape()[1] * 2,
                    n_output_w=y_concat.get_shape()[1] * 2,
                    n_output_ch=y_concat.get_shape()[3],
                    n_input_ch=y_concat.get_shape()[3],
                    k_h=3,
                    k_w=3)
                Ws.append(W)

        # The following are optional networks for classification network
        if classifier == 'squeezenet':
            predictions, net = squeezenet.squeezenet(y_concat, num_classes=13)
        elif classifier == 'zigzagnet':
            predictions, net = squeezenet.zigzagnet(y_concat, num_classes=13)
        elif classifier == 'alexnet_v2':
            predictions, end_points = alexnet.alexnet_v2(y_concat,
                                                         num_classes=13)
        elif classifier == 'inception_v1':
            predictions, end_points = inception.inception_v1(y_concat,
                                                             num_classes=13)
        elif classifier == 'inception_v2':
            predictions, end_points = inception.inception_v2(y_concat,
                                                             num_classes=13)
        elif classifier == 'inception_v3':
            predictions, end_points = inception.inception_v3(y_concat,
                                                             num_classes=13)

        label_onehot = tf.one_hot(label, 13, axis=-1, dtype=tf.int32)
        cost_s = tf.losses.softmax_cross_entropy(label_onehot, predictions)
        cost_s = tf.reduce_mean(cost_s)
        acc = tf.nn.in_top_k(predictions, label, 1)
    else:
        predictions = tf.one_hot(label, 13, 1, 0)
        label_onehot = tf.one_hot(label, 13, 1, 0)
        cost_s = 0
        acc = 0
    # Using Summaries for Tensorboard
    tf.summary.scalar('cost_vae', cost_vae)
    tf.summary.scalar('cost_s', cost_s)
    tf.summary.scalar('loss_x', loss_x)
    tf.summary.scalar('loss_z', loss_z)
    tf.summary.scalar('corrupt_rec', corrupt_rec)
    tf.summary.scalar('corrupt_cls', corrupt_cls)
    tf.summary.scalar('var_prob', var_prob)
    merged = tf.summary.merge_all()

    return {
        'cost_vae': cost_vae,
        'cost_s': cost_s,
        'loss_x': loss_x,
        'loss_z': loss_z,
        'Ws': Ws,
        'x': x,
        't': t,
        'label': label,
        'label_onehot': label_onehot,
        'predictions': predictions,
        'z': z,
        'y': y,
        'acc': acc,
        'keep_prob': keep_prob,
        'corrupt_rec': corrupt_rec,
        'corrupt_cls': corrupt_cls,
        'var_prob': var_prob,
        'train': phase_train,
        'merged': merged
    }
def VAE(input_shape=[None, 784],
        n_filters=[64, 64, 64],
        filter_sizes=[4, 4, 4],
        n_hidden=32,
        n_code=2,
        activation=tf.nn.tanh,
        dropout=False,
        denoising=False,
        convolutional=False,
        variational=False):
    """(Variational) (Convolutional) (Denoising) Autoencoder.
    Uses tied weights.
    Parameters
    ----------
    input_shape : list, optional
        Shape of the input to the network. e.g. for MNIST: [None, 784].
    n_filters : list, optional
        Number of filters for each layer.
        If convolutional=True, this refers to the total number of output
        filters to create for each layer, with each layer's number of output
        filters as a list.
        If convolutional=False, then this refers to the total number of neurons
        for each layer in a fully connected network.
    filter_sizes : list, optional
        Only applied when convolutional=True.  This refers to the ksize (height
        and width) of each convolutional layer.
    n_hidden : int, optional
        Only applied when variational=True.  This refers to the first fully
        connected layer prior to the variational embedding, directly after
        the encoding.  After the variational embedding, another fully connected
        layer is created with the same size prior to decoding.  Set to 0 to
        not use an additional hidden layer.
    n_code : int, optional
        Only applied when variational=True.  This refers to the number of
        latent Gaussians to sample for creating the inner most encoding.
    activation : function, optional
        Activation function to apply to each layer, e.g. tf.nn.relu
    dropout : bool, optional
        Whether or not to apply dropout.  If using dropout, you must feed a
        value for 'keep_prob', as returned in the dictionary.  1.0 means no
        dropout is used.  0.0 means every connection is dropped.  Sensible
        values are between 0.5-0.8.
    denoising : bool, optional
        Whether or not to apply denoising.  If using denoising, you must feed a
        value for 'corrupt_prob', as returned in the dictionary.  1.0 means no
        corruption is used.  0.0 means every feature is corrupted.  Sensible
        values are between 0.5-0.8.
    convolutional : bool, optional
        Whether or not to use a convolutional network or else a fully connected
        network will be created.  This effects the n_filters parameter's
        meaning.
    variational : bool, optional
        Whether or not to create a variational embedding layer.  This will
        create a fully connected layer after the encoding, if `n_hidden` is
        greater than 0, then will create a multivariate gaussian sampling
        layer, then another fully connected layer.  The size of the fully
        connected layers are determined by `n_hidden`, and the size of the
        sampling layer is determined by `n_code`.
    Returns
    -------
    model : dict
        {
            'cost': Tensor to optimize.
            'Ws': All weights of the encoder.
            'x': Input Placeholder
            'z': Inner most encoding Tensor (latent features)
            'y': Reconstruction of the Decoder
            'keep_prob': Amount to keep when using Dropout
            'corrupt_prob': Amount to corrupt when using Denoising
            'train': Set to True when training/Applies to Batch Normalization.
        }
    """
    # network input / placeholders for train (bn) and dropout
    x = tf.placeholder(tf.float32, input_shape, 'x')
    phase_train = tf.placeholder(tf.bool, name='phase_train')
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    corrupt_prob = tf.placeholder(tf.float32, [1])

    # apply noise if denoising
    x_ = (utils.corrupt(x) * corrupt_prob + x *
          (1 - corrupt_prob)) if denoising else x

    # 2d -> 4d if convolution
    x_tensor = utils.to_tensor(x_) if convolutional else x_
    current_input = x_tensor

    Ws = []
    shapes = []

    # Build the encoder
    for layer_i, n_output in enumerate(n_filters):
        with tf.variable_scope('encoder/{}'.format(layer_i)):
            shapes.append(current_input.get_shape().as_list())
            if convolutional:
                h, W = utils.conv2d(x=current_input,
                                    n_output=n_output,
                                    k_h=filter_sizes[layer_i],
                                    k_w=filter_sizes[layer_i])
            else:
                h, W = utils.linear(x=current_input, n_output=n_output)
            h = activation(batch_norm(h, phase_train, 'bn' + str(layer_i)))
            if dropout:
                h = tf.nn.dropout(h, keep_prob)
            Ws.append(W)
            current_input = h

    shapes.append(current_input.get_shape().as_list())

    with tf.variable_scope('variational'):
        if variational:
            dims = current_input.get_shape().as_list()
            flattened = utils.flatten(current_input)

            if n_hidden:
                h = utils.linear(flattened, n_hidden, name='W_fc')[0]
                h = activation(batch_norm(h, phase_train, 'fc/bn'))
                if dropout:
                    h = tf.nn.dropout(h, keep_prob)
            else:
                h = flattened

            z_mu = utils.linear(h, n_code, name='mu')[0]
            z_log_sigma = 0.5 * utils.linear(h, n_code, name='log_sigma')[0]

            # Sample from noise distribution p(eps) ~ N(0, 1)
            epsilon = tf.random_normal(tf.stack([tf.shape(x)[0], n_code]))

            # Sample from posterior
            z = z_mu + tf.multiply(epsilon, tf.exp(z_log_sigma))

            if n_hidden:
                h = utils.linear(z, n_hidden, name='fc_t')[0]
                h = activation(batch_norm(h, phase_train, 'fc_t/bn'))
                if dropout:
                    h = tf.nn.dropout(h, keep_prob)
            else:
                h = z

            size = dims[1] * dims[2] * dims[3] if convolutional else dims[1]
            h = utils.linear(h, size, name='fc_t2')[0]
            current_input = activation(batch_norm(h, phase_train, 'fc_t2/bn'))
            if dropout:
                current_input = tf.nn.dropout(current_input, keep_prob)

            if convolutional:
                current_input = tf.reshape(
                    current_input,
                    tf.stack([
                        tf.shape(current_input)[0], dims[1], dims[2], dims[3]
                    ]))
        else:
            z = current_input

    shapes.reverse()
    n_filters.reverse()
    Ws.reverse()

    n_filters += [input_shape[-1]]

    # %%
    # Decoding layers
    for layer_i, n_output in enumerate(n_filters[1:]):
        with tf.variable_scope('decoder/{}'.format(layer_i)):
            shape = shapes[layer_i + 1]
            if convolutional:
                h, W = utils.deconv2d(x=current_input,
                                      n_output_h=shape[1],
                                      n_output_w=shape[2],
                                      n_output_ch=shape[3],
                                      n_input_ch=shapes[layer_i][3],
                                      k_h=filter_sizes[layer_i],
                                      k_w=filter_sizes[layer_i])
            else:
                h, W = utils.linear(x=current_input, n_output=n_output)
            h = activation(batch_norm(h, phase_train, 'dec/bn' + str(layer_i)))
            if dropout:
                h = tf.nn.dropout(h, keep_prob)
            current_input = h

    y = current_input
    x_flat = utils.flatten(x)
    y_flat = utils.flatten(y)

    # l2 loss
    loss_x = tf.reduce_sum(tf.squared_difference(x_flat, y_flat), 1)

    if variational:
        # variational lower bound, kl-divergence
        loss_z = -0.5 * tf.reduce_sum(
            1.0 + 2.0 * z_log_sigma - tf.square(z_mu) -
            tf.exp(2.0 * z_log_sigma), 1)

        # add l2 loss
        cost = tf.reduce_mean(loss_x + loss_z)
    else:
        # just optimize l2 loss
        cost = tf.reduce_mean(loss_x)

    return {
        'cost': cost,
        'Ws': Ws,
        'x': x,
        'z': z,
        'y': y,
        'keep_prob': keep_prob,
        'corrupt_prob': corrupt_prob,
        'train': phase_train
    }
def build_net(graph, training=True, validation=False):
    """Helper for creating a 2D convolution model.

    Parameters
    ----------
    graph : tf.Graph
        default graph to build model
    training : bool, optional
        if true, use training dataset
    validation : bool, optional
        if true, use validation dataset

    Returns
    -------
    batch : list
        list of images
    batch_labels : list
        list of labels for images
    batch_image_paths : list
        list of paths to image files
    init : tf.group
        initializer functions
    x :
        input image
    y :
        labels
    phase_train : tf.bool
        is training
    keep_prob : tf.float32
        keep probability for conv2d layers
    keep_prob_fc1 :  tf.float32
        keep probability for fully connected layer
    learning_rate : tf.float32
        learning rate
    h : 
        output of sigmoid
    loss : 
        loss
    optimizer : 
        optimizer
    saver : tf.train.Saver

    """

    with graph.as_default():
        x = tf.placeholder(tf.float32, [None] + resize_shape, 'x')
        # TODO: use len(labels_map)
        y = tf.placeholder(tf.int32, [None, 17], 'y')
        phase_train = tf.placeholder(tf.bool, name='phase_train')
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        keep_prob_fc1 = tf.placeholder(tf.float32, name='keep_prob_fc1')
        learning_rate = tf.placeholder(tf.float32, name='learning_rate')

        # Create Input Pipeline for Train, Validation and Test Sets
        if training:
            batch, batch_labels, batch_image_paths = dsutils.create_input_pipeline(
                image_paths=image_paths[:index_split_train_val],
                labels=labels_onehot_list[:index_split_train_val],
                batch_size=batch_size,
                n_epochs=n_epochs,
                shape=input_shape,
                crop_factor=resize_factor,
                training=training,
                randomize=True)
        elif validation:
            batch, batch_labels, batch_image_paths = dsutils.create_input_pipeline(
                image_paths=image_paths[index_split_train_val:],
                labels=labels_onehot_list[index_split_train_val:],
                batch_size=batch_size,
                # only one epoch for test output
                n_epochs=1,
                shape=input_shape,
                crop_factor=resize_factor,
                training=training)
        else:
            batch, batch_labels, batch_image_paths = dsutils.create_input_pipeline(
                image_paths=test_image_paths,
                labels=test_onehot_list,
                batch_size=batch_size,
                # only one epoch for test output
                n_epochs=1,
                shape=input_shape,
                crop_factor=resize_factor,
                training=training)

        Ws = []

        current_input = x

        for layer_i, n_output in enumerate(n_filters):
            with tf.variable_scope('layer{}'.format(layer_i)):
                # 2D Convolutional Layer with batch normalization and relu
                h, W = utils.conv2d(x=current_input,
                                    n_output=n_output,
                                    k_h=filter_sizes[layer_i],
                                    k_w=filter_sizes[layer_i])
                h = tf.layers.batch_normalization(h, training=phase_train)
                h = tf.nn.relu(h, 'relu' + str(layer_i))

                # Apply Max Pooling Every 2nd Layer
                if layer_i % 2 == 0:
                    h = tf.nn.max_pool(value=h,
                                       ksize=[1, 2, 2, 1],
                                       strides=[1, 2, 2, 1],
                                       padding='SAME')

                # Apply Dropout Every 2nd Layer
                if layer_i % 2 == 0:
                    h = tf.nn.dropout(h, keep_prob)

                Ws.append(W)
                current_input = h

        h = utils.linear(current_input, fc_size, name='fc_t')[0]
        h = tf.layers.batch_normalization(h, training=phase_train)
        h = tf.nn.relu(h, name='fc_t/relu')
        h = tf.nn.dropout(h, keep_prob_fc1)

        logits = utils.linear(h, len(labels_map), name='fc_t2')[0]
        h = tf.nn.sigmoid(logits, 'fc_t2')

        # must be the same type as logits
        y_float = tf.cast(y, tf.float32)

        cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                                labels=y_float)
        loss = tf.reduce_mean(cross_entropy)

        if training:
            # update moving_mean and moving_variance so it will be available at inference time
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                optimizer = tf.train.AdamOptimizer(
                    learning_rate=learning_rate).minimize(loss)
        else:
            optimizer = tf.train.AdamOptimizer(
                learning_rate=learning_rate).minimize(loss)

        saver = tf.train.Saver()
        init = tf.group(tf.global_variables_initializer(),
                        tf.local_variables_initializer())
        return batch, batch_labels, batch_image_paths, init, x, y, phase_train, keep_prob, keep_prob_fc1, learning_rate, h, loss, optimizer, saver
Esempio n. 8
0
def encoder(x,
            n_hidden=None,
            dimensions=[],
            filter_sizes=[],
            convolutional=False,
            activation=tf.nn.relu,
            output_activation=tf.nn.sigmoid):
    """Summary

    Parameters
    ----------
    x : TYPE
        Description
    n_hidden : None, optional
        Description
    dimensions : list, optional
        Description
    filter_sizes : list, optional
        Description
    convolutional : bool, optional
        Description
    activation : TYPE, optional
        Description
    output_activation : TYPE, optional
        Description

    Returns
    -------
    name : TYPE
        Description
    """
    if convolutional:
        x_tensor = utils.to_tensor(x)
    else:
        x_tensor = tf.reshape(tensor=x, shape=[-1, dimensions[0]])
        dimensions = dimensions[1:]
    current_input = x_tensor

    Ws = []
    hs = []
    shapes = []
    for layer_i, n_output in enumerate(dimensions):
        with tf.variable_scope(str(layer_i)):
            shapes.append(current_input.get_shape().as_list())
            if convolutional:
                h, W = utils.conv2d(x=current_input,
                                    n_output=n_output,
                                    k_h=filter_sizes[layer_i],
                                    k_w=filter_sizes[layer_i],
                                    padding='SAME')
            else:
                h, W = utils.linear(x=current_input, n_output=n_output)
            h = activation(h)
            Ws.append(W)
            hs.append(h)

        current_input = h

    shapes.append(h.get_shape().as_list())

    with tf.variable_scope('flatten'):
        flattened = utils.flatten(current_input)

    with tf.variable_scope('hidden'):
        if n_hidden:
            h, W = utils.linear(flattened, n_hidden, name='linear')
            h = activation(h)
        else:
            h = flattened

    return {'z': h, 'Ws': Ws, 'hs': hs, 'shapes': shapes}
Esempio n. 9
0
def fcn_24_detect(threshold, dropout=False, activation=tf.nn.relu):

    imgs = tf.placeholder(tf.float32, [None, 24, 24, 3])
    labels = tf.placeholder(tf.float32, [None, 1])
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')

    net_12 = fcn_12_detect(0.16, activation=activation)
    with tf.variable_scope('net_24'):
        conv1, _ = utils.conv2d(x=imgs,
                                n_output=64,
                                k_w=5,
                                k_h=5,
                                d_w=1,
                                d_h=1,
                                name="conv1")
        conv1 = activation(conv1)
        pool1 = tf.nn.max_pool(conv1,
                               ksize=[1, 3, 3, 1],
                               strides=[1, 2, 2, 1],
                               padding="SAME",
                               name="pool1")
        ip1, W1 = utils.conv2d(x=pool1,
                               n_output=128,
                               k_w=12,
                               k_h=12,
                               d_w=1,
                               d_h=1,
                               padding="VALID",
                               name="ip1")
        ip1 = activation(ip1)
        net_12_ip1 = net_12['features']
        concat = tf.concat(3, [ip1, net_12_ip1])
        if dropout:
            concat = tf.nn.dropout(concat, keep_prob)
        ip2, W2 = utils.conv2d(x=concat,
                               n_output=1,
                               k_w=1,
                               k_h=1,
                               d_w=1,
                               d_h=1,
                               name="ip2")

        pred = tf.nn.sigmoid(utils.flatten(ip2))
        target = utils.flatten(labels)

        regularizer = 8e-3 * (tf.nn.l2_loss(W1) + 100 * tf.nn.l2_loss(W2))

        loss = tf.reduce_mean(
            tf.div(
                tf.add(
                    -tf.reduce_sum(target * tf.log(pred + 1e-9), 1),
                    -tf.reduce_sum((1 - target) * tf.log(1 - pred + 1e-9), 1)),
                2)) + regularizer
        cost = tf.reduce_mean(loss)

        thresholding_24 = tf.cast(tf.greater(pred, threshold), "float")
        recall_24 = tf.reduce_sum(
            tf.cast(
                tf.logical_and(tf.equal(thresholding_24, tf.constant([1.0])),
                               tf.equal(target, tf.constant([1.0]))),
                "float")) / tf.reduce_sum(target)

        correct_prediction = tf.equal(
            tf.cast(tf.greater(pred, threshold), tf.int32),
            tf.cast(target, tf.int32))
        acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        return {
            'net_12': net_12,
            'imgs': imgs,
            'labels': labels,
            'imgs_12': net_12['imgs'],
            'labels_12': net_12['labels'],
            'keep_prob': keep_prob,
            'keep_prob_12': net_12['keep_prob'],
            'cost': cost,
            'pred': pred,
            'accuracy': acc,
            'features': concat,
            'recall': recall_24,
            'thresholding': thresholding_24
        }
Esempio n. 10
0
def fcn_48_cal(dropout=False, activation=tf.nn.relu):

    imgs = tf.placeholder(tf.float32, [None, 48, 48, 3])
    labels = tf.placeholder(tf.float32, [None])

    with tf.variable_scope('cal_48'):
        conv1, _ = utils.conv2d(x=imgs,
                                n_output=64,
                                k_w=5,
                                k_h=5,
                                d_w=1,
                                d_h=1,
                                name="conv1")
        conv1 = activation(conv1)
        pool1 = tf.nn.max_pool(conv1,
                               ksize=[1, 3, 3, 1],
                               strides=[1, 2, 2, 1],
                               padding="SAME",
                               name="pool1")
        conv2, _ = utils.conv2d(x=pool1,
                                n_output=64,
                                k_w=5,
                                k_h=5,
                                d_w=1,
                                d_h=1,
                                name="conv2")
        ip1, W1 = utils.conv2d(x=conv2,
                               n_output=256,
                               k_w=24,
                               k_h=24,
                               d_w=1,
                               d_h=1,
                               padding="VALID",
                               name="ip1")
        ip1 = activation(ip1)
        if dropout:
            ip1 = tf.nn.dropout(ip1, keep_prob)
        ip2, W2 = utils.conv2d(x=ip1,
                               n_output=45,
                               k_w=1,
                               k_h=1,
                               d_w=1,
                               d_h=1,
                               name="ip2")

        pred = utils.flatten(ip2)
        # target = utils.flatten(labels)
        # label_shape = labels.get_shape().as_list()
        # target = tf.reshape(labels,[label_shape[0]])
        target = labels

        cross_entropy = tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                pred, tf.cast(target, tf.int64)))
        regularizer = 8e-3 * (tf.nn.l2_loss(W1) + 100 * tf.nn.l2_loss(W2))

        loss = cross_entropy + regularizer

        correct_prediction = tf.equal(tf.argmax(pred, 1),
                                      tf.cast(target, tf.int64))
        acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        return {
            'cost': loss,
            'pred': pred,
            'accuracy': acc,
            'target': target,
            'imgs': imgs,
            'labels': labels
        }
Esempio n. 11
0
def VAE(input_shape=[None, 784],
        n_filters=[64, 64, 64],
        filter_sizes=[4, 4, 4],
        n_hidden=32,
        n_code=2,
        activation=tf.nn.tanh,
        dropout=False,
        denoising=False,
        convolutional=False,
        variational=False):
    """(Variational) (Convolutional) (Denoising) Autoencoder.

    Uses tied weights.

    Parameters
    ----------
    input_shape : list, optional
        Shape of the input to the network. e.g. for MNIST: [None, 784].
    n_filters : list, optional
        Number of filters for each layer.
        If convolutional=True, this refers to the total number of output
        filters to create for each layer, with each layer's number of output
        filters as a list.
        If convolutional=False, then this refers to the total number of neurons
        for each layer in a fully connected network.
    filter_sizes : list, optional
        Only applied when convolutional=True.  This refers to the ksize (height
        and width) of each convolutional layer.
    n_hidden : int, optional
        Only applied when variational=True.  This refers to the first fully
        connected layer prior to the variational embedding, directly after
        the encoding.  After the variational embedding, another fully connected
        layer is created with the same size prior to decoding.  Set to 0 to
        not use an additional hidden layer.
    n_code : int, optional
        Only applied when variational=True.  This refers to the number of
        latent Gaussians to sample for creating the inner most encoding.
    activation : function, optional
        Activation function to apply to each layer, e.g. tf.nn.relu
    dropout : bool, optional
        Whether or not to apply dropout.  If using dropout, you must feed a
        value for 'keep_prob', as returned in the dictionary.  1.0 means no
        dropout is used.  0.0 means every connection is dropped.  Sensible
        values are between 0.5-0.8.
    denoising : bool, optional
        Whether or not to apply denoising.  If using denoising, you must feed a
        value for 'corrupt_prob', as returned in the dictionary.  1.0 means no
        corruption is used.  0.0 means every feature is corrupted.  Sensible
        values are between 0.5-0.8.
    convolutional : bool, optional
        Whether or not to use a convolutional network or else a fully connected
        network will be created.  This effects the n_filters parameter's
        meaning.
    variational : bool, optional
        Whether or not to create a variational embedding layer.  This will
        create a fully connected layer after the encoding, if `n_hidden` is
        greater than 0, then will create a multivariate gaussian sampling
        layer, then another fully connected layer.  The size of the fully
        connected layers are determined by `n_hidden`, and the size of the
        sampling layer is determined by `n_code`.

    Returns
    -------
    model : dict
        {
            'cost': Tensor to optimize.
            'Ws': All weights of the encoder.
            'x': Input Placeholder
            'z': Inner most encoding Tensor (latent features)
            'y': Reconstruction of the Decoder
            'keep_prob': Amount to keep when using Dropout
            'corrupt_prob': Amount to corrupt when using Denoising
            'train': Set to True when training/Applies to Batch Normalization.
        }
    """
    # network input / placeholders for train (bn) and dropout
    x = tf.placeholder(tf.float32, input_shape, 'x')
    phase_train = tf.placeholder(tf.bool, name='phase_train')
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    corrupt_prob = tf.placeholder(tf.float32, [1])

    # apply noise if denoising
    x_ = (utils.corrupt(x) * corrupt_prob + x * (1 - corrupt_prob)) if denoising else x

    # 2d -> 4d if convolution
    x_tensor = utils.to_tensor(x_) if convolutional else x_
    current_input = x_tensor

    Ws = []
    shapes = []

    # Build the encoder
    for layer_i, n_output in enumerate(n_filters):
        with tf.variable_scope('encoder/{}'.format(layer_i)):
            shapes.append(current_input.get_shape().as_list())
            if convolutional:
                h, W = utils.conv2d(x=current_input,
                                    n_output=n_output,
                                    k_h=filter_sizes[layer_i],
                                    k_w=filter_sizes[layer_i])
            else:
                h, W = utils.linear(x=current_input,
                                    n_output=n_output)
            h = activation(batch_norm(h, phase_train, 'bn' + str(layer_i)))
            if dropout:
                h = tf.nn.dropout(h, keep_prob)
            Ws.append(W)
            current_input = h

    shapes.append(current_input.get_shape().as_list())

    with tf.variable_scope('variational'):
        if variational:
            dims = current_input.get_shape().as_list()
            flattened = utils.flatten(current_input)

            if n_hidden:
                h = utils.linear(flattened, n_hidden, name='W_fc')[0]
                h = activation(batch_norm(h, phase_train, 'fc/bn'))
                if dropout:
                    h = tf.nn.dropout(h, keep_prob)
            else:
                h = flattened

            z_mu = utils.linear(h, n_code, name='mu')[0]
            z_log_sigma = 0.5 * utils.linear(h, n_code, name='log_sigma')[0]

            # Sample from noise distribution p(eps) ~ N(0, 1)
            epsilon = tf.random_normal(
                tf.stack([tf.shape(x)[0], n_code]))

            # Sample from posterior
            z = z_mu + tf.multiply(epsilon, tf.exp(z_log_sigma))

            if n_hidden:
                h = utils.linear(z, n_hidden, name='fc_t')[0]
                h = activation(batch_norm(h, phase_train, 'fc_t/bn'))
                if dropout:
                    h = tf.nn.dropout(h, keep_prob)
            else:
                h = z

            size = dims[1] * dims[2] * dims[3] if convolutional else dims[1]
            h = utils.linear(h, size, name='fc_t2')[0]
            current_input = activation(batch_norm(h, phase_train, 'fc_t2/bn'))
            if dropout:
                current_input = tf.nn.dropout(current_input, keep_prob)

            if convolutional:
                current_input = tf.reshape(
                    current_input, tf.stack([
                        tf.shape(current_input)[0],
                        dims[1],
                        dims[2],
                        dims[3]]))
        else:
            z = current_input

    shapes.reverse()
    n_filters.reverse()
    Ws.reverse()

    n_filters += [input_shape[-1]]

    # %%
    # Decoding layers
    for layer_i, n_output in enumerate(n_filters[1:]):
        with tf.variable_scope('decoder/{}'.format(layer_i)):
            shape = shapes[layer_i + 1]
            if convolutional:
                h, W = utils.deconv2d(x=current_input,
                                      n_output_h=shape[1],
                                      n_output_w=shape[2],
                                      n_output_ch=shape[3],
                                      n_input_ch=shapes[layer_i][3],
                                      k_h=filter_sizes[layer_i],
                                      k_w=filter_sizes[layer_i])
            else:
                h, W = utils.linear(x=current_input,
                                    n_output=n_output)
            h = activation(batch_norm(h, phase_train, 'dec/bn' + str(layer_i)))
            if dropout:
                h = tf.nn.dropout(h, keep_prob)
            current_input = h

    y = current_input
    x_flat = utils.flatten(x)
    y_flat = utils.flatten(y)

    # l2 loss
    loss_x = tf.reduce_sum(tf.squared_difference(x_flat, y_flat), 1)

    if variational:
        # variational lower bound, kl-divergence
        loss_z = -0.5 * tf.reduce_sum(
            1.0 + 2.0 * z_log_sigma -
            tf.square(z_mu) - tf.exp(2.0 * z_log_sigma), 1)

        # add l2 loss
        cost = tf.reduce_mean(loss_x + loss_z)
    else:
        # just optimize l2 loss
        cost = tf.reduce_mean(loss_x)

    return {'cost': cost, 'Ws': Ws,
            'x': x, 'z': z, 'y': y,
            'keep_prob': keep_prob,
            'corrupt_prob': corrupt_prob,
            'train': phase_train}
Esempio n. 12
0
# Create the output to the network.  This is our one hot encoding of 2 possible values
Y = tf.placeholder(name='Y', shape=[None, 2], dtype=tf.float32)

# TODO:  Explore different numbers of layers, and sizes of the network
n_filters = [16, 16, 16, 16]

# Now let's loop over our n_filters and create the deep convolutional neural network
H = X
for layer_i, n_filters_i in enumerate(n_filters):
    # Let's use the helper function to create our connection to the next layer:
    # TODO: explore changing the parameters here:
    H, W = utils.conv2d(H,
                        n_filters_i,
                        k_h=16,
                        k_w=16,
                        d_h=2,
                        d_w=2,
                        name=str(layer_i))

    # And use a nonlinearity
    # TODO: explore changing the activation here:
    H = tf.nn.relu(H)

    # Just to check what's happening:
    print(H.get_shape().as_list())

# Connect the last convolutional layer to a fully connected network
fc, W = utils.linear(H, 100, name="fc1", activation=tf.nn.relu)

# And another fully connected layer, now with just 2 outputs, the number of outputs that our
Esempio n. 13
0
def main(winLSecs):
    data_dir = "/Users/alfonso/matlab/IndirectAcquisition/keras/dataforMarius/export"
    files = [os.path.join(data_dir, file_i) for file_i in os.listdir(data_dir) if file_i.endswith('.mat')]

    matlabStruct=umatlab.loadmat(files[1]).get('data')
    energyBand=matlabStruct.get('residualEnergyBand')
    energyBand=(energyBand /120 )+1 #normalize [0-1]
    totalSecs=matlabStruct.get('waveIn').shape[0]/matlabStruct.get('audioSR')
    energyBands_sr=240 #energyBand.shape[1]/totalSecs #This is around 240Hz- around 5ms at 44100Hz
    controlNames=matlabStruct.get('controlNames')
    controlData=matlabStruct.get('controlData')
    indexVel=[i for i in range(controlNames.shape[0]) if controlNames[i] == 'abs(velocity)'][0]
    indexForce=[i for i in range(controlNames.shape[0]) if controlNames[i] == 'forceN'][0]
    velocity=controlData[indexVel,:]/150
    force=(controlData[indexForce,:]+0.2)/2
    #indexString=[i for i in range(controlNames.shape[0]) if controlNames[i] == 'string'][0]
    #string=controlData[indexString,:]
    #pitch=controlData[6,:]/1500

    # We want winLSecs seconds of audio in our window
    #winLSecs = 0.05
    windowSize = int((winLSecs * energyBands_sr) // 2 * 2)
    # And we'll move our window by windowSize/2
    hopSize = windowSize // 2
    n_hops = (energyBand.shape[1]) // hopSize
    print('windowSize', windowSize)



    # ------------- prepare dataset
    Xs = []
    ys = []

    # Let's start with the music files
    for filename in files:
        # print(filename)
        matlabStruct = umatlab.loadmat(filename).get('data')
        energyBand = (matlabStruct.get('energyBand') / 120) + 1
        # energyBand=(matlabStruct.get('residualEnergyBand')/120)+1
        controlData = matlabStruct.get('controlData')
        controlNames = matlabStruct.get('controlNames')
        target = controlData[indexVel, :] / 150
        # target=(controlData[indexForce,:]+0.2)/2

        n_hops = (energyBand.shape[1]) // hopSize

        # print(n_frames_per_second, n_frames, frame_hops, n_hops)
        n_hops = int(n_hops) - 1
        for hop_i in range(n_hops):
            # Creating our sliding window
            frames = energyBand[:, (hop_i * hopSize):(hop_i * hopSize + windowSize)]
            Xs.append(frames[..., np.newaxis])
            # And then store the vel
            ys.append(target[(hop_i * hopSize):(hop_i * hopSize + windowSize)])

    Xs = np.array(Xs)
    ys = np.array(ys)
    print(Xs.shape, ys.shape)

    ds = datasets.Dataset(Xs=Xs, ys=ys, split=[0.8, 0.1, 0.1], n_classes=0)

    #---------- create ConvNet
    tf.reset_default_graph()

    # Create the input to the network.  This is a 4-dimensional tensor (batch_size, height(freq), widht(time), channels?)!
    # Recall that we are using sliding windows of our magnitudes (TODO):
    X = tf.placeholder(name='X', shape=(None, Xs.shape[1], Xs.shape[2], Xs.shape[3]), dtype=tf.float32)

    # Create the output to the network.  This is our one hot encoding of 2 possible values (TODO)!
    Y = tf.placeholder(name='Y', shape=(None, windowSize), dtype=tf.float32)

    # TODO:  Explore different numbers of layers, and sizes of the network
    n_filters = [9, 9, 9]

    # Now let's loop over our n_filters and create the deep convolutional neural network
    H = X
    for layer_i, n_filters_i in enumerate(n_filters):
        # Let's use the helper function to create our connection to the next layer:
        # TODO: explore changing the30 parameters here:
        H, W = utils.conv2d(
            H, n_filters_i, k_h=2, k_w=2, d_h=2, d_w=2,
            name=str(layer_i))

        # And use a nonlinearity
        # TODO: explore changing the activation here:
        # H = tf.nn.relu(H)
        H = tf.nn.softplus(H)
        # H 4D tensor [batch, height, width, channels]
        #    H=tf.nn.max_pool(value=H, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME', data_format='NHWC', name=None)

        # Just to check what's happening:
        print(H.get_shape().as_list())

    # Connect the last convolutional layer to a fully connected network
    fc1, W = utils.linear(H, n_output=100, name="fcn1", activation=tf.nn.relu)
    # fc2, W = utils.linear(fc, n_output=50, name="fcn2", activation=tf.nn.relu)
    # fc3, W = utils.linear(fc2, n_output=10, name="fcn3", activation=tf.nn.relu)


    # And another fully connceted network, now with just n_classes outputs, the number of outputs
    Y_pred, W = utils.linear(fc1, n_output=windowSize, name="pred", activation=tf.nn.sigmoid)

    loss = tf.squared_difference(Y_pred, Y)
    cost = tf.reduce_mean(tf.reduce_sum(loss, 1))
    learning_rate = 0.001
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

    # predicted_y = tf.argmax(Y_pred,1)
    # actual_y = tf.argmax(Y,1)
    # correct_prediction = tf.equal(predicted_y, actual_y)
    # accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))



    #-----TRAIN ConvNet
    # Explore these parameters: (TODO)
    batch_size = 400

    # Create a session and init!
    sess = tf.Session()
    saver = tf.train.Saver()
    sess.run(tf.initialize_all_variables())

    # Now iterate over our dataset n_epoch times
    n_epochs = 100
    for epoch_i in range(n_epochs):
        print('Epoch: ', epoch_i)

        # Train
        this_cost = 0
        its = 0

        # Do our mini batches:
        for Xs_i, ys_i in ds.train.next_batch(batch_size):
            # Note here: we are running the optimizer so
            # that the network parameters train!
            this_cost += sess.run([cost, optimizer], feed_dict={
                X: Xs_i, Y: ys_i})[0]
            its += 1
            # print(this_cost / its)
        print('Training cost: ', this_cost / its)

        # Validation (see how the network does on unseen data).
        this_cost = 0
        its = 0

        # Do our mini batches:
        for Xs_i, ys_i in ds.valid.next_batch(batch_size):
            # Note here: we are NOT running the optimizer!
            # we only measure the accuracy!
            this_cost += sess.run(cost, feed_dict={
                X: Xs_i, Y: ys_i})  # , keep_prob: 1.0
            its += 1
        print('Validation cost: ', this_cost / its)

    # #-----plot convolutional Kernels learned
    # g = tf.get_default_graph()
    # for layer_i in range(len(n_filters)):
    #     W = sess.run(g.get_tensor_by_name('{}/W:0'.format(layer_i)))
    #     plt.figure(figsize=(5, 5))
    #     plt.imshow(utils.montage_filters(W))
    #     plt.title('Layer {}\'s Learned Convolution Kernels'.format(layer_i))

    modelFileName = './models/velocity_wL' + str(winLSecs) + '_' + datetime.datetime.now().strftime(
        "%Y%m_d_%H%M") + '.chkp'
    saver.save(sess, modelFileName)
def deepID(input_shape=[None, 39, 39, 1],
           n_filters=[20, 40, 60, 80],
           filter_sizes=[4, 3, 3, 2],
           activation=tf.nn.relu,
           dropout=False):
    """DeepID.

    Uses tied weights.

    Parameters
    ----------
    input_shape : list, optional
        Shape of the input to the network. e.g. for MNIST: [None, 784].
    n_filters : list, optional
        Number of filters for each layer.
        If convolutional=True, this refers to the total number of output
        filters to create for each layer, with each layer's number of output
        filters as a list.
        If convolutional=False, then this refers to the total number of neurons
        for each layer in a fully connected network.
    filter_sizes : list, optional
        Only applied when convolutional=True.  This refers to the ksize (height
        and width) of each convolutional layer.
    activation : function, optional
        Activation function to apply to each layer, e.g. tf.nn.relu
    dropout : bool, optional
        Whether or not to apply dropout.  If using dropout, you must feed a
        value for 'keep_prob', as returned in the dictionary.  1.0 means no
        dropout is used.  0.0 means every connection is dropped.  Sensible
        values are between 0.5-0.8.

    Returns
    -------
    model : dict
        {
            'cost': Tensor to optimize.
            'Ws': All weights of the encoder.
            'x': Input Placeholder
            'z': Inner most encoding Tensor (latent features)
            'y': Reconstruction of the Decoder
            'keep_prob': Amount to keep when using Dropout
            'corrupt_prob': Amount to corrupt when using Denoising
            'train': Set to True when training/Applies to Batch Normalization.
        }
    """
    # network input / placeholders for train (bn) and dropout
    x = tf.placeholder(tf.float32, input_shape, 'x')
    y = tf.placeholder(tf.float32, [None, 10], 'y')
    phase_train = tf.placeholder(tf.bool, name='phase_train')
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')

    # 2d -> 4d if convolution
    x_tensor = utils.to_tensor(x)
    current_input = x_tensor

    Ws = []
    shapes = []

    # Build the encoder
    shapes.append(current_input.get_shape().as_list())
    conv1, W = utils.conv2d(x=x_tensor,
                            n_output=n_filters[0],
                            k_h=filter_sizes[0],
                            k_w=filter_sizes[0],
                            d_w=1,
                            d_h=1,
                            name='conv1')
    Ws.append(W)
    # conv1 = activation(batch_norm(conv1, phase_train, 'bn1'))
    conv1 = activation(conv1)

    pool1 = tf.nn.max_pool(conv1,
                           ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1],
                           padding='SAME',
                           name='pool1')

    conv2, W = utils.conv2d(x=pool1,
                            n_output=n_filters[1],
                            k_h=filter_sizes[1],
                            k_w=filter_sizes[1],
                            d_w=1,
                            d_h=1,
                            name='conv2')
    Ws.append(W)
    # conv2 = activation(batch_norm(conv2, phase_train, 'bn2'))
    conv2 = activation(conv2)

    pool2 = tf.nn.max_pool(conv2,
                           ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1],
                           padding='SAME',
                           name='pool2')

    conv3, W = utils.conv2d(x=pool2,
                            n_output=n_filters[2],
                            k_h=filter_sizes[2],
                            k_w=filter_sizes[2],
                            d_w=1,
                            d_h=1,
                            name='conv3')
    Ws.append(W)
    # conv3 = activation(batch_norm(conv3, phase_train, 'bn3'))
    conv3 = activation(conv3)

    pool3 = tf.nn.max_pool(conv3,
                           ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1],
                           padding='SAME',
                           name='pool3')

    conv4, W = utils.conv2d(x=pool3,
                            n_output=n_filters[3],
                            k_h=filter_sizes[3],
                            k_w=filter_sizes[3],
                            d_w=1,
                            d_h=1,
                            name='conv4')
    Ws.append(W)
    # conv4 = activation(batch_norm(conv4, phase_train, 'bn4'))
    conv4 = activation(conv4)

    pool3_flat = utils.flatten(pool3)
    conv4_flat = utils.flatten(conv4)
    concat = tf.concat(1, [pool3_flat, conv4_flat], name='concat')

    ip1, W = utils.linear(concat, 120, name='ip1')
    Ws.append(W)
    ip1 = activation(ip1)
    if dropout:
        ip1 = tf.nn.dropout(ip1, keep_prob)

    ip2, W = utils.linear(ip1, 10, name='ip2')
    Ws.append(W)
    # ip2 = activation(ip2)

    p_flat = utils.flatten(ip2)
    y_flat = utils.flatten(y)

    regularizers = 5e-4 * (tf.nn.l2_loss(Ws[-1]) + tf.nn.l2_loss(Ws[-2]))
    # l2 loss
    loss_x = tf.reduce_sum(tf.squared_difference(p_flat, y_flat), 1)
    cost = tf.reduce_mean(loss_x) + regularizers
    prediction = tf.reshape(p_flat, (-1, 5, 2))

    return {
        'cost': cost,
        'Ws': Ws,
        'x': x,
        'y': y,
        'pred': prediction,
        'keep_prob': keep_prob,
        'train': phase_train
    }
Esempio n. 15
0
def encoder(x,
            n_hidden=None,
            dimensions=[],
            filter_sizes=[],
            convolutional=False,
            activation=tf.nn.relu,
            output_activation=tf.nn.sigmoid):
    """Summary

    Parameters
    ----------
    x : TYPE
        Description
    n_hidden : None, optional
        Description
    dimensions : list, optional
        Description
    filter_sizes : list, optional
        Description
    convolutional : bool, optional
        Description
    activation : TYPE, optional
        Description
    output_activation : TYPE, optional
        Description

    Returns
    -------
    name : TYPE
        Description
    """
    if convolutional:
        x_tensor = utils.to_tensor(x)
    else:
        x_tensor = tf.reshape(tensor=x, shape=[-1, dimensions[0]])
        dimensions = dimensions[1:]
    current_input = x_tensor

    Ws = []
    hs = []
    shapes = []
    for layer_i, n_output in enumerate(dimensions):
        with tf.variable_scope(str(layer_i)):
            shapes.append(current_input.get_shape().as_list())
            if convolutional:
                h, W = utils.conv2d(
                    x=current_input,
                    n_output=n_output,
                    k_h=filter_sizes[layer_i],
                    k_w=filter_sizes[layer_i],
                    padding='SAME')
            else:
                h, W = utils.linear(x=current_input, n_output=n_output)
            h = activation(h)
            Ws.append(W)
            hs.append(h)

        current_input = h

    shapes.append(h.get_shape().as_list())

    with tf.variable_scope('flatten'):
        flattened = utils.flatten(current_input)

    with tf.variable_scope('hidden'):
        if n_hidden:
            h, W = utils.linear(flattened, n_hidden, name='linear')
            h = activation(h)
        else:
            h = flattened

    return {'z': h, 'Ws': Ws, 'hs': hs, 'shapes': shapes}