Esempio n. 1
0
    def moveAStar(self, target, entities, gameMap):
        # Create a new FOV map
        fov = tcod.map_new(gameMap.mapWidth, gameMap.mapHeight)
        # Scan current map and set all walls as unwalkable
        for y1 in range(gameMap.mapHeight):
            for x1 in range(gameMap.mapWidth):
                tcod.map_set_properties(fov, x1, y1,
                                        not gameMap.tiles[x1][y1].blockSight,
                                        not gameMap.tiles[x1][y1].blocked)

        # Scan for blocking entities
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                tcod.map_set_properties(fov, entity.x, entity.y, True, False)

        # Allocate A* Path - No Diagonal Movement
        path = tcod.path_new_using_map(fov, 0.0)
        # Compute path
        tcod.path_compute(path, self.x, self.y, target.x, target.y)

        # Check if path exists and is shorter than 25 moves
        if not tcod.path_is_empty(path) and tcod.path_size(path) < 25:
            x, y = tcod.path_walk(path, recompute = True)
            # Set X and Y coordinates
            if x or y:
                self.x = x
                self.y = y
        else:
            # Backup Move Function
            self.moveTowards(target.x, target.y, gameMap, entities)
        
        tcod.path_delete(path)
Esempio n. 2
0
 def move_astar(self, source, target, map):
     if self.has_required_components(source) and self.has_required_components(target):
         src = source.get_component(Components.POSITION)
         fov = source.get_component(Components.FOV)
         trg = target.get_component(Components.POSITION)
         # Scan all the objects to see if there are objects that must be navigated around
         # Check also that the object isn't self or the target (so that the start and the end points are free)
         # The AI class handles the situation if self is next to the target so it will not use this A* function anyway
         for entity in map.entities:
             if self.has_required_components(entity):
                 pos = entity.get_component(Components.POSITION)
                 if pos.solid and entity != source and entity != target:
                     # Set the tile as a wall so it must be navigated around
                     tcod.map_set_properties(fov.fov, pos.x, pos.y, True, False)
         # Allocate a A* path
         # The 1.41 is the normal diagonal cost of moving, it can be set as 0.0 if diagonal moves are prohibited
         my_path = tcod.path_new_using_map(fov.fov, 1.41)
         # Compute the path between self's coordinates and the target's coordinates
         tcod.path_compute(my_path, src.x, src.y, trg.x, trg.y)
         # Check if the path exists, and in this case, also the path is shorter than 25 tiles
         # The path size matters if you want the monster to use alternative longer paths (for example through other rooms) if for example the player is in a corridor
         # It makes sense to keep path size relatively low to keep the monsters from running around the map if there's an alternative path really far away
         if not tcod.path_is_empty(my_path) and tcod.path_size(my_path) < 25:
             # Find the next coordinates in the computed full path
             x, y = tcod.path_walk(my_path, True)
             if x or y:
                 # Set self's coordinates to the next path tile
                 src.x = x
                 src.y = y
         else:
             # Keep the old move function as a backup so that if there are no paths (for example another monster blocks a corridor)
             # it will still try to move towards the player (closer to the corridor opening)
             self.basic_movement.move_towards(trg.x, trg.y, map)
             # Delete the path to free memory
             tcod.path_delete(my_path)
Esempio n. 3
0
def astar(source, target):
    # create a FOV map that has the dimensions of the map
    fov = lib.map_new(var.MAP_WIDTH, var.MAP_HEIGHT)

    # scan the current map each turn and set all walls as unwalkable
    for y1 in range(var.MAP_HEIGHT):
        for x1 in range(var.MAP_WIDTH):
            lib.map_set_properties(fov, x1, y1, not var.map[x1][y1].block_sight, not var.map[x1][y1].blocked)

    # scan all objects to see if there are objects that must be navigated around
    # check also that the object isn't self or the target (start and end points are free)
    # the ai class handles the situation if self is next to the target, so it will not use this A* function anyway
    for ent in var.entities:
        if ent.blocks and ent != var.player and ent != target:
            # set the tile as a wall so it must be navigated around
            lib.map_set_properties(fov, ent.x, ent.y, True, False)
    # allocate the A* path
    # The 1.41 is the normal diagonal cost of moving, set to 0 if diagonals are prohibited
    my_path = lib.path_new_using_map(fov, 1.41)
    # compute the path between self's coordinates and the targets
    lib.path_compute(my_path, source.x, source.y, target.x, target.y)

    # check if the path exists, and in this case, also the path is shorter than 25 tiles
    if not lib.path_is_empty(my_path) and lib.path_size(my_path) < 25:
        # find the next coordinates in the computed full path
        (x, y) = lib.path_walk(my_path, True)
    else:
        (x, y) = (None, None)

    # delete the path
    lib.path_delete(my_path)
    return x, y
Esempio n. 4
0
def find_astar(origin, dest, game_map):
    # Create a FOV map that has the dimensions of the map
    fov = tcod.map_new(game_map.width, game_map.height)

    # Scan the current map each turn and set all the walls as unwalkable
    for y1 in range(game_map.height):
        for x1 in range(game_map.width):
            tcod.map_set_properties(fov, x1, y1, not game_map.is_opaque(
                (x1, y1)), game_map.is_passable((x1, y1)))

    # Scan all the objects to see if there are objects that must be navigated around
    # Check also that the object isn't self or the target (so that the start and the end points are free)
    # The AI class handles the situation if self is next to the target so it will not use this A* function anyway
    for pos in [actor.pos for actor in game_map.actors]:
        if pos != origin and pos != dest:
            # Set the tile as a wall so it must be navigated around
            tcod.map_set_properties(fov, pos[0], pos[1], True, False)

    # Allocate a A* path
    my_path = tcod.path_new_using_map(fov, 1)

    # Compute the path between self's coordinates and the target's coordinates
    tcod.path_compute(my_path, origin[0], origin[1], dest[0], dest[1])

    # Check if the path exists
    if not tcod.path_is_empty(my_path):
        # Find the next coordinates in the computed full path
        x, y = tcod.path_walk(my_path, True)
        # Delete the path to free memory
        tcod.path_delete(my_path)
        if x or y:
            delta = (x - origin[0], y - origin[1])
            for act, move in MOVES.items():
                if move == delta:
                    return act
Esempio n. 5
0
    def set_spawns(self):

        stop = False
        for i in range(200):
            self.randomize_spawn()
            for j in range(1000):
                self.randomize_monster_spawn()

                path = libtcod.path_new_using_map(self.map.pathdata, 0)
                libtcod.path_compute(path, self.spawn[0], self.spawn[1],
                                     self.monster_spawn[0],
                                     self.monster_spawn[1])
                siz = libtcod.path_size(path)

                libtcod.path_delete(path)

                print siz
                if siz < 16 or siz > 40:
                    break
                else:
                    stop = True
                    print siz
                    break

            if stop:
                break

        print 'done?'

        if stop:
            return True
        else:
            return False
Esempio n. 6
0
    def path_towards_astar(self, game, origin, target):
        # getting the fov vamp from currentDrawMap doesn't work in debug mode since it isn't initialized
        # so for the moment I'm recomputing it every time, it's super wasteful but the game chugs along nicely
        fov = libtcod.map_new(self.width, self.height)

        list(
            map(
                lambda tile: libtcod.map_set_properties(
                    fov, tile.x, tile.y, tile.trasparent, not tile.block),
                self.get_map_list()))

        for entity in self.entity_list:
            if entity != origin and entity != target:
                libtcod.map_set_properties(fov, entity.x, entity.y, True,
                                           False)

        my_path = libtcod.path_new_using_map(fov, 0.0)

        libtcod.path_compute(my_path, origin.x, origin.y, target.x, target.y)

        return_direction = (0, 0)
        if not libtcod.path_is_empty(
                my_path) and libtcod.path_size(my_path) < 30:
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                x1 = 1 if origin.x < x else -1 if origin.x > x else 0
                y1 = 1 if origin.y < y else -1 if origin.y > y else 0
                return_direction = (x1, y1)
        else:
            return_direction = self.get_step_towards(origin.x, origin.y,
                                                     target.x, target.y)

        libtcod.path_delete(my_path)
        return return_direction
Esempio n. 7
0
    def move_astar(self, target, entities, game_map):
        fov = libtcod.map_new(game_map.width, game_map.height)

        for y1 in range(game_map.height):
            for x1 in range(game_map.width):
                libtcod.map_set_properties(
                    fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
                    not game_map.tiles[x1][y1].blocked)
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                libtcod.map_set_properties(fov, entity.x, entity.y, True,
                                           False)

        my_path = libtcod.path_new_using_map(fov, 1.41)

        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        max_path_length = 25

        if not libtcod.path_is_empty(
                my_path) and libtcod.path_size(my_path) < max_path_length:
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                self.x = x
                self.y = y

        else:
            self.move_towards(target.x, target.y, game_map, entities)

        libtcod.path_delete(my_path)
Esempio n. 8
0
    def move_astar(self, target):
        fov = libtcod.map_new(MAP_WIDTH, MAP_HEIGHT)

        for y1 in range(MAP_HEIGHT):
            for x1 in range(MAP_WIDTH):
                libtcod.map_set_properties(fov, x1, y1,
                                           not map[x1][y1].block_sight,
                                           not map[x1][y1].blocked)

        for obj in objects:
            if obj.blocks and obj != self and obj != target:
                libtcod.map_set_properties(fov, obj.x, obj.y, True, False)

        my_path = libtcod.path_new_using_map(fov, 1.41)
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        if not libtcod.path_is_empty(
                my_path) and libtcod.path_size(my_path) < 25:
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                self.x = x
                self.y = y
        else:
            self.move_towards(target.x, target.y)

        libtcod.path_delete(my_path)
Esempio n. 9
0
	def move_astar(self, target):
		fov = libtcod.map_new(MAP_WIDTH, MAP_HEIGHT)
		
		#set move, sight blockers
		for y1 in range(MAP_HEIGHT):
			for x1 in range(MAP_WIDTH):
				libtcod.map_set_properties(fov, x1, y1, not map[x1][y1].sight_blocker, not map[x1][y1].move_blocker)
			
		#Treat tiles occupied by monsters as move blocked
		for obj in objects:
			if obj.move_blocker and obj != self and obj != target:
				libtcod.map_set_properties(fov, obj.x, obj.y, True, False)
				
		#Allocate path. Use roguelike geometry (diagonals = cardinals).
		my_path = libtcod.path_new_using_map(fov, 1.0)
		
		#Compute path
		libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)
		
		#Confirm path was found, and is short, then take step.
		if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < MAX_ASTAR_PATH_LENGTH:
			x, y = libtcod.path_walk(my_path, True)
			if x or y:
				#self.move takes dx, dy so don't use that
				self.x = x
				self.y = y
		#If the path is bad, take direct path to player.
		#This happens if, say, player is behind a monster in a corridor.
		else:
			self.move_towards(target.x, target.y)
			
		#Deallocate path memory
		libtcod.path_delete(my_path)
Esempio n. 10
0
    def move_astar(self,
                   target,
                   entities,
                   game_map,
                   check_explored=False,
                   max_path=25):
        # Create a FOV map that has the dimensions of the map
        fov = libtcod.map_new(game_map.width, game_map.height)

        # Scan the current map each turn and set all the walls as unwalkable
        for y1 in range(game_map.height):
            for x1 in range(game_map.width):
                if check_explored:
                    libtcod.map_set_properties(
                        fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
                        not game_map.tiles[x1][y1].blocked
                        and game_map.tiles[x1][y1].explored)
                else:
                    libtcod.map_set_properties(
                        fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
                        not game_map.tiles[x1][y1].blocked)

        # Scan all the objects to see if there are objects that must be navigated around
        # Check also that the object isn't self or the target (so that the start and the end points are free)
        # The AI class handles the situation if self is next to the target so it will not use this A* function anyway
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                # Set the tile as a wall so it must be navigated around
                libtcod.map_set_properties(fov, entity.x, entity.y, True,
                                           False)

        # Allocate a A* path
        # The 1.41 is the normal diagonal cost of moving, it can be set as 0.0 if diagonal moves are prohibited
        my_path = libtcod.path_new_using_map(fov, 1.41)

        # Compute the path between self's coordinates and the target's coordinates
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # Check if the path exists, and in this case, also the path is shorter than 25 tiles
        # The path size matters if you want the monster to use alternative longer paths (for example through other rooms) if for example the player is in a corridor
        # It makes sense to keep path size relatively low to keep the monsters from running around the map if there's an alternative path really far away
        if not libtcod.path_is_empty(
                my_path) and libtcod.path_size(my_path) < max_path:
            # Find the next coordinates in the computed full path
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                # Set self's coordinates to the next path tile
                self.x = x
                self.y = y
                return True
            else:
                return False
        else:
            # Keep the old move function as a backup so that if there are no paths (for example another monster blocks a corridor)
            # it will still try to move towards the player (closer to the corridor opening)
            return self.move_towards(target.x, target.y, game_map, entities)

            # Delete the path to free memory
        libtcod.path_delete(my_path)
Esempio n. 11
0
def test_astar_callback(map_, path_callback):
    astar = libtcodpy.path_new_using_function(
        libtcodpy.map_get_width(map_),
        libtcodpy.map_get_height(map_),
        path_callback,
    )
    libtcodpy.path_compute(astar, *POINTS_AB)
    libtcodpy.path_delete(astar)
Esempio n. 12
0
def largeRatAi(obj, ratHoleX, ratHoleY):
	# Handles movement and combat abilities of the large rat.
	
	if libtcod.map_is_in_fov(fovMap, obj.x, obj.y):
		
		if obj.distanceTo(player.x, player.y) >= 2:
		
			pathToPlayer = libtcod.path_new_using_map(fovMap, 1)
			libtcod.path_compute(pathToPlayer, obj.x, obj.y, player.x, player.y)
			newX, newY = libtcod.path_walk(pathToPlayer, True)
			
			if newX is not None:
			
				newX = newX - obj.x
				newY = newY - obj.y
				
			else:	
			
				newX, newY = 0
			
			libtcod.path_delete(pathToPlayer)
			
			if isWalkable(obj.x+newX, obj.y+newY):

				obj.move(obj.x+newX, obj.y+newY)
				
		else:
			
			player.alive.takeDamage(obj.alive.damage)
	
	else:
		
		if obj.distanceTo(ratHoleX, ratHoleY) <= 5:
		
			num = random.randint(0, len(offsets)-1)
			newX = offsets[num][0]
			newY = offsets[num][1]
				
		else:	
			
			pathToHole = libtcod.path_new_using_map(fovMap, 1)
			libtcod.path_compute(pathToHole, obj.x, obj.y, ratHoleX, ratHoleY)
			newX, newY = libtcod.path_walk(pathToHole, True)
			
			if newX is not None:
			
				newX = newX - obj.x
				newY = newY - obj.y
				
			else:	
			
				newX, newY = 0
			
			libtcod.path_delete(pathToHole)
			
		if isWalkable(obj.x+newX, obj.y+newY):

			obj.move(obj.x+newX, obj.y+newY)
Esempio n. 13
0
    def get_move_cost(self, pos1, pos2):

        path = libtcod.path_new_using_map(self.path_map, 0)
        libtcod.path_compute(path, pos1[0], pos1[1], pos2[0], pos2[1])
        siz = libtcod.path_size(path)

        libtcod.path_delete(path)

        return siz
Esempio n. 14
0
	def path_to(self, dx, dy):
		# use algorithm to move (A*)
		path = libtcod.path_new_using_map(fov_map,1.41)
		libtcod.path_compute(path, self.owner.x, self.owner.y, dx, dy)	
		if not libtcod.path_is_empty(path):
			x,y = libtcod.path_walk(path,True)
			if not x is None:
				self.move_towards(x,y)
		libtcod.path_delete(path)
Esempio n. 15
0
 def moveTo(self, x, y, facility):
     """Cancel the current path and take a general direction.
     If the move is illegal, do not change the current path."""
     self.currentPath = None
     self.currentPath = facility.circulation.path_from_to(
         self.location.getX(), self.location.getY(), x, y)
     if libtcod.path_size(self.currentPath) == 0:
         libtcod.path_delete(self.currentPath)
         self.currentPath = None
Esempio n. 16
0
 def moveTo(self, x, y, facility):
     """Cancel the current path and take a general direction.
     If the move is illegal, do not change the current path."""
     self.currentPath = None
     self.currentPath = facility.circulation.path_from_to(self.location.getX(),
                                     self.location.getY(),
                                     x,
                                     y)
     if libtcod.path_size(self.currentPath) == 0:
         libtcod.path_delete(self.currentPath)
         self.currentPath = None
Esempio n. 17
0
    def get_path_pos(self, pos1, pos2, dist):

        chemin = libtcod.path_new_using_map(self.path_map, 0)
        print pos1, pos2
        libtcod.path_compute(chemin, pos1[0], pos1[1], pos2[0], pos2[1])
        print libtcod.path_is_empty(chemin)

        x, y = libtcod.path_get(chemin, dist)

        #	for i in range(dist):
        #		x,y=libtcod.path_walk(path,False)
        #	print x,y
        libtcod.path_delete(chemin)
        return [x, y]
Esempio n. 18
0
    def process(self, game):
        visible =self.game.fov.is_visible(self.x, self.y)
        moved = False

        if visible:
            self.seen += 1
            self.color = tcod.color_lerp(tcod.dark_gray, self.orig_color,
                                         (self.seen % 50) / 100.0)
            if self.seen % 50 == 0:
                self.game.duplicate(self)

            if self.seen == 200:
                self.character = 'o'
                self.movement = 0.4

            elif self.seen == 400:
                self.character = 'O'
                self.movement = 0.6

            path = tcod.path_new_using_map(self.game.fov.fov, 1.0)
            tcod.path_compute(path, self.x, self.y, self.game.player.x,
                              self.game.player.y)

            if tcod.path_size(path) > 2:
                self.points += self.movement
                if self.points >= 1:
                    self.points -= 1
                    x, y = tcod.path_get(path, 1)
                    self.move(x - self.x, y - self.y)
                    moved = True
            tcod.path_delete(path)

        if not moved:
            self.points += self.movement
            if self.points >= 1:
                self.points -= 1
                movement = [
                    (0, 0),
                    (0, 1),
                    (0, -1),
                    (1, 0),
                    (-1, 0),
                    (1, 1),
                    (-1, -1),
                    (-1, 1),
                    (1, -1)
                ]
                self.move(*random.choice(movement))

        return True
Esempio n. 19
0
 def move(self, facility):
     """Follow the current path toward a given direction."""
     x,y = libtcod.path_walk(self.currentPath, False)
     if x is not None:
         self.location.moveTowards(x - self.location.x, y - self.location.y)
     else:
         # Path has been followed : delete it !
         libtcod.path_delete(self.currentPath)
         self.currentPath = None
         # STOP THE MOVEMENT !
         self.location.freeze()
         if self.currentTask is not None:
             self.set_behaviour(EmployeeBehaviour.TASK_DO)
         else:
             self.set_behaviour(EmployeeBehaviour.WANDER)
Esempio n. 20
0
 def move(self, facility):
     """Follow the current path toward a given direction."""
     x, y = libtcod.path_walk(self.currentPath, False)
     if x is not None:
         self.location.moveTowards(x - self.location.x, y - self.location.y)
     else:
         # Path has been followed : delete it !
         libtcod.path_delete(self.currentPath)
         self.currentPath = None
         # STOP THE MOVEMENT !
         self.location.freeze()
         if self.currentTask is not None:
             self.set_behaviour(EmployeeBehaviour.TASK_DO)
         else:
             self.set_behaviour(EmployeeBehaviour.WANDER)
Esempio n. 21
0
File: astar.py Progetto: nwolfe/pyro
def astar(game, from_pos, to_pos):
    # Create a FOV map that has the dimensions of the map
    fov = game.stage.map.make_fov_map()

    # Scan all the objects to see if there are objects that must be
    # navigated around. Check also that the object isn't self or the
    # target (so that the start and the end points are free).
    # The AI class handles the situation if self is next to the target so
    # it will not use this A* function anyway.
    for actor in game.stage.actors:
        if actor.pos.x != to_pos.x and actor.pos.y != to_pos.y:
            # Set the tile as a wall so it must be navigated around
            libtcod.map_set_properties(fov, actor.pos.x, actor.pos.y, isTrans=True, isWalk=False)

    # Allocate an A* path
    # The 1.41 is the normal diagonal cost of moving, it can be set as 0.0
    # if diagonal moves are prohibited
    path = libtcod.path_new_using_map(fov, 1.41)

    # Compute the path between self's coordinates and the target's coordinates
    libtcod.path_compute(path, from_pos.x, from_pos.y, to_pos.x, to_pos.y)

    # Check if the path exists, and in this case, also the path is shorter
    # than 25 tiles. The path size matters if you want the monster to use
    # alternative longer paths (for example through other rooms). It makes
    # sense to keep path size relatively low to keep the monsters from
    # running around the map if there's an alternative path really far away
    if not libtcod.path_is_empty(path) and libtcod.path_size(path) < 25:
        # Find the next coordinates in the computed full path
        next_x, next_y = libtcod.path_walk(path, True)
        libtcod.path_delete(path)
        return pyro.direction.from_vector(next_x - from_pos.x, next_y - from_pos.y)
    else:
        # Keep the old move function as a backup so that if there are no
        # paths (for example, another monster blocks a corridor). It will
        # still try to move towards the player (closer to the corridor opening).
        # Vector from this object to the target, and distance
        dx = to_pos.x - from_pos.x
        dy = to_pos.y - from_pos.y
        distance = math.sqrt(dx ** 2 + dy ** 2)

        # Normalize it to length 1 (preserving direction), then round it and
        # convert to integer so the movement is restricted to the map grid
        dx = int(round(dx / distance))
        dy = int(round(dy / distance))
        libtcod.path_delete(path)
        return pyro.direction.from_vector(dx, dy)
Esempio n. 22
0
    def move_astar(self, target):
        # Create a FOV map that has the dimensions of the map
        fov = libtcod.map_new(MAP_WIDTH, MAP_HEIGHT)

        # Scan the current map each turn and set all the wall unwalkable
        for y1 in range(MAP_HEIGHT):
            for x1 in range(MAP_WIDTH):
                libtcod.map_set_properties(fov, x1, y1, not map[x1][y1].block_sight,
                                           not map[x1][y1].blocked)

        # Scan all the objects to see if there are objects that must be navigated around
        # Check also that the object isn't self or the target (so that the start and the end points are free)
        # The AI class handles the situation if self is next to the target so it will not use this A* function anyway
        for obj in objects:
            if obj.blocks and obj != self and obj != target:
                # Set the tile as a wall so it must be navigated around
                libtcod.map_set_properties(fov, obj.x, obj.y, True, False)

        # Allocate a A* path
        # The 1.41 is the normal diagonal cost of moving (sqrt(2)).
        my_path = libtcod.path_new_using_map(fov, 1.41)

        # Compute the path between self's coordinates and the target's coordinates
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # Check if the path exists, and in this case, also the path is shorter than 25 tiles
        #
        # The path size matters if you want the monster to use alternative longer paths (for example through other
        # rooms) if for example the player is in a corridor
        #
        # It makes sense to keep path size relatively low to keep the monsters from running around the map if
        # there's an alternative path really far away
        if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < 25:
            # Find the next coordinates in the computed full path
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                # Set self's coordinates to the next path tile
                self.x = x
                self.y = y
        else:
            # Keep the old move function as a backup so that if there are no paths (for example another
            # monster blocks a corridor) it will still try to move towards the player (closer to the
            # corridor opening)
            self.move_towards(target.x, target.y)

        # Delete the path to free memory
        libtcod.path_delete(my_path)
Esempio n. 23
0
    def move_astar(self, target, entities, game_map):
        # マップの寸法を持つFOVマップを作成。
        fov = libtcod.map_new(game_map.width, game_map.height)

        # 毎ターン現在のマップをスキャンして、全ての壁を歩行不能にする。
        for y1 in range(game_map.height):
            for x1 in range(game_map.width):
                libtcod.map_set_properties(
                    fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
                    not game_map.tiles[x1][y1].blocked)

        # すべてのオブジェクトをスキャンして,移動しなければならないオブジェクトがあるかどうかを確認
        # オブジェクトが自己または対象ではないことも確認(開始点と終了点が自由になるように)。
        # AIクラスは、自己がターゲットの隣にいる場合の状況を処理するので、このA*関数を使用しない。
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                # タイルを壁として設定し,その周りを移動.
                libtcod.map_set_properties(fov, entity.x, entity.y, True,
                                           False)

        # A*pathを割り当てる
        # 1.41は通常の対角線上の移動コストで、対角線上の移動が禁止されている場合は0.0とすることができる。
        my_path = libtcod.path_new_using_map(fov, 1.41)

        # 自己の座標とターゲットの座標の間のpathを計算.
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # pathが存在するかどうかを確認し,この場合もpathが25タイルより短いかどうかを確認
        # 例えばプレイヤーが廊下にいる場合など、モンスターに別の長めのパスを使わせたい場合、pathの大きさは重要になる
        # もし本当に遠くに代替の道があるならば、モンスターがマップを走り回らないようにするために、pathのサイズを比較的小さくしておくのは理にかなっている。
        if not libtcod.path_is_empty(
                my_path) and libtcod.path_size(my_path) < 25:
            # 計算されたfull pathの次の座標を探す
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                # 次のpathタイルに自己の座標を設定
                self.x = x
                self.y = y
        else:
            # 古い移動機能をバックアップとして残しておくことで,パスがない場合(例えば他のモンスターが通路を塞いでしまった場合)には,その機能を利用することができる.
            # プレイヤーに向かって移動しようとする(通路の開口部に近づけます)
            self.move_towards(target.x, target.y, game_map, entities)

            # 空きメモリへのpathを削除します
        libtcod.path_delete(my_path)
Esempio n. 24
0
    def move_astar(self, target, entities, game_map):
        # create FOV map that has dimensions of game map
        fov = libtcod.map_new(game_map.width, game_map.height)

        # scan current map each turn and set all walls to be blocking
        for y in range(game_map.height):
            for x in range(game_map.width):
                libtcod.map_set_properties(
                    fov,
                    x,
                    y,
                    not game_map.tiles[x][y].block_sight,
                    not game_map.tiles[x][y].blocked
                )

        # Scan all objects to see if something needs to be navigated around.
        # Also check that the object isn't self or the target.
        # Ignore situation where self is next to target -- AI class handles this.
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                libtcod.map_set_properties(fov, entity.x, entity.y, True, False)  # set wall so it must be navigated around

        # Allocate A* path.
        # 1.41 is the normalized diagonal cost of moving. If diagonal movement is not allowed, then set to 0.
        my_path = libtcod.path_new_using_map(fov, 1.41)

        # Compute the path between self and target coordinates
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # Check if path exists and is shorter than 25 tiles.
        # Keep path size low to prevent monsters from running around the map.
        if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < 25:
            # Find the next coordinates in computed full path.
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                # Set self's coordinates to next path tile
                self.x = x
                self.y = y
        else:
            # Keep old move function as a backup e.g. if something blocks a doorway,
            # self will still move towards target.
            self.move_towards(target.x, target.y, game_map, entities)

        # delete path to free memory
        libtcod.path_delete(my_path)
Esempio n. 25
0
def move_astar(entity, entities, target, fov_map):
    """Use the A* algorithm to find a path to target, returning the next step along that path"""

    # TODO: maybe we re-use the existing fov map, but just un-set this entity and the target temporarily
    # that should save an entities iteration for making everything but entity and target unwalkable

    # Create a FOV map that has the dimensions of the map
    fov = libtcod.map_new(init.map_width, init.map_height)

    # Scan the current map each turn and set all the walls as unwalkable
    for ent in entities:
        if ent != entity and ent != target and 'Position' in ent:
            libtcod.map_set_properties(fov, ent['Position']['x'], ent['Position']['y'], ent['Opacity'] < 0.5, ent['Solid'] < 0.5)

    # Allocate a A* path
    # The 1.41 is the normal diagonal cost of moving, it can be set as 0.0 if diagonal moves are prohibited
    my_path = libtcod.path_new_using_map(fov, 1.41)

    # Compute the path between self's coordinates and the target's coordinates
    libtcod.path_compute(my_path, entity['Position']['x'], entity['Position']['y'], target['Position']['x'], target['Position']['y'])

    # Debugging A*
    for i in range (libtcod.path_size(my_path)):
        (x, y) = libtcod.path_get(my_path, i)
        for ent in entities:
            if (i < libtcod.path_size(my_path) - 1) and 'Position' in ent and ent['Position']['x'] == x and ent['Position']['y'] == y and 'A*Highlight' in ent:
                ent['A*Highlight'] = True

    # Check if the path exists, and in this case, also the path is shorter than 25 tiles
    # The path size matters if you want the monster to use alternative longer paths (for example through other rooms) if for example the player is in a corridor
    # It makes sense to keep path size relatively low to keep the monsters from running around the map if there's an alternative path really far away
    if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < 25:
        # Find the next coordinates in the computed full path
        (next_x, next_y) = libtcod.path_walk(my_path, True)
        dx = next_x - entity['Position']['x']
        dy = next_y - entity['Position']['y']
    else:
        # Keep the old move function as a backup so that if there are no paths (for example another monster blocks a corridor)
        # it will still try to move towards the player (closer to the corridor opening)
        (dx, dy) = from_a_to_b(entity['Position']['x'], entity['Position']['y'], target['Position']['x'], target['Position']['y'])

    # Delete the path to free memory
    libtcod.path_delete(my_path)
    return (dx, dy)
Esempio n. 26
0
	def move_astar(self, target, entities, game_map):
		# Create a FOV map that has the dimensions of the map
		fov = libtcod.map_new(game_map.width, game_map.height)

		# Scan the current map each turn and set all the walls as unwalkable
		for y1 in range(game_map.height):
			for x1 in range(game_map.width):
				libtcod.map_set_properties(fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
										   not game_map.tiles[x1][y1].blocked)

		# Scan all the objects to see if there are objects that must be navigated around
		# Check also that the object isn't self or the target (so that the start and the end points are free)
		# The AI class handles the situation if self is next to the target so it will not use this A* function anyway
		for entity in entities:
			if entity.blocks and entity != self and entity != target:
				# Set the tile as a wall so it must be navigated around
				libtcod.map_set_properties(fov, entity.x, entity.y, True, False)

		# Allocate a A* path
		# The 1.41 is the normal diagonal cost of moving, it can be set as 0.0 if diagonal moves are prohibited
		my_path = libtcod.path_new_using_map(fov, 1.41)

		# Compute the path between self's coordinates and the target's coordinates
		libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

		# Check if the path exists, and in this case, also the path is shorter than 25 tiles
		# The path size matters if you want the monster to use alternative longer paths (for example through other rooms) if for example the player is in a corridor
		# It makes sense to keep path size relatively low to keep the monsters from running around the map if there's an alternative path really far away
		if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < 25:
			# Find the next coordinates in the computed full path
			x, y = libtcod.path_walk(my_path, True)
			if x or y:
				# Set self's coordinates to the next path tile
				self.x = x
				self.y = y
		else:
			# Keep the old move function as a backup so that if there are no paths (for example another monster blocks a corridor)
			# it will still try to move towards the player (closer to the corridor opening)
			self.move_towards(target.x, target.y, game_map, entities)

			# Delete the path to free memory
		libtcod.path_delete(my_path)
Esempio n. 27
0
    def move_astar(self, target, entities, game_map):
        # Create a FOV map that has the dimensions of the map
        fov = libtcod.map_new(game_map.width, game_map.height)

        # Scan the current map each turn and set all the walls as unwalkable
        for y1 in range(game_map.height):
            for x1 in range(game_map.width):
                libtcod.map_set_properties(fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
                                           not game_map.tiles[x1][y1].blocked)

        # Scan all the objects to see if there are objects that must be navigated around
        # Check also that the object isn't self or the target (so that the start and end points are free)
        # The AI class handles the situation if self is next to the target so it will not use this A* function anyway
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                # Set the tile as a wall so it must be navigated around
                libtcod.map_set_properties(fov, entity.x, entity.y, True, False)

        # Allocate an A* path
        # 1.41 is diagonal cost of moving
        my_path = libtcod.path_new_using_map(fov, 1.41)

        # Compute path between self's coordinate and the target's coordinates
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # Check if the path exists, and in this case, also the path is shorter than 25 tiles
        # The path size matters if you want the monster to use alternative longer paths (e.g. through other rooms) if e.g. the player is in a corridor
        # Makes sense to keep relatively low to stop monsters running around map
        if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < 25:
            # Find next coordinates in the computed full path
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                # Set self's coordinates to the next path tile
                self.x = x
                self.y = y
        else:
            # Keep old move function as a backup
            self.move_towards(target.x, target.y, game_map, entities)

        # Delete path to free memory
        libtcod.path_delete(my_path)
Esempio n. 28
0
    def move_astar(self, target, entities, game_map):
        # create a fov map at the dimensions of the map
        fov = libtcod.map_new(game_map.width, game_map.height)

        # scan current map each turn and set all walls as unwalkable
        for y1 in range(game_map.height):
            for x1 in range(game_map.width):
                libtcod.map_set_properties(
                    fov, x1, y1, not game_map.tiles[x1][y1].block_sight,
                    not game_map.tiles[x1][y1].blocked)

        # scan all objets to see if there are objects that must be navigated around.
        # check also if object isn't self or the target
        for entity in entities:
            if entity.blocks and entity != self and entity != target:
                #set the tile as a wall so it muyst be navigated around
                libtcod.map_set_properties(fov, entity.x, entity.y, True,
                                           False)

        # allocate a A* path
        # 1.31 normal diag cost of moving, to put to 0 if diagonal forbiden
        my_path = libtcod.path_new_using_map(fov, 1.41)

        # compute path between self coordinates and the target coordinate
        libtcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # check if path exists && shorter than 25 tiles
        if not libtcod.path_is_empty(
                my_path) and libtcod.path_size(my_path) < 25:
            # find next coordinates in the computed full path
            x, y = libtcod.path_walk(my_path, True)
            if x or y:
                # set self coordinates to the next path tile
                self.x = x
                self.y = y
        else:
            # old move function if no path
            self.move_towards(target.x, target.y, game_map, entities)

        # delete the path to free memeory
        libtcod.path_delete(my_path)
Esempio n. 29
0
	def move_towards(self, target_x, target_y):
		global fov_map
		path = libtcod.path_new_using_map(fov_map)
		libtcod.path_compute(path, self.x, self.y, target_x, target_y)
		x,y = libtcod.path_get(path, 0)

		if x is None:
			self.move(0, 0)
			
		else:
			dx = int(round(target_x - x))
			dy = int(round(target_y - y))
		
			if dx != 0:
				dx = dx/abs(dx)
			if dy != 0:
				dy = dy/abs(dy)
			
			self.move(dx, dy)
		
		libtcod.path_delete(path)
Esempio n. 30
0
def test_astar(map_):
    astar = libtcodpy.path_new_using_map(map_)

    assert not libtcodpy.path_compute(astar, *POINTS_AC)
    assert libtcodpy.path_size(astar) == 0
    assert libtcodpy.path_compute(astar, *POINTS_AB)
    assert libtcodpy.path_get_origin(astar) == POINT_A
    assert libtcodpy.path_get_destination(astar) == POINT_B
    libtcodpy.path_reverse(astar)
    assert libtcodpy.path_get_origin(astar) == POINT_B
    assert libtcodpy.path_get_destination(astar) == POINT_A

    assert libtcodpy.path_size(astar) != 0
    assert libtcodpy.path_size(astar) > 0
    assert not libtcodpy.path_is_empty(astar)

    for i in range(libtcodpy.path_size(astar)):
        x, y = libtcodpy.path_get(astar, i)

    while (x, y) != (None, None):
        x, y = libtcodpy.path_walk(astar, False)

    libtcodpy.path_delete(astar)
Esempio n. 31
0
    def move_astar(self, target):
        # Create a FOV map for the actor in question
        fov = tcod.map_new(settings.MAP_WIDTH, settings.MAP_HEIGHT)

        # Scan the current map and set all walls as unwalkable
        for y1 in range(settings.MAP_HEIGHT):
            for x1 in range(settings.MAP_WIDTH):
                tcod.map_set_properties(
                    fov, x1, y1, not settings.dungeon_map[x1][y1].block_sight,
                    not settings.dungeon_map[x1][y1].blocked)

        # Scan all objects to see if anything must be navigated around
        # Check also that the object isn't self or the target (so that start and endpoints are free)
        for obj in settings.objects:
            if obj.blocks and obj != self and obj != target:
                tcod.map_set_properties(fov, obj.x, obj.y, True, False)

        # Allocating the A* path
        # The 1.41 is the normal diagonal cost of moving.
        my_path = tcod.path_new_using_map(fov, 1.41)

        tcod.path_compute(my_path, self.x, self.y, target.x, target.y)

        # Check if the path exists and is shorter than 25 tiles
        # The path size matters for the monster to use alternative longer paths (player in another room, corridor, etc)
        # If the path size is too big monsters will run weird routes around the map
        if not tcod.path_is_empty(my_path) and tcod.path_size(my_path) < 25:
            x, y = tcod.path_walk(my_path, True)
            if x or y:
                # set self's coords to the next path tile
                self.combatant.set_direction(x - self.x, y - self.y)
                self.x = x
                self.y = y
        else:
            self.move_towards(target.x, target.y)

        tcod.path_delete(my_path)
Esempio n. 32
0
def path_destroy(path):     libtcod.path_delete(path)
def path_compute(path, xfrom,yfrom, xto,yto):
Esempio n. 33
0
def playerInput():
	# Handles reacting to player input.
	
	global fovCompute, turns, actionMenu, gameState, widgets
	
	for widget in widgets:
		
		if widget.console != topGuiConsole:
		
			widget.checkSelected(mouse.cx, mouse.cy-topGuiHeight)
		
		else:
			
			widget.checkSelected(mouse.cx, mouse.cy)
		
	if mouse.lbutton_pressed:
		
		if actionMenu[0]:
			
			if mouse.cx > actionMenu[3] and mouse.cx < actionMenu[3]+actionWidth:
				
				if mouse.cy-topGuiHeight > actionMenu[4] and mouse.cy-topGuiHeight < actionMenu[4]+actionHeight:
				
					for widget in widgets:
						
						if widget.selected:
							
							if actionMenu[5] == "stairs":
								
								widget.action()

							else:
								
								widget.action(player, actionMenu[1], actionMenu[2])
							
							# Deletes all widgets created for action menu and resets action menu container.
							actionMenu = [False, 0, 0, 0, 0, ""]
							del widgets[2:6]
							return "ENDTURN"
			
		else:
		
			if libtcod.map_is_in_fov(fovMap, mouse.cx, mouse.cy-topGuiHeight) and gameState == "ACTIVE":
				
				if isWalkable(mouse.cx, mouse.cy-topGuiHeight):
					
					if player.distanceTo(mouse.cx, mouse.cy-topGuiHeight) >= 2:
						
						pathToCoords = libtcod.path_new_using_map(fovMap, 1)
						libtcod.path_compute(pathToCoords, player.x, player.y, mouse.cx, mouse.cy-topGuiHeight)
						
						while not libtcod.path_is_empty(pathToCoords):
						
							newX, newY = libtcod.path_walk(pathToCoords, True)
						
							if newX is not None:
					
								newX = newX - player.x
								newY = newY - player.y
							
							player.move(player.x+newX, player.y+newY)
							turns += 1
							
							if isNpcInFov():
								
								break
								
						libtcod.path_delete(pathToCoords)
						fovCompute = True
						return "ENDTURN"
						
					else:
						
						player.move(mouse.cx, mouse.cy-topGuiHeight)
						turns += 1
						fovCompute = True
						return "ENDTURN"
						
		if not actionMenu[0]:
			
			for widget in widgets:
				
				if widget.selected:
					
					widget.action()
				
	if mouse.rbutton_pressed:
	
		if actionMenu[0]:
		
			# Deletes all widgets created for action menu and resets action menu container.
			actionMenu = [False, 0, 0, 0, 0, ""]
			del widgets[2:6]

		elif gameState != "ACTIVE":
		
			gameState = "ACTIVE"
			widgets = widgets[0:2]
			
		else:
		
			if libtcod.map_is_in_fov(fovMap, mouse.cx, mouse.cy-topGuiHeight):
			
				getAction(mouse.cx, mouse.cy-topGuiHeight)
				fovCompute = True
	
	if key.pressed and key.vk == libtcod.KEY_SPACE:
		
		displayMsgHistory()
		
	if key.vk == libtcod.KEY_ESCAPE:	
		
		if actionMenu[0]:
			
			# Deletes all widgets created for action menu and resets action menu container.
			actionMenu = [False, 0, 0, 0, 0, ""]
			del widgets[2:6]
			
		if gameState != "ACTIVE":

			gameState = "ACTIVE"
			widgets = widgets[0:2]
		
	return False
 def clearPath(self):
     if (self.TargetLastSeenPath != None):
         libtcod.path_delete(self.TargetLastSeenPath)
     self.TargetLastSeenPath = None
Esempio n. 35
0
 def update_pathfinding(self):
     tcod.path_delete(self.path)
     self.path = tcod.path_new_using_map(self.fov_map, self.diagonal_cost)
Esempio n. 36
0
 def free_path(self):
     if self.path:
         tcod.path_delete(self.path)
         self.path = None
Esempio n. 37
0
 def move_towards(self, target_x, target_y):
     path = libtcod.path_new_using_map(fov_map)
     libtcod.path_compute(path, self.x, self.y, target_x, target_y)
     dx, dy = libtcod.path_get(path, 0)
     self.move_absolute(dx, dy)
     libtcod.path_delete(path)
Esempio n. 38
0
 def read_path(self, path, limit):
     if not libtcod.path_is_empty(path):
         if libtcod.path_size(path) <= limit:
             x, y = libtcod.path_walk(path, True)
             return [x, y]
     libtcod.path_delete(path)
Esempio n. 39
0
 def path_delete(self, path):    libtcod.path_delete(path)
 # path data functions
 def path_get_cost_movement(self,xFrom,yFrom,xTo,yTo, data):
Esempio n. 40
0
 def __del__(self):
     libtcod.map_delete(self.map)
     libtcod.path_delete(self.path)
     self.map, self.path = None, None
Esempio n. 41
0
 def __del__(self):
     libtcod.map_delete(self.map)
     libtcod.path_delete(self.path)
     self.map, self.path = None, None
Esempio n. 42
0
 def move_towards(self, target_x, target_y):
     path = libtcod.path_new_using_map(fov_map)
     libtcod.path_compute(path, self.x, self.y, target_x, target_y)
     dx, dy = libtcod.path_get(path, 0)
     self.move_absolute(dx, dy)
     libtcod.path_delete(path)