def smooth_edges(self): print 'Smoothing edges....' t0 = libtcod.sys_elapsed_seconds() hmcopy = libtcod.heightmap_new(game.WORLDMAP_WIDTH, game.WORLDMAP_HEIGHT) mask = libtcod.heightmap_new(game.WORLDMAP_WIDTH, game.WORLDMAP_HEIGHT) for x in range(game.WORLDMAP_WIDTH): for y in range(game.WORLDMAP_HEIGHT): ix = x * 0.04 if x > game.WORLDMAP_WIDTH / 2: ix = (game.WORLDMAP_WIDTH - x - 1) * 0.04 iy = y * 0.04 if y > game.WORLDMAP_HEIGHT / 2: iy = (game.WORLDMAP_HEIGHT - y - 1) * 0.04 if ix > 1.0: ix = 1.0 if iy > 1.0: iy = 1.0 h = min(ix, iy) libtcod.heightmap_set_value(mask, x, y, h) libtcod.heightmap_normalize(mask) libtcod.heightmap_copy(game.heightmap, hmcopy) libtcod.heightmap_multiply_hm(hmcopy, mask, game.heightmap) libtcod.heightmap_normalize(game.heightmap) t1 = libtcod.sys_elapsed_seconds() print ' done! (%.3f seconds)' % (t1 - t0)
def generateRainmap(map): print("Rainfall Generation...") altMap = tcod.heightmap_new(map.width, map.height) latMap = tcod.heightmap_new(map.width, map.height) rainMap = tcod.heightmap_new(map.width, map.height) for y in range(0, map.height): for x in range(0, map.width): # Cosine wave, dipping to -5 at the poles and the tropics latRain = 40 - (50 * (math.cos(math.pi * y / (map.height / 10)))) tcod.heightmap_set_value(rainMap, x, y, latRain) tcod.heightmap_add_voronoi(rainMap, int(map.height * map.width / 256), 3, [0.1, 0.1, 0.1]) tcod.heightmap_normalize(rainMap, 0, 150) tcod.heightmap_clamp(rainMap, 0, 100) for y in range(0, map.height): for x in range(0, map.width): map.setRain(x, y, tcod.heightmap_get_value(rainMap, x, y))
def add_noise(self): libtcod.heightmap_normalize(self.hm, 0, 1) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.noise_set_type(self.noise, libtcod.NOISE_PERLIN) libtcod.heightmap_add_fbm(self.hm, self.noise, 1, 1, 1, 1, 8, 0.5, 0.5) libtcod.heightmap_normalize(self.hm, 0, 255)
def __init__(self, w, h): global TROPICS_THRESHOLD, TEMPERATE_THRESHOLD, TAIGA_THRESHOLD self.w = w self.h = h self.equator = h/2 TROPICS_THRESHOLD = (self.equator/2)/3 TEMPERATE_THRESHOLD = self.equator/2 TAIGA_THRESHOLD = self.equator - self.equator*0.1 self.tiles = [[ Tile(ix,iy, False, map_tile=True) for iy in range(h) ] for ix in range(w)] x,y = 0,0 self.traffic = [[0 for y in range(h)] for x in range(w)] #this holds the *colour* value of the tiles temps. self.temperature_map = [[0 for y in range(h)] for x in range(w)] self.moisture_map = [[0 for y in range(h)] for x in range(w)] self.hm = libtcod.heightmap_new(self.w, self.h) self.hm2 = libtcod.heightmap_new(self.w, self.h) self.hm3 = libtcod.heightmap_new(self.w, self.h) self.generate_land(self.hm) self.generate_land(self.hm2) self.generate_land(self.hm3) libtcod.noise_set_type(self.noise, libtcod.NOISE_SIMPLEX) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) #libtcod.heightmap_add_fbm(self.hm3, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) #self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) #libtcod.heightmap_add_fbm(self.hm3, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) #self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) #libtcod.heightmap_add_fbm(self.hm3, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) self.multiply_noise() self.multiply_noise() libtcod.heightmap_normalize(self.hm, 0, 255) #libtcod.heightmap_normalize(self.hm2, 0, 255) #libtcod.heightmap_normalize(self.hm3, 0, 255) #libtcod.heightmap_rain_erosion(self.hm, (self.w + self.h)*4, 0.5, 0.1, None) self.add_noise() self.turn_to_tiles() self.determine_temperatures() self.normalise_temperatures() self.wind_gen = Particle_Map(self,1500) self.generate_mini_map(10) self.cities = [] self.dungeons = [] self.generate_city(libtcod.random_get_int(0, 4, 10)) self.generate_dungeons(10)
def add_landmass(self): print 'Creating landmass....' t0 = libtcod.sys_elapsed_seconds() for i in range(int(game.WORLDMAP_WIDTH * 0.55)): radius = self.randomize('float', 50 * (1.0 - 0.7), 50 * (1.0 + 0.7), 3) x = self.randomize('int', 0, game.WORLDMAP_WIDTH, 3) y = self.randomize('int', 0, game.WORLDMAP_HEIGHT, 3) libtcod.heightmap_add_hill(game.heightmap, x, y, radius, 0.3) libtcod.heightmap_normalize(game.heightmap) libtcod.heightmap_add_fbm(game.heightmap, self.noise, 6.5, 6.5, 0, 0, 8.0, 1.0, 4.0) libtcod.heightmap_normalize(game.heightmap) t1 = libtcod.sys_elapsed_seconds() print ' done! (%.3f seconds)' % (t1 - t0)
def add_hill(self,x,y): r = 5 xh = self.w yh = self.h one = (x - xh )*(x - xh ) two = (y - yh)*(y - yh) hill_height = ((r*r) + one + two)/4 if hill_height > 0: libtcod.heightmap_add_hill(self.hm, x, y, 10, 20) libtcod.heightmap_normalize(self.hm, 0, 255)
def add_hill(self, x, y): r = 5 xh = self.w yh = self.h one = (x - xh) * (x - xh) two = (y - yh) * (y - yh) hill_height = ((r * r) + one + two) / 4 if hill_height > 0: libtcod.heightmap_add_hill(self.hm, x, y, 10, 20) libtcod.heightmap_normalize(self.hm, 0, 255)
def __init__(self, w, h): global TROPICS_THRESHOLD, TEMPERATE_THRESHOLD, TAIGA_THRESHOLD self.w = w self.h = h self.equator = h / 2 TROPICS_THRESHOLD = (self.equator / 2) / 3 TEMPERATE_THRESHOLD = self.equator / 2 TAIGA_THRESHOLD = self.equator - self.equator * 0.1 self.tiles = [[Tile(ix, iy, False, map_tile=True) for iy in range(h)] for ix in range(w)] x, y = 0, 0 self.traffic = [[0 for y in range(h)] for x in range(w)] #this holds the *colour* value of the tiles temps. self.temperature_map = [[0 for y in range(h)] for x in range(w)] self.moisture_map = [[0 for y in range(h)] for x in range(w)] self.hm = libtcod.heightmap_new(self.w, self.h) self.hm2 = libtcod.heightmap_new(self.w, self.h) self.hm3 = libtcod.heightmap_new(self.w, self.h) self.generate_land(self.hm) self.generate_land(self.hm2) self.generate_land(self.hm3) libtcod.noise_set_type(self.noise, libtcod.NOISE_SIMPLEX) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) #libtcod.heightmap_add_fbm(self.hm3, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) #self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) #libtcod.heightmap_add_fbm(self.hm3, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) #self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) #libtcod.heightmap_add_fbm(self.hm3, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) self.multiply_noise() self.multiply_noise() libtcod.heightmap_normalize(self.hm, 0, 255) #libtcod.heightmap_normalize(self.hm2, 0, 255) #libtcod.heightmap_normalize(self.hm3, 0, 255) #libtcod.heightmap_rain_erosion(self.hm, (self.w + self.h)*4, 0.5, 0.1, None) self.add_noise() self.turn_to_tiles() self.determine_temperatures() self.normalise_temperatures() self.wind_gen = Particle_Map(self, 1500) self.generate_mini_map(10) self.cities = [] self.dungeons = [] self.generate_city(libtcod.random_get_int(0, 4, 10)) self.generate_dungeons(10)
def initialze(scale=50, weather=False): global noise_field, height_map noise_field = libtcod.noise_new(2, 0.5, 2.0, rnd) # 0.5f and 2.0f libtcod.noise_set_type(noise_field, libtcod.NOISE_SIMPLEX) height_map = libtcod.heightmap_new(Constants.MAP_WIDTH, Constants.MAP_HEIGHT) for y in range(Constants.MAP_HEIGHT): for x in range(Constants.MAP_WIDTH): libtcod.heightmap_set_value(height_map, x, y, get_noise_value(x, y, scale=scale)) libtcod.heightmap_normalize(height_map, 0.0, 1.0) # libtcod.heightmap_add_hill(height_map, 40, 40, 6, 0.8) if weather: libtcod.heightmap_rain_erosion(height_map, 5000, 0.75, .75)
def Percipitaion(preciphm, temphm): libtcod.heightmap_add(preciphm, 2) for x in xrange(WORLD_WIDTH): for y in xrange(WORLD_HEIGHT): temp = libtcod.heightmap_get_value(temphm, x, y) precip = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(preciphm, precip, 2, 2, 0, 0, 32, 1, 1) libtcod.heightmap_normalize(preciphm, 0.0, 1.0) return
def generateTempmap(_map): print("Temperature Generation...") _rand = tcod.random_get_instance() _tm = tcod.heightmap_new(_map.width, _map.height) _altMap = tcod.heightmap_new(_map.width, _map.height) _latMap = tcod.heightmap_new(_map.width, _map.height) for y in range(0, _map.height): for x in range(0, _map.width): latitude = -int(180*y/_map.height - 90) latTemp = int(-(latitude*latitude)/51 + 128) tcod.heightmap_set_value(_latMap, x, y, latTemp) alt = _map.heightmap(x, y) if (alt > 0): # expect alt to peak out around 255-320 altTemp = -alt/4 else: altTemp = tcod.random_get_int(_rand,-10, 10) tcod.heightmap_set_value(_altMap, x, y, altTemp) tcod.heightmap_add_hm(_altMap, _latMap, _tm) tcod.heightmap_rain_erosion( _tm, _map.width*_map.height/2, #number of raindrops 0.2, #erosion cooef (f) 0.2) #sediment cooef (f) tcod.heightmap_normalize(_tm, -32, 128) dx = [-1,1,0] dy = [0,0,0] weight = [0.33,0.33,0.33] tcod.heightmap_kernel_transform(_tm,3,dx,dy,weight,-32,128); for y in range(0, _map.height): for x in range(0, _map.width): _map.coords[x][y].setTemp(tcod.heightmap_get_value(_tm, x, y)) return True
def Percipitaion(preciphm): libtcod.heightmap_add(preciphm, 2) for x in xrange(WORLD_WIDTH): for y in xrange(WORLD_HEIGHT): if y > WORLD_HEIGHT/2 - WORLD_HEIGHT/10 and y < WORLD_HEIGHT/2 + WORLD_HEIGHT/10: val = y val = abs(y - WORLD_HEIGHT/2) libtcod.heightmap_set_value(preciphm, x, y, val/4) precip = libtcod.noise_new(2,libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(preciphm,precip ,8, 8, 0, 0, 32, 1, 1) libtcod.heightmap_normalize(preciphm, 0.0, 1.0) return
def generate_land(self,hm): print hm.w, hm.h #self.noise = perlin_noise.PerlinNoiseGenerator() #self.noise.generate_noise(self.w, self.h, 1, 16) #print str(self.noise.noise[1][1]) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(hm, self.noise, 1, 1, 0, 0, 8, 0.5, 0.8) print "scale", str(libtcod.heightmap_get_value(hm, 1, 1)) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.noise_set_type(self.noise, libtcod.NOISE_PERLIN) libtcod.heightmap_scale_fbm(hm, self.noise, 1, 1, 0, 0, 8, 0.5, 0.8) # self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) # libtcod.heightmap_add_fbm(hm, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) # libtcod.heightmap_normalize(hm, 0, 255) print "normalized", str(libtcod.heightmap_get_value(hm, 1, 1)) return hm
def test_heightmap(): hmap = libtcodpy.heightmap_new(16, 16) repr(hmap) noise = libtcodpy.noise_new(2) # basic operations libtcodpy.heightmap_set_value(hmap, 0, 0, 1) libtcodpy.heightmap_add(hmap, 1) libtcodpy.heightmap_scale(hmap, 1) libtcodpy.heightmap_clear(hmap) libtcodpy.heightmap_clamp(hmap, 0, 0) libtcodpy.heightmap_copy(hmap, hmap) libtcodpy.heightmap_normalize(hmap) libtcodpy.heightmap_lerp_hm(hmap, hmap, hmap, 0) libtcodpy.heightmap_add_hm(hmap, hmap, hmap) libtcodpy.heightmap_multiply_hm(hmap, hmap, hmap) # modifying the heightmap libtcodpy.heightmap_add_hill(hmap, 0, 0, 4, 1) libtcodpy.heightmap_dig_hill(hmap, 0, 0, 4, 1) libtcodpy.heightmap_rain_erosion(hmap, 1, 1, 1) libtcodpy.heightmap_kernel_transform(hmap, 3, [-1, 1, 0], [0, 0, 0], [.33, .33, .33], 0, 1) libtcodpy.heightmap_add_voronoi(hmap, 10, 3, [1, 3, 5]) libtcodpy.heightmap_add_fbm(hmap, noise, 1, 1, 1, 1, 4, 1, 1) libtcodpy.heightmap_scale_fbm(hmap, noise, 1, 1, 1, 1, 4, 1, 1) libtcodpy.heightmap_dig_bezier(hmap, [0, 16, 16, 0], [0, 0, 16, 16], 1, 1, 1, 1) # read data libtcodpy.heightmap_get_value(hmap, 0, 0) libtcodpy.heightmap_get_interpolated_value(hmap, 0, 0) libtcodpy.heightmap_get_slope(hmap, 0, 0) libtcodpy.heightmap_get_normal(hmap, 0, 0, 0) libtcodpy.heightmap_count_cells(hmap, 0, 0) libtcodpy.heightmap_has_land_on_border(hmap, 0) libtcodpy.heightmap_get_minmax(hmap) libtcodpy.noise_delete(noise) libtcodpy.heightmap_delete(hmap)
def randomizeHeightmap(self) : print "Setting up heightmap" hills = 1000 hillSize = 7 halfX = self.width / 2 halfY = self.height / 2 libtcod.heightmap_clear(self._hm) for i in range(hills) : size = random.randint(0,hillSize) hillX1 = random.randint(0,halfX - hillSize / 2) hillY1 = random.randint(0,self.height) hillX2 = random.randint(halfX + hillSize / 2, self.width) hillY2 = random.randint(0,self.height) libtcod.heightmap_add_hill(self._hm,hillX1, hillY1, size, size) libtcod.heightmap_add_hill(self._hm,hillX2, hillY2, size, size) libtcod.heightmap_normalize(self._hm, 0.0, 2.0)
def generate_land(self, hm): print hm.w, hm.h #self.noise = perlin_noise.PerlinNoiseGenerator() #self.noise.generate_noise(self.w, self.h, 1, 16) #print str(self.noise.noise[1][1]) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(hm, self.noise, 1, 1, 0, 0, 8, 0.5, 0.8) print "scale", str(libtcod.heightmap_get_value(hm, 1, 1)) self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.noise_set_type(self.noise, libtcod.NOISE_PERLIN) libtcod.heightmap_scale_fbm(hm, self.noise, 1, 1, 0, 0, 8, 0.5, 0.8) # self.noise = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) # libtcod.heightmap_add_fbm(hm, self.noise, 1, 1, 0, 0, 8, 0.8, 0.5) # libtcod.heightmap_normalize(hm, 0, 255) print "normalized", str(libtcod.heightmap_get_value(hm, 1, 1)) return hm
def generateSaltmap(_map): print("Salinity Generation...") _sm = tcod.heightmap_new(_map.width, _map.height) for y in range(0, _map.height): for x in range(0, _map.width): #very crude "distance from ocean" simulation toOcean = _map.distanceToOcean(x, y) if toOcean < 1: salinity = 255 else: salinity = 255 / toOcean tcod.heightmap_normalize(_sm, 0, 255) for y in range(0, _map.height): for x in range(0, _map.width): _map.coords[x][y].setSalinity(tcod.heightmap_get_value(_sm, x, y)) return True
def generateSaltmap(_map): print("Salinity Generation..."); _sm = tcod.heightmap_new(_map.width, _map.height) for y in range(0, _map.height): for x in range(0, _map.width): #very crude "distance from ocean" simulation toOcean = _map.distanceToOcean(x,y); if toOcean < 1: salinity = 255 else: salinity = 255/toOcean tcod.heightmap_normalize(_sm, 0, 255) for y in range(0, _map.height): for x in range(0, _map.width): _map.coords[x][y].setSalinity(tcod.heightmap_get_value(_sm, x, y)) return True
def make_heightmap(size, seed): # Gradient generated by distance to the northeast corner (creates northeast ocean). gradient1 = lt.heightmap_new(size, size) for col in xrange(size): for row in xrange(size): distance = ((row - size) ** 2 + col ** 2) ** 0.5 lt.heightmap_set_value(gradient1, row, col, distance) lt.heightmap_clamp(gradient1, mi=0, ma=WORLD_SIZE) lt.heightmap_scale(gradient1, 2) # Similar gradient, but cube root (creates mountains around edge). gradient2 = lt.heightmap_new(size, size) for col in xrange(size): for row in xrange(size): distance = ((row - size) ** 2 + col ** 2) ** 0.33 lt.heightmap_set_value(gradient2, row, col, distance) lt.heightmap_clamp(gradient2, mi=0, ma=WORLD_SIZE / 6) lt.heightmap_scale(gradient2, 5) # Height map based on Perlin noise. heightmap = lt.heightmap_new(size, size) random = lt.random_new() if seed: random = lt.random_new_from_seed(seed) perlin = lt.noise_new(2, h=2, l=2, random=random) lt.heightmap_add_fbm(heightmap, perlin, mulx=3, muly=3, addx=0, addy=0, octaves=8, delta=50, scale=100) # Add in gradients. lt.heightmap_add_hm(heightmap, gradient1, heightmap) lt.heightmap_add_hm(heightmap, gradient2, heightmap) lt.heightmap_normalize(heightmap, mi=-100, ma=105) lt.heightmap_clamp(heightmap, mi=-50, ma=100) lt.heightmap_normalize(heightmap, mi=-100, ma=100) visualize(heightmap) return heightmap
def build_atmosphere(self, width, height): if self.planet_class in ['terran', 'ocean', 'jungle', 'tundra', 'artic'] : atmosphere = self.spherical_noise( noise_dx=10.0, noise_dy=10.0, noise_dz=10.0, noise_octaves=4.0, noise_zoom=2.0, noise_hurst=self.noise_hurst, noise_lacunarity=self.noise_lacunarity, width=width, height=height ) libtcod.heightmap_normalize(atmosphere, 0, 1.0) libtcod.heightmap_add(atmosphere,0.30) libtcod.heightmap_clamp(atmosphere,0.4,1.0) return atmosphere elif self.planet_class in ['arid', 'desert']: atmosphere = self.spherical_noise( noise_dx=10.0, noise_dy=10.0, noise_dz=10.0, noise_octaves=4.0, noise_zoom=2.0, noise_hurst=self.noise_hurst, noise_lacunarity=self.noise_lacunarity, width=width, height=height ) libtcod.heightmap_normalize(atmosphere, 0, 1.0) libtcod.heightmap_add(atmosphere,0.7) libtcod.heightmap_clamp(atmosphere,0.8,1.0) return atmosphere else: return None
def generateRainmap(map): print("Rainfall Generation..."); altMap = tcod.heightmap_new(map.width, map.height) latMap = tcod.heightmap_new(map.width, map.height) rainMap = tcod.heightmap_new(map.width, map.height) for y in range(0, map.height): for x in range(0, map.width): # Cosine wave, dipping to -5 at the poles and the tropics latRain = 40-(50*(math.cos(math.pi*y/(map.height/10)))) tcod.heightmap_set_value(rainMap, x, y, latRain) tcod.heightmap_add_voronoi(rainMap, int(map.height * map.width / 256), 3, [0.1,0.1, 0.1] ) tcod.heightmap_normalize(rainMap, 0,150) tcod.heightmap_clamp(rainMap, 0,100) for y in range(0, map.height): for x in range(0, map.width): map.setRain(x, y, tcod.heightmap_get_value(rainMap, x, y))
def buildMap(hm) : libtcod.heightmap_add_fbm(hm,noise,3.83,3.83,400,0,4.93,1,0.35) libtcod.heightmap_normalize(hm)
def MasterWorldGen(): #------------------------------------------------------- * MASTER GEN * ------------------------------------------------------------- print ' * World Gen START * ' starttime = time.time() #Heightmap hm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) for i in range(50): libtcod.heightmap_add_hill(hm, randint(WORLD_WIDTH/10,WORLD_WIDTH- WORLD_WIDTH/10), randint(WORLD_HEIGHT/10,WORLD_HEIGHT- WORLD_HEIGHT/10), randint(12,16), randint(6,10)) print '- Main Hills -' for i in range(200): libtcod.heightmap_add_hill(hm, randint(WORLD_WIDTH/10,WORLD_WIDTH- WORLD_WIDTH/10), randint(WORLD_HEIGHT/10,WORLD_HEIGHT- WORLD_HEIGHT/10), randint(2,4), randint(6,10)) print '- Small Hills -' libtcod.heightmap_normalize(hm, 0.0, 1.0) noisehm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) noise2d = libtcod.noise_new(2,libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(noisehm, noise2d,4, 4, 0, 0, 64, 1, 1) libtcod.heightmap_normalize(noisehm, 0.0, 1.0) libtcod.heightmap_multiply_hm(hm, noisehm, hm) print '- Apply Simplex -' PoleGen(hm, 0) print '- South Pole -' PoleGen(hm, 1) print '- North Pole -' TectonicGen(hm,0) TectonicGen(hm,1) print '- Tectonic Gen -' libtcod.heightmap_rain_erosion(hm, WORLD_WIDTH*WORLD_HEIGHT ,0.07,0,0) print '- Erosion -' libtcod.heightmap_clamp(hm, 0.0, 1.0) #Temperature temp = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) Temperature(temp,hm) libtcod.heightmap_normalize(temp, 0.0, 0.8) print '- Temperature Calculation -' #Precipitation preciphm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) Percipitaion(preciphm) libtcod.heightmap_normalize(preciphm, 0.0, 0.8) print '- Percipitaion Calculation -' # VOLCANISM - RARE AT SEA FOR NEW ISLANDS (?) RARE AT MOUNTAINS > 0.9 (?) RARE AT TECTONIC BORDERS (?) #Initialize Tiles with Map values World = [[0 for y in range(WORLD_HEIGHT)] for x in range(WORLD_WIDTH)] #100x100 array for x in xrange(WORLD_WIDTH): for y in xrange(WORLD_HEIGHT): World[x][y] = Tile(libtcod.heightmap_get_value(hm, x, y), libtcod.heightmap_get_value(temp, x, y), libtcod.heightmap_get_value(preciphm, x, y), 0) print '- Tiles Initialized -' # - Biome info to Tiles - for x in xrange(WORLD_WIDTH): for y in xrange(WORLD_HEIGHT): if World[x][y].height > 0.2: World[x][y].biomeID = 3 if randint(1,10) < 3: World[x][y].biomeID = 5 if World[x][y].height > 0.4: World[x][y].biomeID = 14 if randint(1,10) < 3: World[x][y].biomeID = 5 if World[x][y].height > 0.5: World[x][y].biomeID = 8 if randint(1,10) < 3: World[x][y].biomeID = 14 if World[x][y].temp <= 0.5 and World[x][y].precip >= 0.5: World[x][y].biomeID = 5 if randint(1,10) < 3: World[x][y].biomeID = 14 if World[x][y].temp >= 0.5 and World[x][y].precip >= 0.7: World[x][y].biomeID = 6 if World[x][y].precip >= 0.7 and World[x][y].height > 0.2 and World[x][y].height <= 0.4: World[x][y].biomeID = 2 if World[x][y].temp > 0.75 and World[x][y].precip < 0.35: World[x][y].biomeID = 4 if World[x][y].temp <= 0.22 and World[x][y].height > 0.2: World[x][y].biomeID = randint(11,13) if World[x][y].temp <= 0.3 and World[x][y].temp > 0.2 and World[x][y].height > 0.2 and World[x][y].precip >= 0.6: World[x][y].biomeID = 7 if World[x][y].height > 0.75: World[x][y].biomeID = 9 if World[x][y].height > 0.999: World[x][y].biomeID = 10 if World[x][y].height <= 0.2: World[x][y].biomeID = 0 if World[x][y].height <= 0.1: World[x][y].biomeID = 0 print '- BiomeIDs Atributed -' #River Gen for x in range(2): RiverGen(hm, World) print '- River Gen -' #Free Heightmaps libtcod.heightmap_delete(hm) libtcod.heightmap_delete(temp) libtcod.heightmap_delete(noisehm) elapsed_time = time.time() - starttime print ' * World Gen DONE * in: ',elapsed_time,' seconds' return World
def generateHeightmap(_map): print("Particle Deposition Generation...") _rand = tcod.random_get_instance() _hm = tcod.heightmap_new(_map.width, _map.height) #half-width and -height _hw = _map.width / 2 _hh = _map.height / 2 #quarter-width and -height _qw = _map.width / 4 _qh = _map.height / 4 #define our four "continental centers" _continents = [ (_qw, _qh), #top-left (_map.width - _qw, _qh), #top-right (_qw, _map.height - _qh), #btm-left (_map.width - _qw, _map.height - _qh) ] #btm-right print("Continents:", _continents) _avg = min(_map.width, _map.height) _maxHillHeight = _avg / 4 _maxHillRad = _avg / 8 _iterations = _avg * 32 for i in range(0, _iterations): _quadrant = tcod.random_get_int(_rand, 0, 3) _qx = _continents[_quadrant][0] _qy = _continents[_quadrant][1] _minX = _qx - ((_qw * CONT_SIZE) / 10) _maxX = _qx + ((_qw * CONT_SIZE) / 10) _minY = _qy - _qh _maxY = _qy + _qh x = tcod.random_get_int(_rand, _minX, _maxX) y = tcod.random_get_int(_rand, _minY, _maxY) height = tcod.random_get_int(_rand, -1 * _maxHillHeight, _maxHillHeight) rad = tcod.random_get_int(_rand, 0, _maxHillRad) tcod.heightmap_add_hill(_hm, x, y, rad, height) #"dig out" the space around the edge of the map x = _hw for y in range(0, _map.height, max(1, _maxHillRad / 8)): height = tcod.random_get_int(_rand, _maxHillHeight / -2, -1 * _maxHillHeight) rad = tcod.random_get_int(_rand, 0, _maxHillRad * 2) tcod.heightmap_add_hill(_hm, 0, y, rad, height) tcod.heightmap_add_hill(_hm, _map.width - 1, y, rad, height) for x in range(0, _map.width, max(1, _maxHillRad / 4)): height = tcod.random_get_int(_rand, _maxHillHeight / -2, -1 * _maxHillHeight) rad = tcod.random_get_int(_rand, 0, _maxHillRad * 2) tcod.heightmap_add_hill(_hm, x, 0, rad, height) tcod.heightmap_add_hill(_hm, x, _map.height - 1, rad, height) tcod.heightmap_rain_erosion( _hm, _map.width * _map.height, #number of raindrops 0.2, #erosion cooef (f) 0.2) #sediment cooef (f) _dx = [-2, -1, 0, 1, 2] _dy = [-2, -1, 0, 1, 2] _weight = [0.1, 0.1, 0.2, 0.3, 0.3] tcod.heightmap_kernel_transform(_hm, 5, _dx, _dy, _weight, -64, 255) tcod.heightmap_normalize(_hm, -255, 392) for y in range(0, _map.height): for x in range(0, _map.width): _map.coords[x][y].setAltitude(tcod.heightmap_get_value(_hm, x, y)) return True
def build_heightmap(self, width, height): hm = self.spherical_noise( self.noise_dx, self.noise_dy, self.noise_dz, self.noise_octaves, self.noise_zoom, self.noise_hurst, self.noise_lacunarity, width, height) if self.planet_class == 'terran': libtcod.heightmap_normalize(hm, 0, 1.0) libtcod.heightmap_add(hm,-0.40) libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 1000 if width == self.detail_heightmap_width else 100 libtcod.heightmap_rain_erosion(hm,1000,0.46,0.12,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'ocean': libtcod.heightmap_normalize(hm, 0, 1.0) libtcod.heightmap_add(hm,-0.40) libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 3000 if width == self.detail_heightmap_width else 1000 libtcod.heightmap_rain_erosion(hm,3000,0.46,0.12,self.rnd) libtcod.heightmap_normalize(hm, 0, 200) elif self.planet_class == 'jungle': libtcod.heightmap_normalize(hm, 0, 1.0) libtcod.heightmap_add(hm,0.20) libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 3000 if width == self.detail_heightmap_width else 1000 libtcod.heightmap_rain_erosion(hm,raindrops,0.25,0.05,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'lava': libtcod.heightmap_normalize(hm, 0, 1.0) raindrops = 1000 if width == self.detail_heightmap_width else 500 libtcod.heightmap_rain_erosion(hm,raindrops,0.65,0.05,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'tundra': libtcod.heightmap_normalize(hm, 0, 1.0) # libtcod.heightmap_add(hm,0.20) # libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 2000 if width == self.detail_heightmap_width else 50 libtcod.heightmap_rain_erosion(hm,raindrops,0.45,0.05,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'arid': libtcod.heightmap_normalize(hm, 0, 1.0) libtcod.heightmap_add(hm,0.20) libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 2000 if width == self.detail_heightmap_width else 50 libtcod.heightmap_rain_erosion(hm,raindrops,0.45,0.05,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'desert': libtcod.heightmap_normalize(hm, 0, 1.0) libtcod.heightmap_add(hm,0.15) libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 1000 if width == self.detail_heightmap_width else 50 libtcod.heightmap_rain_erosion(hm,raindrops,0.10,0.10,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'artic': libtcod.heightmap_normalize(hm, 0, 1.0) libtcod.heightmap_add(hm,0.40) libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 1000 if width == self.detail_heightmap_width else 100 libtcod.heightmap_rain_erosion(hm,raindrops,0.45,0.05,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'barren': libtcod.heightmap_normalize(hm, 0, 1.0) # libtcod.heightmap_add(hm,0.40) # libtcod.heightmap_clamp(hm,0.0,1.0) raindrops = 2000 if width == self.detail_heightmap_width else 500 libtcod.heightmap_rain_erosion(hm,raindrops,0.45,0.05,self.rnd) libtcod.heightmap_normalize(hm, 0, 255) elif self.planet_class == 'gas giant': libtcod.heightmap_normalize(hm, 0, 1.0) # libtcod.heightmap_add(hm,0.40) # libtcod.heightmap_clamp(hm,0.0,1.0) # # 3x3 kernel for smoothing operations smoothKernelSize = 9 smoothKernelDx = [ -1, 0, 1, -1, 0, 1, -1, 0, 1 ] # smoothKernelDy = [ # -1, -1, -1, # 0, 0, 0, # 1, 1, 1 # ] smoothKernelDy = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, ] smoothKernelWeight = [ 1.0, 2.0, 1.0, 4.0, 20.0, 4.0, 1.0, 2.0, 1.0 ] for i in range(20,-1,-1) : libtcod.heightmap_kernel_transform(hm,smoothKernelSize,smoothKernelDx,smoothKernelDy,smoothKernelWeight,0,1.0) libtcod.heightmap_normalize(hm, 0, 255) else: libtcod.heightmap_normalize(hm, 0, 255) return hm
def MasterWorldGen( ): #------------------------------------------------------- * MASTER GEN * ------------------------------------------------------------- print ' * World Gen START * ' starttime = time.time() #Heightmap hm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) for i in range(50): libtcod.heightmap_add_hill( hm, randint(WORLD_WIDTH / 10, WORLD_WIDTH - WORLD_WIDTH / 10), randint(WORLD_HEIGHT / 10, WORLD_HEIGHT - WORLD_HEIGHT / 10), randint(12, 16), randint(6, 10)) print '- Main Hills -' for i in range(200): libtcod.heightmap_add_hill( hm, randint(WORLD_WIDTH / 10, WORLD_WIDTH - WORLD_WIDTH / 10), randint(WORLD_HEIGHT / 10, WORLD_HEIGHT - WORLD_HEIGHT / 10), randint(2, 4), randint(6, 10)) print '- Small Hills -' libtcod.heightmap_normalize(hm, 0.0, 1.0) noisehm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) noise2d = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(noisehm, noise2d, 4, 4, 0, 0, 32, 1, 1) libtcod.heightmap_normalize(noisehm, 0.0, 1.0) libtcod.heightmap_multiply_hm(hm, noisehm, hm) print '- Apply Simplex -' PoleGen(hm, 0) print '- South Pole -' PoleGen(hm, 1) print '- North Pole -' TectonicGen(hm, 0) TectonicGen(hm, 1) print '- Tectonic Gen -' libtcod.heightmap_rain_erosion(hm, WORLD_WIDTH * WORLD_HEIGHT, 0.07, 0, 0) print '- Erosion -' libtcod.heightmap_clamp(hm, 0.0, 1.0) #Temperature temp = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) Temperature(temp, hm) libtcod.heightmap_normalize(temp, 0.0, 0.8) print '- Temperature Calculation -' #Precipitation preciphm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) Percipitaion(preciphm, temp) libtcod.heightmap_normalize(preciphm, 0.0, 0.8) print '- Percipitaion Calculation -' #Drainage drainhm = libtcod.heightmap_new(WORLD_WIDTH, WORLD_HEIGHT) drain = libtcod.noise_new(2, libtcod.NOISE_DEFAULT_HURST, libtcod.NOISE_DEFAULT_LACUNARITY) libtcod.heightmap_add_fbm(drainhm, drain, 2, 2, 0, 0, 32, 1, 1) libtcod.heightmap_normalize(drainhm, 0.0, 0.8) print '- Drainage Calculation -' # VOLCANISM - RARE AT SEA FOR NEW ISLANDS (?) RARE AT MOUNTAINS > 0.9 (?) RARE AT TECTONIC BORDERS (?) elapsed_time = time.time() - starttime print ' * World Gen DONE * in: ', elapsed_time, ' seconds' #Initialize Tiles with Map values World = [[0 for y in range(WORLD_HEIGHT)] for x in range(WORLD_WIDTH)] #100x100 array for x in xrange(WORLD_WIDTH): for y in xrange(WORLD_HEIGHT): World[x][y] = Tile(libtcod.heightmap_get_value(hm, x, y), libtcod.heightmap_get_value(temp, x, y), libtcod.heightmap_get_value(preciphm, x, y), libtcod.heightmap_get_value(drainhm, x, y), 0) print '- Tiles Initialized -' #Prosperity Prosperity(World) print '- Prosperity Calculation -' #Biome info to Tile for x in xrange(WORLD_WIDTH): for y in xrange(WORLD_HEIGHT): if World[x][y].height > 0.2: World[x][y].biomeID = 3 if randint(1, 10) < 3: World[x][y].biomeID = 5 if World[x][y].height > 0.4: World[x][y].biomeID = 14 if randint(1, 10) < 3: World[x][y].biomeID = 5 if World[x][y].height > 0.5: World[x][y].biomeID = 8 if randint(1, 10) < 3: World[x][y].biomeID = 14 if World[x][y].temp <= 0.5 and World[x][y].precip >= 0.5: World[x][y].biomeID = 5 if randint(1, 10) < 3: World[x][y].biomeID = 14 if World[x][y].temp >= 0.5 and World[x][y].precip >= 0.7: World[x][y].biomeID = 6 if World[x][y].precip >= 0.7 and World[x][ y].height > 0.2 and World[x][y].height <= 0.4: World[x][y].biomeID = 2 if World[x][y].temp > 0.75 and World[x][y].precip < 0.35: World[x][y].biomeID = 4 if World[x][y].temp <= 0.22 and World[x][y].height > 0.2: World[x][y].biomeID = randint(11, 13) if World[x][y].temp <= 0.3 and World[x][y].temp > 0.2 and World[x][ y].height > 0.2 and World[x][y].precip >= 0.6: World[x][y].biomeID = 7 if World[x][y].height > 0.75: World[x][y].biomeID = 9 if World[x][y].height > 0.999: World[x][y].biomeID = 10 if World[x][y].height <= 0.2: World[x][y].biomeID = 0 if World[x][y].height <= 0.1: World[x][y].biomeID = 0 print '- BiomeIDs Atributed -' #River Gen for x in range(5): RiverGen(World) print '- River Gen -' #Free Heightmaps libtcod.heightmap_delete(hm) libtcod.heightmap_delete(temp) libtcod.heightmap_delete(noisehm) print ' * Biomes/Rivers Sorted *' return World