Esempio n. 1
0
    def get_data(self):
        filenames = self.get_filesindirectory(self.get_prefix(), self.get_extension())
        try:
            from libtiff import TIFF

            im = TIFF.open(filenames[0])
            v0 = im.read_image()
            x = NXfield(range(v0.shape[1]), dtype=np.uint16, name="x")
            y = NXfield(range(v0.shape[0]), dtype=np.uint16, name="y")
            z = NXfield(range(1, len(filenames) + 1), dtype=np.uint16, name="z")
            v = NXfield(np.zeros(shape=(len(filenames), v0.shape[0], v0.shape[1]), dtype=v0.dtype), name="v")
            v[0] = v0
            for i in range(1, len(filenames)):
                im = TIFF.open(filenames[i])
                v[i] = im.read_image()
        except ImportError:
            im = Image.open(filenames[0])
            dtype = np.dtype(np.uint16)
            if im.mode == "I;32" or im.mode == "I":
                dtype = np.dtype(np.uint32)
            x = NXfield(range(im.size[0]), dtype=np.uint16, name="x")
            y = NXfield(range(im.size[1]), dtype=np.uint16, name="y")
            z = NXfield(range(1, len(filenames) + 1), dtype=np.uint16, name="z")
            v = NXfield(np.zeros(shape=(len(filenames), im.size[1], im.size[0]), dtype=dtype), name="v")
            v[0] = np.array(im.getdata(), dtype=dtype).reshape(im.size[1], im.size[0])
            for i in range(1, len(filenames)):
                im = Image.open(filenames[i])
                v[i] = np.array(im.getdata(), dtype=dtype).reshape(im.size[1], im.size[0])
        return NXentry(NXdata(v, (z, y, x)))
def convert_tiff_to_mat(Working_Directory, img_size_x, img_size_y, img_size_crop_x1,img_size_crop_x2, img_size_crop_y1, img_size_crop_y2,\
median_filter_threshold, text_file):
    #Get names of all tiff files in the directory
    onlyfiles = [ f for f in os.listdir(Working_Directory)\
    if (os.path.isfile(os.path.join(Working_Directory, f)) and f.find('.tif')>0 and f.find('T=')>=0)]
    
    Working_Directory2 = Working_Directory.replace('/Thresholded_OB','')        
    
    
    for lst in xrange(1,np.size(onlyfiles, axis=0)+1):
        tif1 = TIFF.open(Working_Directory+'T='+str(lst)+'.tif', mode='r') #Open multitiff 
        tif2 = TIFF.open(Working_Directory2+'T='+str(lst)+'.tif', mode='r')   #Open non thresholded image for template
         #Initialize data matrix based on number of planes in the multitiff        
        if lst==1:            
            count_z = 0
            for image in tif1.iter_images():
                count_z = count_z + 1           
            data_filtered = np.zeros((img_size_x-(img_size_crop_x1+img_size_crop_x2), img_size_y-(img_size_crop_y1+img_size_crop_y2), count_z,np.size(onlyfiles,0)), dtype=np.uint8)
            data = np.zeros((img_size_x-(img_size_crop_x1+img_size_crop_x2), img_size_y-(img_size_crop_y1+img_size_crop_y2), count_z,np.size(onlyfiles,0)), dtype=np.uint8)

        
        data_filtered, count_z = get_tif_images_filtered(data_filtered, lst, onlyfiles, text_file, tif1, \
        img_size_x, img_size_y, img_size_crop_x1,img_size_crop_x2, img_size_crop_y1, \
        img_size_crop_y2,median_filter_threshold)
        
        data = get_tif_images_raw(data, lst, onlyfiles, text_file, tif2, \
        img_size_x, img_size_y, img_size_crop_x1,img_size_crop_x2, img_size_crop_y1, \
        img_size_crop_y2)
        
    return data, data_filtered, count_z
def downsample_tif(filename_in, filename_out):

	input_tiff = TIFF.open(filename_in, mode = "r")
	output_tiff = TIFF.open(filename_out, mode = "w")

	counter = 0
	for img in input_tiff.iter_images():
		img = img[::2, ::2]
		output_tiff.write_image(img)
		counter += 1

		if counter /100 == counter / 100.:

			print counter
def convert_tiff_to_mat(Working_Directory, img_size_x, img_size_y, img_size_crop_x1,img_size_crop_x2, img_size_crop_y1, img_size_crop_y2,\
median_filter_threshold, text_file):
    #Get names of all tiff files in the directory
    onlyfiles = [ f for f in os.listdir(Working_Directory)\
    if (os.path.isfile(os.path.join(Working_Directory, f)) and f.find('.tif')>0 and f.find('T=')>=0)]
    
    Working_Directory2 = Working_Directory     
    
    average_bg_intensity = np.zeros((np.size(onlyfiles, axis=0),1))
    for lst in xrange(1,np.size(onlyfiles, axis=0)+1):
        tif1 = TIFF.open(Working_Directory+'T='+str(lst)+'.tif', mode='r') #Open multitiff 
        tif2 = TIFF.open(Working_Directory2+'T='+str(lst)+'.tif', mode='r')   #Open non thresholded image for template
         #Initialize data matrix based on number of planes in the multitiff        
        if lst==1:            
            count_z = 0
            for image in tif1.iter_images():
                count_z = count_z + 1           
            data_filtered_raw = np.zeros((img_size_x-(img_size_crop_x1+img_size_crop_x2), img_size_y-(img_size_crop_y1+img_size_crop_y2), count_z,np.size(onlyfiles,0)), dtype=np.uint8)
            data_filtered_bgsub = np.zeros((img_size_x-(img_size_crop_x1+img_size_crop_x2), img_size_y-(img_size_crop_y1+img_size_crop_y2), count_z,np.size(onlyfiles,0)), dtype=np.uint8)            
            data = np.zeros((img_size_x-(img_size_crop_x1+img_size_crop_x2), img_size_y-(img_size_crop_y1+img_size_crop_y2), count_z,np.size(onlyfiles,0)), dtype=np.uint8)

        
        data_filtered_raw, data_filtered_bgsub, count_z, average_bg_intensity[lst-1] = get_tif_images_filtered(data_filtered_raw, data_filtered_bgsub, lst, onlyfiles, text_file, tif1, \
        img_size_x, img_size_y, img_size_crop_x1,img_size_crop_x2, img_size_crop_y1, \
        img_size_crop_y2,median_filter_threshold)
        
        data = get_tif_images_raw(data, lst, onlyfiles, text_file, tif2, \
        img_size_x, img_size_y, img_size_crop_x1,img_size_crop_x2, img_size_crop_y1, \
        img_size_crop_y2)
    
    average_bg_intensity = np.array(average_bg_intensity)
    print np.shape(average_bg_intensity)
    plt.plot(average_bg_intensity)
    plt.show()  
    
    ### If intensities are correlated to the Bg intensity, make them zero
    for ii in xrange(0,np.size(data_filtered_raw,0)):
        for jj in xrange(0,np.size(data_filtered_raw,1)):
            for zz in xrange(0, np.size(data_filtered_raw,2)):
                A = copy(data_filtered_raw[ii,jj,zz,:])
                corr_A = np.corrcoef(A,np.squeeze(average_bg_intensity)) 
                
                if corr_A[0,1] > 0.6 and sum(A)!=0:                    
                                       
                    A[:] = 0                    
                    data_filtered_bgsub[ii,jj,zz,:] = A
                    data[ii,jj,zz,:] = A                    
                    
    return data, data_filtered_bgsub, count_z, average_bg_intensity
Esempio n. 5
0
 def _write_single_image(full_uri, image_array):
     """
     internally used method to write single tiff image
     """
     tiff = TIFF.open(full_uri, mode='w')
     tiff.write_image(image_array.astype('uint16'), write_rgb=False)
     tiff.close()
Esempio n. 6
0
	def load_stack(self):



		filename, _ = QtGui.QFileDialog.getOpenFileName(self, 'Open file', self.last_dir, "TIFF (*.tif *.tiff);; All files (*.*)")
		
		if not len(filename):
			return

		self.init_data()
		self.last_dir = os.path.dirname(filename)
		self.image_location = filename
		

		tif = TIFF.open(self.image_location)

		pic = tif.read_image()
		misc.imsave("temp.jpg", pic)
	
		# TODO: wait message
		#msg_box = QtGui.QMessageBox.information(self, "CellECT New Workspace", "Loading a large stack may take time. Press OK to continue.", defaultB = QtGui.QMessageBox.NoButton )
		self.load_metadata_from_tif_info()

		#pic = QtGui.QImage(filename)
		#self.label_preview_img.setPixmap(QtGui.QPixmap.fromImage(pic))
		self.label_preview_img.setPixmap("temp.jpg")
Esempio n. 7
0
    def create_plane(self,roi,sizeX,sizeY,sizeC,description):
        tif_image = TIFF.open(self.filename, 'w')
        im_dtype = np.dtype('uint8')
        image_data = np.zeros((sizeC,sizeY,sizeX),dtype=im_dtype)
        print 'num channels=',sizeC
        for c in range(sizeC):
            if c == 0:
                tif_image.set_description(description)
            channel = self.channels[c]
            imarray = self.mkplane(roi,c)
            print 'imarray shape:',imarray.shape
            
            print("Writing channel:  ", c+1)
            if self.rotation == 0:
                plane = imarray[0,:,:] 
            if self.rotation == 1:
                plane = np.rot90(imarray[0,:,:],1)
            elif self.rotation == 2:
                plane = np.rot90(imarray[0,:,:],3)
                
            image_data[c,:,:] = plane    
#        tif_image = TIFFimage(image_data,description=description)
#        tif_image.write_file(self.filename,compression='lzw') 
#        del tif_image  
        tif_image.write_image(image_data, compression=self.compression.encode('ascii','ignore'))
        tif_image.close()
Esempio n. 8
0
def test_write_lzw():
    for itype in [uint8, uint16, uint32, uint64, 
                  int8, int16, int32, int64,
                  float32, float64,
                  complex64, complex128]:
        #image = array([[1,2,3], [4,5,6]], itype)
        image = array([range(10000)], itype)
        #image = array([[0]*14000], itype)
        fn = mktemp('.tif')
        tif = TIFFimage(image)
        tif.write_file(fn, compression='lzw')
        del tif

        #os.system('wc %s; echo %s' % (fn, image.nbytes))

        tif = TIFF.open(fn,'r')
        image2 = tif.read_image()
        tif.close()
        #os.remove(fn)
        atexit.register(os.remove, fn)
        for i in range(image.size):
            if image.flat[i] != image2.flat[i]:
                print `i, image.flat[i-5:i+5].view(dtype=uint8),image2.flat[i-5:i+5].view(dtype=uint8)`
                break

        assert image.dtype==image2.dtype
        assert (image==image2).all()
Esempio n. 9
0
def test_write_read():

    for compression in [None, 'lzw']:
        for itype in [uint8, uint16, uint32, uint64, 
                      int8, int16, int32, int64,
                      float32, float64,
                      complex64, complex128]:
            image = array([[1,2,3], [4,5,6]], itype)
            fn = mktemp('.tif')

            if 0:
                tif = TIFF.open(fn,'w')
                tif.write_image(image, compression=compression)
                tif.close()
            else:
                tif = TIFFimage(image)
                tif.write_file(fn, compression=compression)
                del tif

            tif = TIFFfile(fn)
            data, names = tif.get_samples()
            assert names==['sample0'],`names`
            assert len(data)==1, `len(data)`
            assert image.dtype==data[0].dtype, `image.dtype, data[0].dtype`
            assert (image==data[0]).all()
            
            #os.remove(fn)
            atexit.register(os.remove, fn)
Esempio n. 10
0
    def __init__(self, filename, process_func=None, dtype=None,
                 as_grey=False):
        self._filename = filename
        self._tiff = TIFF.open(filename)

        self._count = 1
        while not self._tiff.LastDirectory():
            self._count += 1
            self._tiff.ReadDirectory()

        # reset to 0
        self._tiff.SetDirectory(0)

        tmp = self._tiff.read_image()
        if dtype is None:
            self._dtype = tmp.dtype
        else:
            self._dtype = dtype

        self._im_sz = tmp.shape

        self._byte_swap = bool(self._tiff.IsByteSwapped())

        self._validate_process_func(process_func)
        self._as_grey(as_grey, process_func)
Esempio n. 11
0
def image_to_tiff(src_path, des_path):
    from libtiff import TIFF
    image = Image.open(src_path)
    image = image.convert('L')
    tiff_out = TIFF.open(des_path, 'w')
    tiff_out.write_image(image, compression=None, write_rgb=True)
    tiff_out.close()
Esempio n. 12
0
 def __init__(self, filename):
     self.filename = filename
     self.tiff = TIFF.open(filename)
     self._count = self._count_frames()  # used once by TiffStack
     self._shape = self.tiff.read_image().shape  # used once by TiffStack
     self.end = False
     self.generator = self.tiff.iter_images()
def get_list_of_stimulus_name(Working_Directory):
    ## To find num z planes in each trial directory
    num_z_planes = []
    Name_stimulus = list()
    
    Stimulus_Directories = [f for f in os.listdir(Working_Directory) if os.path.isdir(os.path.join(Working_Directory, f)) and f.find('Figures')<0]

    for ii in xrange(0, size(Stimulus_Directories, axis = 0)):
        Trial_Directories = [f for f in os.listdir(os.path.join(Working_Directory, Stimulus_Directories[ii]))\
        if os.path.isdir(os.path.join(Working_Directory, Stimulus_Directories[ii], f)) and f.find('Figures')<0] #Get only directories        
        temp_num_z_planes = zeros((size(Trial_Directories)), dtype=int)    
        
        for jj in xrange(0, size(Trial_Directories, axis = 0)):
            Image_Directory = os.path.join(Working_Directory, Stimulus_Directories[ii], Trial_Directories[jj], 'C=1')+filesep    
            tif = TIFF.open(Image_Directory +'T=1.tif', mode='r') #Open multitiff 
            count = 1        
            for image in tif.iter_images():
                temp_num_z_planes[jj] = count
                count = count+1
        
        num_z_planes.append(temp_num_z_planes)
                  
    for ii in xrange(0, size(Stimulus_Directories, axis = 0)):        
        Trial_Directories = [f for f in os.listdir(os.path.join(Working_Directory, Stimulus_Directories[ii]))\
        if os.path.isdir(os.path.join(Working_Directory, Stimulus_Directories[ii], f)) and f.find('Figures')<0] #Get only directories                
        for jj in xrange(0, size(Trial_Directories, axis = 0)):
            for kk in xrange(0, num_z_planes[ii][jj]):
                name_for_saving_figures = Stimulus_Directories[ii] + ' ' + Trial_Directories[jj] + ' Z=' + str(kk+1)       
                Name_stimulus.append(name_for_saving_figures)
    
    return Name_stimulus
def save_images_to_disk():
	print('Disk-saving thread active...')
	n = 0
	frameTimeOutputFile = open(planOutputPath+'frameTimes.txt','w')
	frameTimeOutputFile.write('frameCount\t n\t frameCond\t frameT\t interval\n')
	currdict = im_queue.get()
	while currdict is not None:
		frameTimeOutputFile.write('%i\t %i\t %i\t %s\t %s\n' % (int(currdict['frame']),n,int(currdict['cond']),currdict['time'],currdict['interval']))
		if save_as_tiff:
			fname = '%s/frame%i.tiff' % (dataOutputPath,int(currdict['frame']))
			tiff = TIFF.open(fname, mode='w')
			tiff.write_image(currdict['im'])
			tiff.close()
	
		elif save_as_npz:
			np.savez_compressed('%s/test%d.npz' % (output_path, n), currdict['im'])
		else:
			fname = '%s/frame%i.tiff' % (dataOutputPath,int(currdict['frame']),)
			with open(fname, 'wb') as f:
				pkl.dump(currdict, f, protocol=pkl.HIGHEST_PROTOCOL)
			
#		print 'DONE SAVING FRAME: ', currdict['frame'], n #fdict
		n += 1
		currdict = im_queue.get()
		
	disk_writer_alive = False
	#frameTimeOutputFile.close()
	print('Disk-saving thread inactive...')
Esempio n. 15
0
def save_images_to_disk():
    print ("Disk-saving thread active...")
    n = 0
    frameTimeOutputFile = open(planOutputPath + "frameTimes.txt", "w")
    frameTimeOutputFile.write("frameCount\t n\t frameCond\t frameT\t interval\n")
    currdict = im_queue.get()
    while currdict is not None:
        frameTimeOutputFile.write(
            "%i\t %i\t %i\t %s\t %s\n"
            % (int(currdict["frame"]), n, int(currdict["cond"]), currdict["time"], currdict["interval"])
        )
        if save_as_tiff:
            fname = "%s/frame%i.tiff" % (dataOutputPath, int(currdict["frame"]))
            tiff = TIFF.open(fname, mode="w")
            tiff.write_image(currdict["im"])
            tiff.close()

        elif save_as_npz:
            np.savez_compressed("%s/test%d.npz" % (output_path, n), currdict["im"])
        else:
            fname = "%s/frame%i.tiff" % (dataOutputPath, int(currdict["frame"]))
            with open(fname, "wb") as f:
                pkl.dump(currdict, f, protocol=pkl.HIGHEST_PROTOCOL)

        # 		print 'DONE SAVING FRAME: ', currdict['frame'], n #fdict
        n += 1
        currdict = im_queue.get()

    disk_writer_alive = False
    # frameTimeOutputFile.close()
    print ("Disk-saving thread inactive...")
Esempio n. 16
0
	def load_info_from_tif(self, filename):

		tif = TIFF.open(filename)
		buf = StringIO. StringIO(tif.info())		

		img = tif.read_image()

		for image in tif.iter_images():
			self.num_pages += 1

		print self.num_pages
		self.numx = img.shape[0]
		self.numy = img.shape[1]

			
		line = buf.readline()

		self.memch = 0

		while line:
			self.get_meta_from_line(line)
			line = buf.readline()

		if self.numt ==0:
			self.numt = 1

		if self.numz ==0:
			self.numz =1

		if self.numch == 0:
			self.numch = 1
Esempio n. 17
0
 def img_data_write(self, im_data, save_path):
     list_r = []
     list_g = []
     list_b = []
     for frame_data in im_data:
         list_r.append(frame_data[:, :, 0])
         list_g.append(frame_data[:, :, 1])
         list_b.append(frame_data[:, :, 2])
     tiff = TIFF.open(save_path + "r.tiff", "w")
     tiff.write_image(list_r)
     tiff.close()
     tiff = TIFF.open(save_path + "g.tiff", "w")
     tiff.write_image(list_g)
     tiff.close()
     tiff = TIFF.open(save_path + "b.tiff", "w")
     tiff.write_image(list_b)
     tiff.close()
def convert(imagesDir):
	if(os.path.isfile(imagesDir + "/labels.tif")): os.remove(imagesDir + "/labels.tif")
	if(os.path.isfile(imagesDir + "/predictions.tif")): os.remove(imagesDir + "/predictions.tif")
	

	trainNames = sorted(os.listdir(imagesDir), key=natural_key)

	labels = TIFF.open(imagesDir + "/labels.tif", "w")
	predictions = TIFF.open(imagesDir + "/predictions.tif", "w")

	for name in trainNames:
		image = misc.imread(imagesDir + "/" + name + '/labels.png').astype(np.float32)
		image = image / 255
		labels.write_image(image)
		image = misc.imread(imagesDir + "/" + name + '/predictions.png').astype(np.float32)
		image = image / 255
		predictions.write_image(image)
Esempio n. 19
0
def read_2D_image(filename):
    """Read 2D image from filename and return it as a numpy array"""

    f_tiff = TIFF.open(filename)

    im_array = f_tiff.read_image()

    return im_array
Esempio n. 20
0
def test_write_read():
    for itype in [uint8, uint16, uint32, uint64,
                  int8, int16, int32, int64,
                  float32, float64,
                  complex64, complex128]:
        image = array([[1, 2, 3], [4, 5, 6]], itype)
        fn = mktemp('.tif')
        tif = TIFF.open(fn, 'w')
        tif.write_image(image)
        tif.close()

        tif = TIFF.open(fn, 'r')
        image2 = tif.read_image()
        tif.close()
        os.remove(fn)

        assert image.dtype == image2.dtype
        assert (image == image2).all()
 def generate_augmented_image(self):
     """Generate augmented image with x,y,z points."""
     out_fname = os.path.join(self.segment_me_dir, self.get_filename())
     tif = TIFF.open(out_fname, 'w')
     for z, (cell_wall_im, measurement_im) in enumerate(zip(self.cell_wall_images,
                                             self.measurement_images)):
         point_im = self.get_selected_points_image(z)
         aug_im_rgb = np.array([cell_wall_im, measurement_im, point_im])
         tif.write_image(aug_im_rgb, write_rgb=True)
Esempio n. 22
0
    def test_fft(self, dimension, expected):
        input_name = data_path('sinogram-00005.tif')
        output_name = self.tmp_path('r-00000.tif')

        reader = self.get_task('reader', path=input_name)
        writer = self.get_task('writer', filename=self.tmp_path('r-%05i.tif'))
        fft = self.get_task('fft', dimensions=dimension)
        ifft = self.get_task('ifft', dimensions=dimension)

        self.graph.connect_nodes(reader, fft)
        self.graph.connect_nodes(fft, ifft)
        self.graph.connect_nodes(ifft, writer)
        self.sched.run(self.graph)

        ref_img = TIFF.open(input_name, mode='r').read_image()
        res_img = TIFF.open(output_name, mode='r').read_image()
        diff = np.sum(np.abs(ref_img - res_img))
        self.assertLess(diff, expected)
 def generate_answer_image(self):
     """Generate image augmented with the answer."""
     out_fname = os.path.join(self.answer_dir, self.get_filename())
     tif = TIFF.open(out_fname, 'w')
     for z, (cell_wall_im, measurement_im) in enumerate(zip(self.cell_wall_images,
                                             self.measurement_images)):
         seg_im = self.get_segmentation_outline_image(z)
         aug_im_rgb = np.array([cell_wall_im, measurement_im, seg_im])
         tif.write_image(aug_im_rgb, write_rgb=True)
Esempio n. 24
0
def test_slicing():
    shape = (16, 16)
    image = random.randint(255, size=shape)
    
    for i in range(shape[0]):
        for j in range(shape[1]):
            image1 = image[:i+1,:j+1]
            fn = mktemp('.tif')
            tif = TIFF.open(fn,'w')
            tif.write_image(image1)
            tif.close()
        
            tif = TIFF.open(fn,'r')
            image2 = tif.read_image()
            tif.close()
            
            assert (image1==image2).all(),`i,j`

            os.remove(fn)
def save_multipage_TIFF(input_filenames, output_filename):
    """Read in a list of input filenames and write out as a multi-page TIFF"""
    raise NotImplemented("Need to update for multiple planes")
    from libtiff import TIFF
    f = TIFF.open(input_filenames[0], 'r')
    first_img = f.read_image()
    f.close()

    output_array = np.empty(
        [first_img.shape[0], first_img.shape[1], len(input_filenames)],
        dtype=first_img.dtype)
    for idx, filename in enumerate(input_filenames):
        f = TIFF.open(filename, 'r')
        output_array[:, :, idx] = f.read_image()
        f.close()

    f = TIFF.open(output_filename, 'w')
    f.write_image(output_array)
    f.close()
Esempio n. 26
0
 def _iter_pages(self):
     if libtiff_available:
         tiff = TIFF.open(self._path, 'r')
         for frame in tiff.iter_images():
             yield frame.astype(float)
     else:
         for frame in self.stack.pages:
             yield frame.asarray(colormapped=False)
     if libtiff_available:
         tiff.close()
Esempio n. 27
0
def readtiff(path):
    frames = []
    tif = TIFF.open(path, mode='r')

    try:
        for cc, tframe in enumerate(tif.iter_images()):
            frames.append(tframe)
    except EOFError:
        pass
    return frames
def plot_colormaps_each(maps, Working_Directory, name_for_saving_figures, pp, matched_pixels, unique_clrs):
    
    Trial_Directories = [f for f in os.listdir(os.path.join(Working_Directory)) if os.path.isdir(os.path.join(Working_Directory, f)) and f.find('Figures')<0 and f.find('DataFrames')<0] #Get only directories
    
    ## To find num z planes in each trial directory
    num_z_planes = np.zeros((np.size(Trial_Directories)), dtype=np.int)
    for jj in xrange(0, np.size(Trial_Directories, axis = 0)):
        Image_Directory = os.path.join(Working_Directory, Trial_Directories[jj],'C=1')+filesep    
        tif = TIFF.open(Image_Directory +'T=1.tif', mode='r') #Open multitiff 
        count = 1        
        for image in tif.iter_images():
            num_z_planes[jj] = count
            count = count+1
    
    count = 0     
    count_trial1 = 0
    for ii in xrange(0, np.size(Trial_Directories, axis = 0)):       
        count_subplot = 1
        for jj in xrange(0, num_z_planes[ii]):
            name_for_saving_figures1 = name_for_saving_figures + ' ' + Trial_Directories[ii] + ' Z=' + str(jj+1)
            with sns.axes_style("darkgrid"):           
                fig2 = plt.subplot(2,2,count_subplot)
                plt.imshow(maps[:,:,count,:])
                plt.title(name_for_saving_figures1)
                plt.axis('off')
            count = count+1
            count_subplot = count_subplot + 1
            
            # If there are more than 6 panel, save and start new figure
            if count_subplot == 5:
                fig2 = plt.gcf()
                pp.savefig(fig2)
                plt.close()
                count_subplot = 1
                    
        #Plot boxplots for each trial
        if count_subplot <= 4:
            with sns.axes_style("darkgrid"):
                fig2 = plt.subplot(2,2,count_subplot)
                fig2 = plot_boxplot(fig2, matched_pixels[:,count_trial1:count_trial1+num_z_planes[ii]], unique_clrs)
#                plt.tight_layout()            
                fig2 = plt.gcf()
                pp.savefig(fig2)
                plt.close()
            count_trial1 = count_trial1 + num_z_planes[ii]
            
        else:
            with sns.axes_style("darkgrid"):
                fig3 = plt.figure()
                fig3 = plot_boxplot(fig3, matched_pixels[:,count_trial1:count_trial1+num_z_planes[ii]], unique_clrs)
#                plt.tight_layout()            
                fig3 = plt.gcf()
                pp.savefig(fig3)
                plt.close()
            count_trial1 = count_trial1 + num_z_planes[ii]
Esempio n. 29
0
def writeData(data, outputFilename):
    """
    Writes data to a tiff, hdf5, or npy file.

    Parameters
    ----------
    data : 3D numpy array
        The data to be written. Must have 3 dimensions, i.e. data.ndim == 3
    outputFilename : string
        The absolute or relative location of the particular file to be read
        in. outputFilename must end in one of the following extensions
        ['.tif', '.tiff', '.hdf5', '.h5', '.npy'].

    Notes
    -----
    - Data to be saved must be a 3D array.

    """

    assert data.ndim==3, "Can only write out 3D hdf5, tiff, and numpy files"
    filename = outputFilename.rstrip('/')
    basePath, fName = os.path.split(filename)
    name, ext = os.path.splitext(fName)
    if basePath and not os.path.exists(basePath):
        raise IOError, "Directory does not exist: %s" % (basePath)

    if ext.lower() in ['.npy']:
        try:
            np.save(filename, np.array(data,dtype=np.float32))
        except IOError:
            raise IOError, "Error writing npy data to: \"%s\"" % filename

    elif ext.lower() in ['.h5', '.hdf5']:
        from h5py import File
        try:
            h5File = File(filename, "w")
        except IOError:
            raise IOError, "Error creating writable hdf5 file at: \"%s\"" % filename

        shp = data.shape
        comp="gzip"
        compOpts=1
        dset = h5File.create_dataset("/raw", shp, np.float32, data, chunks=shp, compression=comp, compression_opts=compOpts)

    elif ext.lower() in ['.tif', '.tiff']:
        from libtiff import TIFF
        try:
            tiff = TIFF.open(filename, 'w')
            tiff.write_image(np.array(data,dtype=np.float32))
        except IOError:
            raise IOError, "Error writing tif file at: \"%s\"" % filename
        tiff.close()

    else:
        assert False, "Can only write out 3D hdf5, tiff, and numpy files"
Esempio n. 30
0
def write_libtiff(file_name, data):
    """Write a TIFF file using pylibtiff. Return the written file name."""
    from libtiff import TIFF

    tiff_file = TIFF.open(file_name, "w")
    try:
        tiff_file.write_image(data)
    finally:
        tiff_file.close()

    return file_name
Esempio n. 31
0
def read_tif(fn, div2=False, oldmethod=False, offset2=False):
    """Reads a 3D TIFF file and returns a 3D numpy matrix
    from a path
    
    Inputs :
    - fn (string): the path of the 3D TIFF file
    - div2 (bool): if `True`, only one every to planes in $z$ will be loaded

    Returns :
    - a 3D numpy matrix
    """
    if offset2:
        kp = 1
    else:
        kp = 0
    if not oldmethod:
        ti = TIFFfile(fn)
        ti = ti.get_samples()[0][0].swapaxes(0, 2).swapaxes(0, 1)
        if div2:
            I = []
            for i in range(ti.shape[2]):
                j = ti[:, :, i]
                if i % 2 == kp:
                    I.append(j)
            ti = np.zeros((I[0].shape[0], I[0].shape[1], len(I)))
            for (i, j) in enumerate(I):
                ti[:, :, i] = j
        return ti
    else:  # Kept for compatibility. Fails to load some 16 bits images.
        im = TIFF.open(fn)
        I = []
        for (j, i) in enumerate(im.iter_images()):
            if div2 and (j + 1) % 2 == 0:
                pass
            else:
                I.append(i)
        ret = np.zeros((I[0].shape[0], I[1].shape[1], len(I)))
        for (i, ii) in enumerate(I):
            ret[:, :, i] = ii
            return ret
Esempio n. 32
0
 def read_single_file(self, filepath):
     if not os.path.isfile(filepath):
         raise Exception('no such file ' + filepath)
     str_extension = filepath.split('.')[-1]
     if str_extension == 'tif':  #2d image or 3d stack of images
         input_file = tif.open(self.filepath, mode='r')
         volume = list(input_file.iter_images())
         if len(volume) == 1:
             file_data = input_file.read_image()
         else:  #we have a volume
             file_data = np.zeros(
                 [volume[0].shape[0], volume[0].shape[1],
                  len(volume)],
                 dtype='float32')
             for index, image in enumerate(volume):
                 file_data[:, :, index] = image
         input_file.close()
     elif str_extension in ('bmp', 'jpg', 'png'):
         file_data = misc.imread(filepath)
     elif str_extension == 'pkl':
         filehandler = open(filepath, 'rb')
         file_data = cPickle.load(filehandler)
         filehandler.close()
     elif str_extension == 'npz':
         member = self.filemember
         if not member:
             member = 'arr_0'
         file_data = np.load(self.filepath)[member]
     elif str_extension == 'mat':
         member = self.filemember
         if not member:
             member = 'arr_0'
         file_data = loadmat(self.filepath)[member]
     elif str_extension == 'json':
         raise ValueError('json not coded yet')
     elif str_extension == 'mnc':
         file_data = nib.load(self.filepath).get_data()
     else:
         raise Exception('unsupported format: ' + str_extension)
     return file_data
Esempio n. 33
0
def load_img_file(file_path):

    file_type = file_path.split('.')[-1]
    img = None

    # try libtiff import or use png instead if import fails
    TIFF, file_type = try_tiff_import(file_type)

    #tbd: tiff handling
    if file_type == 'tiff':
        obj = TIFF.open(file_path, 'r')
        img = obj.read_image()
        obj.close()

    elif any(file_type in ext for ext in ('bmp', 'png', 'jpeg', 'jpg')):
        img = np.asarray(Image.open(file_path))

    elif not any(file_type in ext
                 for ext in ('bmp', 'png', 'tiff', 'jpeg', 'jpg')):
        raise TypeError('Filetype %s not recognized' % file_type)

    return img
Esempio n. 34
0
def read_multi_page_tif_libtiff(fn):
    """Read a multi-page tif file into a numpy array.
    
    Parameters
    ----------
    fn : string
        The filename of the image file being read.
    
    Returns
    -------
    ar : numpy ndarray
        The image stack in array format.

    Notes
    -----
        Currently, only grayscale images are supported.
    """
    pages = []
    tif = TIFF.open(fn)
    for img in tif.iter_images():
        pages.append(img[..., newaxis])
    return concatenate(pages, axis=-1)
Esempio n. 35
0
def get_list_of_stimulus_name(Working_Directory):
    ## To find num z planes in each trial directory
    num_z_planes = []
    Name_stimulus = list()

    Stimulus_Directories = [
        f for f in os.listdir(Working_Directory)
        if os.path.isdir(os.path.join(Working_Directory, f))
        and f.find('Figures') < 0
    ]

    for ii in xrange(0, size(Stimulus_Directories, axis=0)):
        Trial_Directories = [f for f in os.listdir(os.path.join(Working_Directory, Stimulus_Directories[ii]))\
        if os.path.isdir(os.path.join(Working_Directory, Stimulus_Directories[ii], f)) and f.find('Figures')<0] #Get only directories
        temp_num_z_planes = zeros((size(Trial_Directories)), dtype=int)

        for jj in xrange(0, size(Trial_Directories, axis=0)):
            Image_Directory = os.path.join(
                Working_Directory, Stimulus_Directories[ii],
                Trial_Directories[jj], 'C=1') + filesep
            tif = TIFF.open(Image_Directory + 'T=1.tif',
                            mode='r')  #Open multitiff
            count = 1
            for image in tif.iter_images():
                temp_num_z_planes[jj] = count
                count = count + 1

        num_z_planes.append(temp_num_z_planes)

    for ii in xrange(0, size(Stimulus_Directories, axis=0)):
        Trial_Directories = [f for f in os.listdir(os.path.join(Working_Directory, Stimulus_Directories[ii]))\
        if os.path.isdir(os.path.join(Working_Directory, Stimulus_Directories[ii], f)) and f.find('Figures')<0] #Get only directories
        for jj in xrange(0, size(Trial_Directories, axis=0)):
            for kk in xrange(0, num_z_planes[ii][jj]):
                name_for_saving_figures = Stimulus_Directories[
                    ii] + ' ' + Trial_Directories[jj] + ' Z=' + str(kk + 1)
                Name_stimulus.append(name_for_saving_figures)

    return Name_stimulus
Esempio n. 36
0
def test_simple_slicing():
    for planar_config in [1, 2]:
        for compression in [None, 'lzw']:
            for itype in [
                    uint8, uint16, uint32, uint64, int8, int16, int32, int64,
                    float32, float64, complex64, complex128
            ]:
                image = random.randint(0, 100, size=(10, 6, 7)).astype(itype)
                fn = mktemp('.tif')

                if 0:
                    if planar_config == 2:
                        continue
                    tif = TIFF.open(fn, 'w')
                    tif.write_image(image, compression=compression)
                    tif.close()
                else:
                    tif = TIFFimage(image)
                    tif.write_file(fn,
                                   compression=compression,
                                   planar_config=planar_config)
                    del tif

                tif = TIFFfile(fn)
                arr = tif.get_tiff_array()
                data = arr[:]
                assert len(data) == len(image), repr(len(data))
                assert image.dtype == data.dtype, repr(
                    (image.dtype, data[0].dtype))
                assert (image == data).all()
                assert arr.shape == image.shape

                _indices = [0, slice(None), slice(0, 2), slice(0, 5, 2)]
                for _i0 in _indices[:1]:
                    for i1 in _indices:
                        for i2 in _indices:
                            sl = (_i0, i1, i2)
                            assert (arr[sl] == image[sl]).all(), repr(sl)
                atexit.register(os.remove, fn)
Esempio n. 37
0
    def _save_datasets_as_mitiff(self, datasets, image_description,
                                 gen_filename, **kwargs):
        """Put all together and save as a tiff file.

        Include the special tags making it a mitiff file.

        """
        from libtiff import TIFF

        tif = TIFF.open(gen_filename, mode='wb')

        tif.SetField(IMAGEDESCRIPTION, (image_description).encode('utf-8'))

        cns = self.translate_channel_name.get(kwargs['sensor'], {})
        if isinstance(datasets, list):
            LOG.debug("Saving datasets as list")
            for _cn in self.channel_order[kwargs['sensor']]:
                for dataset in datasets:
                    if dataset.attrs['name'] == _cn:
                        # Need to possible translate channels names from satpy to mitiff
                        cn = cns.get(dataset.attrs['name'],
                                     dataset.attrs['name'])
                        data = self._calibrate_data(
                            dataset, dataset.attrs['calibration'],
                            self.mitiff_config[kwargs['sensor']][cn]
                            ['min-val'], self.mitiff_config[
                                kwargs['sensor']][cn]['max-val'])
                        tif.write_image(data.astype(np.uint8),
                                        compression='deflate')
                        break
        elif 'dataset' in datasets.attrs['name']:
            self._save_single_dataset(datasets, cns, tif, kwargs)
        elif self.palette:
            LOG.debug("Saving dataset as palette.")
            self._save_as_palette(tif, datasets, **kwargs)
        else:
            LOG.debug("Saving datasets as enhanced image")
            self._save_as_enhanced(tif, datasets, **kwargs)
        del tif
Esempio n. 38
0
def image_array_to_tiff(image_dir, file_name, image_type, image_num):
    """
          图像序列保存成tiff文件
    :params image_dir:图像序列所在文件夹
    :params file_name:要保存的tiff文件名
    :params image_type:图像序列的类型
    :params image_num:要保存的图像数目    
    :return    
    """
    from libtiff import TIFF
    out_tiff = TIFF.open(file_name, mode='w')

    # 这里假定图像名按序号排列
    for i in range(0, image_num):
        image_name = image_dir + str(i) + image_type
        image_array = Image.open(image_name)
        # 缩放成统一尺寸
        img = image_array.resize((480, 480), Image.ANTIALIAS)
        out_tiff.write_image(img, compression=None, write_rgb=True)

    out_tiff.close()
    return
Esempio n. 39
0
def test(model, batch_size, model_type, save):
    # evaluate
    model.eval()
    torch_device = torch.device('cuda')
    # Loss and optimizer 定义损失函数, 使用的是最小平方误差函数
    criterion = nn.MSELoss()
    criterion = criterion.to(torch_device)
    eval_loss_dict = []

    if model_type == 1:
        test_loader = get_data.get_test_loader(batch_size)
    elif model_type == 2:
        test_loader = get_data.get_gauss50_test_loader(batch_size)
    else:
        test_loader = get_data.get_mixed_test_loader(batch_size)

    batch_tqdm = tqdm(enumerate(test_loader, 0), total=test_loader.__len__(), ncols=100)
    for i, data in batch_tqdm:
        inputs, labels = data
        labels = get_data.get_size_labels(1, labels)
        inputs = inputs.cuda()
        labels = labels.cuda()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss = loss.cuda()
        eval_loss_dict.append(loss.item())

        if save:
            for j in range(10):
                save_imgname = 'G:/evocnn/image_set/output/' + str(i * 10 + j) + '.tif'
                img = TIFF.open(save_imgname, 'w')
                # 要保存之前先要改成CPU
                output_img = outputs[j].cpu().detach().numpy()
                img.write_image(output_img, write_rgb=True)

    mean_test_loss = np.mean(eval_loss_dict)
    std_test_loss = np.std(eval_loss_dict)
    print("valid mean:{},std:{}".format(mean_test_loss, std_test_loss))
Esempio n. 40
0
    def load_images(self) -> Generator[np.ndarray, None, None]:
        """
        Loads TIFF images from paths as numpy arrays.
        """
        for path_ in self._paths:
            if not os.path.exists(path=path_):
                raise ImageNotFoundError(path_)

            try:
                tiff = TIFF.open(filename=path_, mode='r')
            except IOError as e:
                raise TiffLoadError() from e

            for im in tiff.iter_images():
                arr = np.array(im, np.uint8)
                if len(arr.shape) > 2:
                    logging.warning(
                        'Image {} has not two dimensional greyscale data, '
                        'actually has shape of {} - filtering first dimension.'
                        .format(path_, arr.shape))
                    yield arr[:, :, 0]

                yield arr
def process(tifffile, plot=True):
    print('[INFO] Processing %s' % tifffile)
    tf = TIFF.open(tifffile)
    frames = tf.iter_images()
    datafile = "%s_data.dat" % tifffile
    datalines = []
    for fi, frame in enumerate(frames):
        # print( frame.shape )
        binline = frame[0, :]
        txtline = (''.join(([chr(x) for x in binline]))).rstrip()
        print(txtline)
        data = txtline.split(',')
        if len(data) > 1:
            datalines.append(txtline)
        else:
            print('x Frame %d has no arduino data' % fi)

    with open(datafile, "w") as f:
        f.write("\n".join(datalines))
        print("[INFO] Wrote all data to %s" % datafile)

    if plot:
        plotFile(datafile)
Esempio n. 42
0
def setup_mask_upload(ns):
    """
        Uploads a mask over the uploaded image
    """

    #check meta to make the mask
    xml = ns.session.fetchxml(ns.image_uri, meta='')
    size_x = int(xml.xpath('tag[@name="image_num_x"]/@value')[0])
    size_y = int(xml.xpath('tag[@name="image_num_y"]/@value')[0])
    mask = np.zeros([size_y, size_x])
    mask[size_y/4:(3*size_y)/4,size_x/4:(3*size_x)/4] = 1 #create mask

    #save mask
    maskname = 'mask.tif'
    tif = TIFF.open(os.path.join(ns.store_local_location, maskname), mode='w')
    tif.write_image(mask)

    content = upload_image_resource(ns.session, os.path.join(ns.store_local_location, maskname), u'%s/%s'%(TEST_PATH, maskname))
    mask_resource_uri = content.attrib['uri']
    mask_uri = '%s/image_service/image/%s'%(ns.root, content.attrib['resource_uniq'])

    ns.mask_uri = mask_uri #image_service uri
    ns.mask_resource_uri = mask_resource_uri #data_service uri
Esempio n. 43
0
def readOneTif(path):
    tif = TIFF.open(path, mode='r')
    img = tif.read_image()  # 此时img为一个numpy.array
    # print(img.shape)
    # count=0;
    # imageAll=np.array([0])
    # for image in tif.iter_images():
    #     if count==0:
    #         imageAll=image;
    #     else:
    #         imageAll=np.dstack((imageAll,image))
    #         # print(image.shape)
    #     count=count+1
    #     cv.imshow("main",image)
    #     cv.waitKey(0)
    #     cv.destroyAllWindows()
    #
    # print("z={}".format(count))
    # print(imageAll.shape)
    # cv.imshow("path",img);
    # cv.waitKey(0);
    # cv.destroyAllWindows()
    return img
Esempio n. 44
0
 def processPic(self, imageName):
     print("processPicCalled: " + imageName)
     outW = 0
     parsed_name = imageName.split('-')
     laserNumber = int(parsed_name[1])
     timeStamp = float(parsed_name[2])
     while (outW < 500):
         try:
             image_file = TIFF.open(imageName, mode='r')
             outW = 501
         except:
             outW += 1
     image_gray = image_file.read_image()
     outW = 0
     total = long(0)
     xrange = range(self.X1, self.X2)
     yrange = range(self.Y1, self.Y2)
     for x in xrange:
         for y in yrange:
             numberIn = image_gray[y, x]
             total = total + numberIn
     mean = float(total / (self.numberOfPixels))
     image_file.close()
     if laserNumber == 1:
         self.quantizedTimeStamp = timeStamp
         self.laser1 = mean
         self.updateDataFile(self.quantizedTimeStamp, mean, 1, imageName,
                             "Data/rawData.txt")
     if laserNumber == 2:
         self.laser2 = mean
         self.updateDataFile(self.quantizedTimeStamp, mean, 2, imageName,
                             "Data/rawData.txt")
     if laserNumber == 3:
         self.laser3 = mean
         self.updateDataFile(self.quantizedTimeStamp, mean, 3, imageName,
                             "Data/rawData.txt")
         self.updateDifferenceData(self.quantizedTimeStamp)
Esempio n. 45
0
def tif2png(mapper, tiffile):
    fullpath = os.path.abspath(tiffile)
    dirname = os.path.dirname(fullpath)
    name, ext = os.path.splitext(tiffile)
    pngfile = os.path.join(dirname, name + '.png')

    tif = TIFF.open(tiffile, mode='r')
    for image in tif.iter_images():
        matrix = image

    shape = matrix.shape
    img = []
    for i in range(shape[0]):
        row = []
        for j in range(shape[1]):
            v = matrix[i, j]
            p = mapper.colormap(v)
            row = row + p
        img.append(row)

    f = open(pngfile, 'wb')
    w = png.Writer(shape[0], shape[1], transparent=mapper.transparent)
    w.write(f, img)
    f.close()
Esempio n. 46
0
    def __init__(self, filename, process_func=None, dtype=None, as_grey=False):
        self._filename = filename
        self._tiff = TIFF.open(filename)

        self._count = 1
        while not self._tiff.LastDirectory():
            self._count += 1
            self._tiff.ReadDirectory()

        # reset to 0
        self._tiff.SetDirectory(0)

        tmp = self._tiff.read_image()
        if dtype is None:
            self._dtype = tmp.dtype
        else:
            self._dtype = dtype

        self._im_sz = tmp.shape

        self._byte_swap = bool(self._tiff.IsByteSwapped())

        self._validate_process_func(process_func)
        self._as_grey(as_grey, process_func)
Esempio n. 47
0
def save_array_as_dtype(array, dtype, outpath):
    """
    Saves an array with a specific datatype.

    :param array:   numpy array or array like
    :param dtype:   dtype such as "float32" or "uint16"
    :param outpath: filepath to store tiff
    :return:
    """

    outdir = os.path.dirname(outpath)
    if not os.path.exists(outdir):
        os.mkdir(outdir)

    # do some integer scaling
    if dtype == "uint16":
        array = scale_array(array, 0, 2**15)
    elif dtype == "uint8":
        array = scale_array(array, 0, 2**7)

    array = array.astype(dtype)
    tiff = TIFF.open(outpath, 'w+')
    tiff.write_image(array)
    tiff.close()
Esempio n. 48
0
    def test_save_dataset_with_calibration(self):
        """Test writer operation with calibration."""
        import os
        import numpy as np
        from libtiff import TIFF
        from satpy.writers.mitiff import MITIFFWriter

        expected_ir = np.full((100, 200), 255)
        expected_vis = np.full((100, 200), 0)
        expected = np.stack([
            expected_vis, expected_vis, expected_ir, expected_ir, expected_ir,
            expected_vis
        ])
        dataset = self._get_test_dataset_calibration()
        w = MITIFFWriter(
            filename=dataset.attrs['metadata_requirements']['file_pattern'],
            base_dir=self.base_dir)
        w.save_dataset(dataset)
        filename = (
            dataset.attrs['metadata_requirements']['file_pattern']).format(
                start_time=dataset.attrs['start_time'])
        tif = TIFF.open(os.path.join(self.base_dir, filename))
        for i, image in enumerate(tif.iter_images()):
            np.testing.assert_allclose(image, expected[i], atol=1.e-6, rtol=0)
Esempio n. 49
0
def save_img_file(img, file_path, type=None):

    img = place_dnp(img)
    ext = os.path.splitext(file_path)[-1][1:]

    if not type:
        type = ext if ext == 'png' or ext == 'tiff' else 'tiff' if img.dtype == 'uint16' else 'png'

    file_path = file_path + '.' + type if ext != type else file_path

    if type == 'tiff':
        obj = TIFF.open(file_path, mode='w')
        obj.write_image(misc.uint16_norm(img),
                        compression=None,
                        write_rgb=True)
        obj.close()

    elif type == 'png' or type == 'bmp':

        Image.fromarray(misc.uint8_norm(img)).save(file_path,
                                                   type,
                                                   optimize=True)

    return True
Esempio n. 50
0
raiz = "/mnt/c/Users/Verstand/Pictures/ThermalFolder/EDITED"

root, dirs, files = os.walk(raiz).next()
output_folder = os.path.join(root, "converted_20ago_sur_2")
try:
    os.mkdir(output_folder)
except:
    pass
count = 0

for file in files:
    if file.endswith(".csv"):
        img = Image.open(
            os.path.join(os.path.dirname(root), file.replace(".csv", ".jpg")))
        exif_dict = piexif.load(img.info["exif"])
        exif_bytes = piexif.dump(exif_dict)
        count += 1
        my_data = np.genfromtxt(os.path.join(root, file), delimiter=',')
        my_data = np.delete(my_data, 640, axis=1)
        out_img = os.path.join(output_folder, file.replace(".csv", ".tiff"))
        tiff = TIFF.open(out_img, mode="w")
        tiff.write_image(my_data)
        tiff.close()
        # im = Image.fromarray(my_data)
        # im.save(os.path.join(output_folder, file.replace(".csv",".tiff")), "TIFF", exif=exif_bytes)
    else:
        pass

print str(count) + " imagenes convertidas"
def create_data(src):
    images = os.listdir(src)
    total = int(len(images) / 2)
    print(total)

    imgs = np.ndarray((total, image_x, image_y, image_z), dtype=np.uint8)
    imgs_mask = np.ndarray((total, image_x, image_y, image_z), dtype=np.uint8)

    print('Creating training images...')
    i = 0
    for image_name in images:
        if 'mask' in image_name:
            continue
        image_mask_name = image_name.split('.')[0] + "_mask.tif"

        tif = TIFF.open(src + '/' + image_name, mode='r')
        tif_mask = TIFF.open(src + '/' + image_mask_name, mode='r')

        count = 0
        imageAll = np.array([0])
        for image in tif.iter_images():
            if count == 0:
                imageAll = image
            else:
                imageAll = np.dstack((imageAll, image))
            count = count + 1

        count_mask = 0
        imageAll_mask = np.array([0])
        for image_mask in tif_mask.iter_images():
            if count_mask == 0:
                imageAll_mask = image_mask
            else:
                imageAll_mask = np.dstack((imageAll_mask, image_mask))
            count_mask = count_mask + 1

        imgs[i] = imageAll
        imgs_mask[i] = imageAll_mask
        i = i + 1

    print(imgs.shape)
    print(imgs_mask.shape)

    imgs = imgs.astype('float32')
    imgs_mask = imgs_mask.astype('float32')

    mean = np.mean(imgs)
    std = np.std(imgs)
    print('mean = ', mean)
    print('std = ', std)

    imgs -= mean
    imgs /= std

    imgs_mask /= 255.

    # add one dimension, corresponding to the input channel
    imgs = imgs[..., np.newaxis]
    imgs_mask = imgs_mask[..., np.newaxis]

    np.save('images_train.npy', imgs)
    np.save('images_mask_train.npy', imgs_mask)

    print('Creating data done!')
Esempio n. 52
0
    def _save_datasets_as_mitiff(self, datasets, image_description,
                                 gen_filename, **kwargs):
        """Put all togehter and save as a tiff file with the special tag
           making it a mitiff file.
        """
        from libtiff import TIFF

        tif = TIFF.open(gen_filename, mode='w')

        tif.SetField(IMAGEDESCRIPTION, (image_description).encode('utf-8'))

        cns = self.translate_channel_name.get(kwargs['sensor'], {})
        if isinstance(datasets, list):
            LOG.debug("Saving datasets as list")

            for _cn in self.channel_order[kwargs['sensor']]:
                for dataset in datasets:
                    if dataset.attrs['name'] == _cn:
                        reverse_offset = 0.
                        reverse_scale = 1.
                        if dataset.attrs[
                                'calibration'] == 'brightness_temperature':
                            reverse_offset = 255.
                            reverse_scale = -1.
                            dataset.data += KELVIN_TO_CELSIUS

                        # Need to possible translate channels names from satpy to mitiff
                        cn = cns.get(dataset.attrs['name'],
                                     dataset.attrs['name'])
                        _data = reverse_offset + reverse_scale * ((
                            (dataset.data - float(self.mitiff_config[
                                kwargs['sensor']][cn]['min-val'])) /
                            (float(self.mitiff_config[kwargs['sensor']][cn][
                                'max-val']) - float(self.mitiff_config[
                                    kwargs['sensor']][cn]['min-val']))) * 255.)
                        data = _data.clip(0, 255)

                        tif.write_image(data.astype(np.uint8),
                                        compression='deflate')
                        break
        elif 'dataset' in datasets.attrs['name']:
            LOG.debug("Saving %s as a dataset.", datasets.attrs['name'])
            for _cn in self.channel_order[kwargs['sensor']]:
                for i, band in enumerate(datasets['bands']):
                    if band == _cn:
                        chn = datasets.sel(bands=band)
                        reverse_offset = 0.
                        reverse_scale = 1.
                        if chn.attrs['prerequisites'][i][
                                4] == 'brightness_temperature':
                            reverse_offset = 255.
                            reverse_scale = -1.
                            chn.data += KELVIN_TO_CELSIUS

                        # Need to possible translate channels names from satpy to mitiff
                        cn = cns.get(chn.attrs['prerequisites'][i][0],
                                     chn.attrs['prerequisites'][i][0])
                        _data = reverse_offset + reverse_scale * ((
                            (chn.data - float(self.mitiff_config[
                                kwargs['sensor']][cn]['min-val'])) /
                            (float(self.mitiff_config[kwargs['sensor']][cn][
                                'max-val']) - float(self.mitiff_config[
                                    kwargs['sensor']][cn]['min-val']))) * 255.)
                        data = _data.clip(0, 255)

                        tif.write_image(data.astype(np.uint8),
                                        compression='deflate')
                        break

        else:
            LOG.debug("Saving datasets as enhanced image")
            img = get_enhanced_image(datasets.squeeze(), enhance=self.enhancer)
            for i, band in enumerate(img.data['bands']):
                chn = img.data.sel(bands=band)
                data = chn.values.clip(0, 1) * 254. + 1
                data = data.clip(0, 255)
                tif.write_image(data.astype(np.uint8), compression='deflate')

        del tif
Esempio n. 53
0
####################################################
for inputDir, outputDir, header, footer, firstFrame, lastFrame, scale in zip(
        inputDirList, outputDirList, headerList, footerList, firstFrameList,
        lastFrameList, scaleList):
    if (rank == 0):
        print inputDir
    frameList = range(firstFrame, lastFrame + 1)
    procFrameList = numpy.array_split(frameList, size)

    for frame in procFrameList[rank]:
        inputFile = inputDir + '/' + header + str(frame).zfill(4) + footer
        outputFile = outputDir + '/' + header + str(frame).zfill(6) + footer
        if ('png' in footer):
            gImg = cv2.imread(inputFile, 0)
        elif ('tif' in footer):
            inTif = TIFF.open(inputFile, mode='r')
            gImg = inTif.read_image()
            del inTif
        [row, col] = gImg.shape
        if (scale < 1):
            gImg = cv2.resize(gImg, (int(col * scale), int(row * scale)),
                              interpolation=cv2.INTER_AREA)
        else:
            gImg = cv2.resize(gImg, (int(col * scale), int(row * scale)),
                              interpolation=cv2.INTER_CUBIC)
        outTif = TIFF.open(outputFile, mode='w')
        outTif.write_image(gImg)
        del outTif, gImg
    comm.Barrier()
####################################################
Esempio n. 54
0
def main():
    out_dir_imgs = os.path.join(OUT_DIR, "imgs")
    out_dir_gt = os.path.join(OUT_DIR, "gt")

    if not os.path.exists(out_dir_imgs):
        os.makedirs(out_dir_imgs)
    if not os.path.exists(out_dir_gt):
        os.makedirs(out_dir_gt)

    indices_with_gt = []
    next_index = 0

    # so it's a random order
    save_names = np.random.permutation(NUM_TRAIN)

    num_img = 0
    num_gt = 0
    for img_path in sorted(glob.glob(SOURCE_IMGS_DIR + "/*.tif")):
        print(("on img: %d %s" % (num_img, datetime.now())))
        sys.stdout.flush()
        num_img += 1
        # each block's image and gt (if exists) share same name (from save_names)

        handle = os.path.basename(img_path)[:-len(SOURCE_IMGS_SUFFIX)]
        tif = TIFF.open(img_path, mode="r")
        img = tif.read_image()
        assert (img.shape == (6000, 6000, 4))  # uint8 np array, RGBIR

        split_and_save_imgs(img,
                            next_index,
                            names=save_names,
                            cut=400,
                            rescale=0.5,
                            dir=out_dir_imgs)

        gt_path = os.path.join(SOURCE_GT_DIR, handle + SOURCE_GT_SUFFIX)
        if os.path.isfile(gt_path):
            num_gt += 1
            current_indices = list(
                range(next_index, next_index + OUT_PER_SOURCE))
            indices_with_gt += current_indices

            gt_tif = TIFF.open(gt_path, mode="r")
            gt = gt_tif.read_image()
            assert (gt.shape == (6000, 6000, 3))  # uint8 np array, RGB

            split_and_save_gts(gt,
                               next_index,
                               names=save_names,
                               cut=400,
                               rescale=0.5,
                               dir=out_dir_gt)

        next_index += OUT_PER_SOURCE

    # IID:
    # unlabelled_train+labelled_train+labelled_test,
    # labelled_train+labelled_test, labelled_train+labelled_test
    # IID+:
    # unlabelled_train+labelled_train, labelled_train, labelled_test

    # make train (does not need GT) and test splits
    # choose num_test randomly out of indices_with_gt for test, rest is train
    test_inds = np.random.choice(indices_with_gt, size=NUM_TEST, replace=False)

    unlabelled_train = open(os.path.join(OUT_DIR, "unlabelled_train.txt"),
                            "w+")
    labelled_train = open(os.path.join(OUT_DIR, "labelled_train.txt"), "w+")
    labelled_test = open(os.path.join(OUT_DIR, "labelled_test.txt"), "w+")

    for i in range(NUM_TRAIN):
        if i in test_inds:
            file = labelled_test
        elif i in indices_with_gt:
            file = labelled_train
        else:
            file = unlabelled_train

        file.write("%d\n" % save_names[i])

    unlabelled_train.close()
    labelled_train.close()
    labelled_test.close()

    assert (next_index == NUM_TRAIN)
    assert (num_img == NUM_SOURCE_IMGS)
    assert (num_gt == NUM_SOURCE_GT)
Esempio n. 55
0
    raster1 = rnc.build_raster(dataset_dir + f + '/imgs_1_rect/')
    # raster2 = rnc.build_rasterRGB(dataset_dir + f + '/imgs_2_rect/')
    raster2 = rnc.build_raster(dataset_dir + f + '/imgs_2_rect/')
    raster = np.concatenate((raster1, raster2), axis=2)
    padded_raster = rnc.pad(raster, img_size)
    shape = (padded_raster.shape[0], padded_raster.shape[1], classes)
    padded_shapes.append(shape)
    crops = rnc.crop(padded_raster, img_size, stride)
    num_crops.append(len(crops))
    train_images = train_images + crops

# Read change maps to get the ground truths
train_labels = []
unpadded_shapes = []
for f in folders:
    cm = TIFF.open(labels_dir + f + '/cm/' + f + '-cm.tif').read_image()
    cm = np.expand_dims(cm, axis=2)
    cm -= 1  # the change map has values 1 for unchange and 2 for change ---> scale back to 0 and 1
    unpadded_shapes.append(cm.shape)
    cm = cm.flatten()
    train_labels.append(cm)

# Create inputs and labels for the Neural Network
inputs = np.asarray(train_images)
y_true = np.asarray(train_labels)
print(y_true.shape)

# Load the model
model = load_model(
    save_dir + model_name + '.h5',
    custom_objects={'weighted_bce_dice_loss': cdm.weighted_bce_dice_loss})
Esempio n. 56
0
def download_image_data(image_ids_or_dataset_id,
                        dataset=False,
                        download_original=False,
                        channel=None,
                        z_stack=0,
                        frame=0,
                        coord=(0, 0),
                        width=0,
                        height=0,
                        region_spec='rectangle',
                        skip_failed=False,
                        download_tar=False,
                        omero_host='idr.openmicroscopy.org',
                        omero_secured=False,
                        config_file=None):

    if config_file is None:  # IDR connection
        omero_username = '******'
        omero_password = '******'
    else:  # other omero instance
        with open(config_file) as f:
            cfg = json.load(f)
            omero_username = cfg['username']
            omero_password = cfg['password']

            if omero_username == "" or omero_password == "":
                omero_username = '******'
                omero_password = '******'

    if not download_original and region_spec not in ['rectangle', 'center']:
        raise ValueError(
            'Got unknown value "{0}" as region_spec argument'.format(
                region_spec))
    with ExitStack() as exit_stack:
        conn = exit_stack.enter_context(
            BlitzGateway(omero_username,
                         omero_password,
                         host=omero_host,
                         secure=omero_secured))
        # exit_stack.callback(conn.connect().close)
        if download_tar:
            # create an archive file to write images to
            archive = exit_stack.enter_context(
                tarfile.open('images.tar', mode='w'))
            tempdir = exit_stack.enter_context(TemporaryDirectory())

        if dataset:
            dataset_warning_id = 'Dataset-ID: {0}'.format(
                image_ids_or_dataset_id[0])
            try:
                dataset_id = int(image_ids_or_dataset_id[0])
            except ValueError:
                image_ids = None
            else:
                try:
                    dataset = conn.getObject("Dataset", dataset_id)
                except Exception as e:
                    # respect skip_failed on unexpected errors
                    if skip_failed:
                        warn(str(e), dataset_warning_id, warn_skip=True)
                    else:
                        raise
                else:
                    image_ids = [image.id for image in dataset.listChildren()]

            if image_ids is None:
                if skip_failed:
                    warn(
                        'Unable to find a dataset with this ID in the '
                        'database.',
                        dataset_warning_id,
                        warn_skip=True)
                else:
                    raise ValueError(
                        '{0}: Unable to find a dataset with this ID in the '
                        'database. Aborting!'.format(dataset_warning_id))

        else:
            # basic argument sanity checks and adjustments
            prefix = 'image-'
            # normalize image ids by stripping off prefix if it exists
            image_ids = [
                iid[len(prefix):] if iid[:len(prefix)] == prefix else iid
                for iid in image_ids_or_dataset_id
            ]
        for image_id in image_ids:
            image_warning_id = 'Image-ID: {0}'.format(image_id)
            try:
                image_id = int(image_id)
            except ValueError:
                image = None
            else:
                try:
                    image = conn.getObject("Image", image_id)
                except Exception as e:
                    # respect skip_failed on unexpected errors
                    if skip_failed:
                        warn(str(e), image_warning_id, warn_skip=True)
                        continue
                    else:
                        raise

            if image is None:
                if skip_failed:
                    warn(
                        'Unable to find an image with this ID in the '
                        'database.',
                        image_warning_id,
                        warn_skip=True)
                    continue
                raise ValueError(
                    '{0}: Unable to find an image with this ID in the '
                    'database. Aborting!'.format(image_warning_id))
            if not download_original:
                try:
                    # try to extract image properties
                    # if anything goes wrong here skip the image
                    # or abort.
                    image_name = os.path.splitext(image.getName())[0]
                    image_warning_id = '{0} (ID: {1})'.format(
                        image_name, image_id)

                    if region_spec == 'rectangle':
                        tile = get_clipping_region(image, *coord, width,
                                                   height)
                    elif region_spec == 'center':
                        tile = get_clipping_region(
                            image, *_center_to_ul(*coord, width, height))

                    ori_z, z_stack = z_stack, confine_plane(image, z_stack)
                    ori_frame, frame = frame, confine_frame(image, frame)
                    num_channels = image.getSizeC()
                    if channel is None:
                        channel_index = 0
                    else:
                        channel_index = find_channel_index(image, channel)
                except Exception as e:
                    # respect skip_failed on unexpected errors
                    if skip_failed:
                        warn(str(e), image_warning_id, warn_skip=True)
                        continue
                    else:
                        raise

                # region sanity checks and warnings
                if tile[2] < width or tile[3] < height:
                    # The downloaded image region will have smaller dimensions
                    # than the specified width x height.
                    warn(
                        'Downloaded image dimensions ({0} x {1}) will be smaller '
                        'than the specified width and height ({2} x {3}).'.
                        format(tile[2], tile[3], width,
                               height), image_warning_id)

                # z-stack sanity checks and warnings
                if z_stack != ori_z:
                    warn(
                        'Specified image plane ({0}) is out of bounds. Using {1} '
                        'instead.'.format(ori_z, z_stack), image_warning_id)

                # frame sanity checks and warnings
                if frame != ori_frame:
                    warn(
                        'Specified image frame ({0}) is out of bounds. Using '
                        'frame {1} instead.'.format(ori_frame, frame),
                        image_warning_id)

                # channel index sanity checks and warnings
                if channel is None:
                    if num_channels > 1:
                        warn(
                            'No specific channel selected for multi-channel '
                            'image. Using first of {0} channels.'.format(
                                num_channels), image_warning_id)
                else:
                    if channel_index == -1 or channel_index >= num_channels:
                        if skip_failed:
                            warn(
                                str(channel) +
                                ' is not a known channel name for this image.',
                                image_warning_id,
                                warn_skip=True)
                            continue
                        else:
                            raise ValueError(
                                '"{0}" is not a known channel name for image {1}. '
                                'Aborting!'.format(channel, image_warning_id))

                # download and save the region as TIFF
                fname = '__'.join([image_name, str(image_id)] +
                                  [str(x) for x in tile])
                try:
                    if fname[-5:] != '.tiff':
                        fname += '.tiff'

                    fname = fname.replace(' ', '_')

                    im_array = get_image_array(image, tile, z_stack,
                                               channel_index, frame)

                    if download_tar:
                        fname = os.path.join(tempdir, fname)
                    try:
                        tiff = TIFF.open(fname, mode='w')
                        tiff.write_image(im_array)
                    finally:
                        tiff.close()
                    # move image into tarball
                    if download_tar:
                        archive.add(fname, os.path.basename(fname))
                        os.remove(fname)
                except Exception as e:
                    if skip_failed:
                        # respect skip_failed on unexpected errors
                        warn(str(e), image_warning_id, warn_skip=True)
                        continue
                    else:
                        raise
            else:
                try:
                    # try to extract image properties
                    # if anything goes wrong here skip the image
                    # or abort.
                    image_name = os.path.splitext(image.getName())[0]
                    image_warning_id = '{0} (ID: {1})'.format(
                        image_name, image_id)
                    original_image_name = image.getFileset().listFiles(
                    )[0].getName()
                    fname = image_name + "__" + str(
                        image_id) + os.path.splitext(original_image_name)[1]
                    fname = fname.replace(' ', '_')
                    fname = fname.replace('/', '_')
                    download_directory = "./"
                    if download_tar:
                        download_directory = tempdir
                    with cli_login("-u", omero_username, "-s", omero_host,
                                   "-w", omero_password) as cli:
                        cli.invoke([
                            "download", f"Image:{image_id}", download_directory
                        ])
                        if cli.rv != 0:
                            raise Exception("Download failed.")
                    # This will download to download_directory/original_image_name
                    os.rename(
                        os.path.join(download_directory, original_image_name),
                        os.path.join(download_directory, fname))
                    # move image into tarball
                    if download_tar:
                        archive.add(os.path.join(download_directory, fname),
                                    os.path.basename(fname))
                        os.remove(os.path.join(download_directory, fname))
                except Exception as e:
                    # respect skip_failed on unexpected errors
                    if skip_failed:
                        warn(str(e), image_warning_id, warn_skip=True)
                        continue
                    else:
                        raise
Esempio n. 57
0
def process(**kwargs):
    tifffile = kwargs['input']
    print('[INFO] Processing %s' % tifffile)
    tf = TIFF.open(tifffile)
    frames = tf.iter_images()
    datalines, arduinoData = [], []
    trialType = 'NA'

    # If classfier is found. Use it.
    classifierFile = kwargs.get('classifier', '')
    cascade = None
    if classifierFile and os.path.isfile(classifierFile):
        cascade = cv2.CascadeClassifier(classifierFile)

    classifierValues = []
    for fi, frame in enumerate(frames):
        # print( frame.shape )
        binline = frame[0, :]
        txtline = (''.join(([chr(x) for x in binline]))).rstrip()
        data = txtline.split(',')
        if len(data) > 1:
            datalines.append(data)
        if len(data) > 2:
            arduinoData.append(data)

        if cascade is not None:
            blinkValue = detectEye(frame, cascade, kwargs['plot'])
            classifierValues.append(blinkValue)

    tvec, blinkVec, velocityVec = [], [], []
    for l in datalines:
        if len(l) > 5:
            if l[-4] == 'CS+':
                tone, led = int(l[5]), int(l[6])
                if led == 1:
                    trialType = 'LIGHT NO SOUND'
                elif tone == 1:
                    trialType = 'SOUND NO LIGHT'
        try:
            tvec.append(parse_timestamp(l[0]))
            blinkVec.append(float(l[-1]))
            velocityVec.append(float(l[-2]))
        except Exception as e:
            print('[WARN] Failed to parse data line %s. Ignoring' % l)
            print('\t Error was %s' % e)

    if cascade is not None:
        blinkVec = classifierValues

    mean_ = sum(blinkVec) / len(blinkVec)
    cspST, cspET = get_status_timeslice(arduinoData, 'CS+')
    assert cspST
    usST, usET = get_status_timeslice(arduinoData, 'PUFF')
    probeTs = get_status_timeslice(arduinoData, 'PROB')

    if probeTs[0] is None and probeTs[1] is None:
        # Nowhere we found PROB in trial.
        isProbe = False
    else:
        print('[INFO] Trial %s is a PROBE trial' % tifffile)
        isProbe = True

    # Computer perfornace of this trial.
    baseline, signal, hasLearnt = compute_learning_yesno(tvec, blinkVec, cspST)
    if hasLearnt:
        print('|| Learning in %s' % tifffile)

    temp = os.path.join(os.path.dirname(tifffile), '_results')
    datadir = kwargs.get('outdir', temp)
    if not os.path.isdir(datadir):
        os.makedirs(datadir)

    if kwargs.get('plot', False):
        ax = plt.subplot(211)
        if cspET > cspST:
            ax.plot([cspST, cspET], [mean_, mean_])

        if (usET and usST) and usET > usST:
            ax.plot([usST, usET], [mean_, mean_])

        ax.plot(tvec, blinkVec, label='Learning? %s' % hasLearnt)
        ax.axhline(y=np.mean(baseline) + np.std(baseline))
        plt.title('Trial Type=%s' % trialType)
        plt.legend(framealpha=0.4)
        plt.title(os.path.basename(sys.argv[1]), fontsize=8)

        ax2 = plt.subplot(212, sharex=ax)
        ax2.plot(tvec, velocityVec, label='Speed')
        plt.xlabel('Time')
        plt.ylabel('cm/sec (really?)')

        outfile = os.path.join(datadir, '%s.png' % os.path.basename(tifffile))
        plt.tight_layout(pad=3)
        plt.savefig(outfile)
        plt.close()
        print('Saved to %s' % outfile)

    # Write processed data to pickle.
    print('[INFO] Trial type %s' % trialType)
    res = dict(time=tvec,
               blinks=blinkVec,
               cs=[cspST, cspET],
               us=[usST, usET],
               did_learn=hasLearnt,
               is_probe=isProbe,
               trial_type=trialType)

    pickleFile = os.path.join(datadir,
                              '%s.pickle' % os.path.basename(tifffile))

    with open(pickleFile, 'wb') as pF:
        pickle.dump(res, pF)

    print('[INFO] Wrote pickle %s' % pickleFile)
    return res
Esempio n. 58
0
def main():
    usage = """deepflow_simmatrix.py [input_dir]

Expects refframes directory in [input_dir] to be already filled with i-frames

Example: 
./deepflow_simmatrix_viz.py ./simmatrix/20160412/

For help:
./deepflow_simmatrix_viz.py -h 

Ben Lansdell
01/04/2016
"""

    parser = argparse.ArgumentParser()
    parser.add_argument(
        'path_in', help='input directory with frames already placed in it')
    args = parser.parse_args()

    #Test code
    class Args:
        pass

    args = Args()
    args.path_in = './simmatrix/20160412/'

    #Get all files in
    iframes = sorted(glob(args.path_in + 'refframes/*.tif'))
    nF = len(iframes)

    nx_tile = 64

    #Load images
    images = []
    for fn_in in iframes:  # do stuff with image
        # to open a tiff file for reading:
        tif = TIFF.open(fn_in, mode='r')
        image = tif.read_image()
        image = cv2.resize(image, (nx_tile, nx_tile))
        images.append(image)
        tif.close()

    D = np.zeros((nF, nF))

    #Run DeepFlow
    for i in range(nF):
        im1 = iframes[i]
        fn1 = int(os.path.splitext(os.path.basename(im1))[0].split('_')[1])
        for j in range(i + 1, nF):
            im2 = iframes[j]
            fn2 = int(os.path.splitext(os.path.basename(im2))[0].split('_')[1])
            print("DeepFlow between frame %d and %d" % (fn1, fn2))
            flow_in1 = args.path_in + 'corrmatrix/%04d_%04d.flo' % (fn1, fn2)
            flow_in2 = args.path_in + 'corrmatrix/%04d_%04d.flo' % (fn2, fn1)

            #Read in flow
            flow1 = readFlo(flow_in1)
            flow2 = readFlo(flow_in2)

            ny, nx = flow1.shape[0:2]

            #For each run we compute the average reconstruction error
            fwdmeshy, fwdmeshx = [
                a.astype(np.float32)
                for a in np.meshgrid(np.arange(nx), np.arange(ny))
            ]
            #Perturb mesh grid by forward flow
            #Round to integers
            fwdx = fwdmeshx + np.ceil(flow1[:, :, 0])
            fwdy = fwdmeshy + np.ceil(flow1[:, :, 1])
            fwdx = np.maximum(0, np.minimum(nx - 1, fwdx))
            fwdy = np.maximum(0, np.minimum(nx - 1, fwdy))
            #Look up flow field using this perturbed map
            fwdremapx = fwdx + flow2[fwdx.astype(int), fwdy.astype(int), 0]
            fwdremapy = fwdy + flow2[fwdx.astype(int), fwdy.astype(int), 1]
            fwdremapx -= fwdmeshx
            fwdremapy -= fwdmeshy
            fwderr = np.sqrt(fwdremapx**2 + fwdremapy**2)
            #fwdtracked = fwderr < threshold

            D[i, j] = np.mean(fwderr)
            D[j, i] = D[i, j]

    # Plot distance matrix.
    fig1 = pylab.figure(figsize=(8, 8))
    axmatrix1 = fig1.add_axes([0.3, 0.1, 0.6, 0.6])
    im = axmatrix1.matshow(D,
                           aspect='auto',
                           origin='lower',
                           cmap=pylab.cm.YlGnBu)
    fn_out = args.path_in + 'similarity.png'
    fig1.savefig(fn_out)

    #Once we've loaded this data we view the similarity matrix
    fig = pylab.figure(figsize=(8, 8))
    ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6])
    Y = sch.linkage(D, method='centroid')
    Z1 = sch.dendrogram(Y, orientation='right')
    ax1.set_xticks([])
    ax1.set_yticks([])

    # Compute and plot second dendrogram.
    ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2])
    Y = sch.linkage(D, method='single')
    Z2 = sch.dendrogram(Y)
    ax2.set_xticks([])
    ax2.set_yticks([])

    # Plot distance matrix.
    axmatrix = fig.add_axes([0.3, 0.1, 0.6, 0.6])
    idx1 = Z1['leaves']
    idx2 = Z2['leaves']
    D = D[idx1, :]
    D = D[:, idx2]
    im = axmatrix.matshow(D,
                          aspect='auto',
                          origin='lower',
                          cmap=pylab.cm.YlGnBu)
    axmatrix.set_xticks([])
    axmatrix.set_yticks([])

    # Plot colorbar.
    axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.6])
    pylab.colorbar(im, cax=axcolor)
    #fig.show()
    fn_out = args.path_in + 'dendrogram.png'
    fig.savefig(fn_out)

    #Make another version of this plot but bigger and with frame snippets
    #Load all the iframe images and resize
    fn_out_d1 = args.path_in + 'dend_d1_tile.png'
    fn_out_d2 = args.path_in + 'dend_d2_tile.png'
    im_d1 = images[idx1[0]]
    im_d2 = images[idx2[0]]
    for idx in range(1, nF):
        im_d1 = np.hstack((im_d1, images[idx1[idx]]))
        im_d2 = np.hstack((im_d2, images[idx2[idx]]))
    cv2.imwrite(fn_out_d1, im_d1)
    cv2.imwrite(fn_out_d2, im_d2)
Esempio n. 59
0
def download_image_data(image_ids,
                        channel=None,
                        z_stack=0,
                        frame=0,
                        coord=(0, 0),
                        width=0,
                        height=0,
                        region_spec='rectangle',
                        skip_failed=False,
                        download_tar=False):
    # basic argument sanity checks and adjustments
    prefix = 'image-'
    # normalize image ids by stripping off prefix if it exists
    image_ids = [
        iid[len(prefix):] if iid[:len(prefix)] == prefix else iid
        for iid in image_ids
    ]

    if region_spec not in ['rectangle', 'center']:
        raise ValueError(
            'Got unknown value "{0}" as region_spec argument'.format(
                region_spec))

    # connect to idr
    conn = BlitzGateway('public',
                        'public',
                        host='idr.openmicroscopy.org',
                        secure=True)
    conn.connect()

    if download_tar:
        # create an archive file to write images to
        archive = tarfile.open('images.tar', mode='w')

    try:
        for image_id in image_ids:
            image_warning_id = 'Image-ID: {0}'.format(image_id)
            try:
                image_id = int(image_id)
            except ValueError:
                image = None
            else:
                try:
                    image = conn.getObject("Image", image_id)
                except Exception as e:
                    # respect skip_failed on unexpected errors
                    if skip_failed:
                        warn(str(e), image_warning_id, warn_skip=True)
                        continue
                    else:
                        raise

            if image is None:
                if skip_failed:
                    warn(
                        'Unable to find an image with this ID in the '
                        'database.',
                        image_warning_id,
                        warn_skip=True)
                    continue
                raise ValueError(
                    '{0}: Unable to find an image with this ID in the '
                    'database. Aborting!'.format(image_warning_id))

            try:
                # try to extract image properties
                # if anything goes wrong here skip the image
                # or abort.
                image_name = os.path.splitext(image.getName())[0]
                image_warning_id = '{0} (ID: {1})'.format(image_name, image_id)

                if region_spec == 'rectangle':
                    tile = get_clipping_region(image, *coord, width, height)
                elif region_spec == 'center':
                    tile = get_clipping_region(
                        image, *_center_to_ul(*coord, width, height))

                ori_z, z_stack = z_stack, confine_plane(image, z_stack)
                ori_frame, frame = frame, confine_frame(image, frame)
                num_channels = image.getSizeC()
                if channel is None:
                    channel_index = 0
                else:
                    channel_index = find_channel_index(image, channel)
            except Exception as e:
                # respect skip_failed on unexpected errors
                if skip_failed:
                    warn(str(e), image_warning_id, warn_skip=True)
                    continue
                else:
                    raise

            # region sanity checks and warnings
            if tile[2] < width or tile[3] < height:
                # The downloaded image region will have smaller dimensions
                # than the specified width x height.
                warn(
                    'Downloaded image dimensions ({0} x {1}) will be smaller '
                    'than the specified width and height ({2} x {3}).'.format(
                        tile[2], tile[3], width, height), image_warning_id)

            # z-stack sanity checks and warnings
            if z_stack != ori_z:
                warn(
                    'Specified image plane ({0}) is out of bounds. Using {1} '
                    'instead.'.format(ori_z, z_stack), image_warning_id)

            # frame sanity checks and warnings
            if frame != ori_frame:
                warn(
                    'Specified image frame ({0}) is out of bounds. Using '
                    'frame {1} instead.'.format(ori_frame, frame),
                    image_warning_id)

            # channel index sanity checks and warnings
            if channel is None:
                if num_channels > 1:
                    warn(
                        'No specific channel selected for multi-channel '
                        'image. Using first of {0} channels.'.format(
                            num_channels), image_warning_id)
            else:
                if channel_index == -1 or channel_index >= num_channels:
                    if skip_failed:
                        warn(str(channel) +
                             ' is not a known channel name for this image.',
                             image_warning_id,
                             warn_skip=True)
                        continue
                    else:
                        raise ValueError(
                            '"{0}" is not a known channel name for image {1}. '
                            'Aborting!'.format(channel, image_warning_id))

            # download and save the region as TIFF
            fname = '__'.join([image_name, str(image_id)] +
                              [str(x) for x in tile])
            try:
                if fname[-5:] != '.tiff':
                    fname += '.tiff'

                fname = fname.replace(' ', '_')

                im_array = get_image_array(image, tile, z_stack, channel_index,
                                           frame)

                # pack images into tarball
                if download_tar:
                    tar_img = Image.fromarray(im_array)
                    # Use TemporaryFile() for intermediate storage of images.
                    # TO DO: could this be improved by using
                    # SpooledTemporaryFile with a suitable max_size?
                    with TemporaryFile() as buf:
                        tar_img.save(buf, format='TIFF')
                        tarinfo = tarfile.TarInfo(name=fname)
                        buf.seek(0, 2)
                        tarinfo.size = buf.tell()
                        buf.seek(0)
                        archive.addfile(tarinfo=tarinfo, fileobj=buf)
                else:  # save image as individual file
                    try:
                        tiff = TIFF.open(fname, mode='w')
                        tiff.write_image(im_array)
                    finally:
                        tiff.close()
            except Exception as e:
                if skip_failed:
                    # respect skip_failed on unexpected errors
                    warn(str(e), image_warning_id, warn_skip=True)
                    continue
                else:
                    raise

    finally:
        # close the archive file,if it is created
        if download_tar:
            archive.close()
        # Close the connection
        conn.close()
Esempio n. 60
0
    def _save_datasets_as_mitiff(self, datasets, image_description,
                                 gen_filename, **kwargs):
        """Put all together and save as a tiff file.

        Include the special tags making it a mitiff file.

        """
        from libtiff import TIFF

        tif = TIFF.open(gen_filename, mode='wb')

        tif.SetField(IMAGEDESCRIPTION, (image_description).encode('utf-8'))

        cns = self.translate_channel_name.get(kwargs['sensor'], {})
        if isinstance(datasets, list):
            LOG.debug("Saving datasets as list")
            for _cn in self.channel_order[kwargs['sensor']]:
                for dataset in datasets:
                    if dataset.attrs['name'] == _cn:
                        # Need to possible translate channels names from satpy to mitiff
                        cn = cns.get(dataset.attrs['name'],
                                     dataset.attrs['name'])
                        data = self._calibrate_data(
                            dataset, dataset.attrs['calibration'],
                            self.mitiff_config[kwargs['sensor']][cn]
                            ['min-val'], self.mitiff_config[
                                kwargs['sensor']][cn]['max-val'])
                        tif.write_image(data.astype(np.uint8),
                                        compression='deflate')
                        break
        elif 'dataset' in datasets.attrs['name']:
            LOG.debug("Saving %s as a dataset.", datasets.attrs['name'])
            if len(datasets.dims) == 2 and (all('bands' not in i
                                                for i in datasets.dims)):
                # Special case with only one channel ie. no bands

                # Need to possible translate channels names from satpy to mitiff
                # Note the last index is a tuple index.
                cn = cns.get(datasets.attrs['prerequisites'][0]['name'],
                             datasets.attrs['prerequisites'][0]['name'])
                data = self._calibrate_data(
                    datasets,
                    datasets.attrs['prerequisites'][0].get('calibration'),
                    self.mitiff_config[kwargs['sensor']][cn]['min-val'],
                    self.mitiff_config[kwargs['sensor']][cn]['max-val'])

                tif.write_image(data.astype(np.uint8), compression='deflate')
            else:
                for _cn_i, _cn in enumerate(
                        self.channel_order[kwargs['sensor']]):
                    for band in datasets['bands']:
                        if band == _cn:
                            chn = datasets.sel(bands=band)
                            # Need to possible translate channels names from satpy to mitiff
                            # Note the last index is a tuple index.
                            cn = cns.get(
                                chn.attrs['prerequisites'][_cn_i]['name'],
                                chn.attrs['prerequisites'][_cn_i]['name'])
                            data = self._calibrate_data(
                                chn, chn.attrs['prerequisites'][_cn_i].get(
                                    'calibration'), self.mitiff_config[
                                        kwargs['sensor']][cn]['min-val'],
                                self.mitiff_config[
                                    kwargs['sensor']][cn]['max-val'])

                            tif.write_image(data.astype(np.uint8),
                                            compression='deflate')
                            break
        elif self.palette:
            LOG.debug("Saving dataset as palette.")
            self._save_as_palette(tif, datasets, **kwargs)
        else:
            LOG.debug("Saving datasets as enhanced image")
            self._save_as_enhanced(tif, datasets, **kwargs)
        del tif