Esempio n. 1
0
def concat_primes(a, b):  # are ab and ba (concatenations) prime
    global paircache
    if (a, b) in paircache: return paircache[(a, b)]
    result = lib.miller_rabin_verified(a*(10**(1+int(math.log10(b))))+b) and \
             lib.miller_rabin_verified(b*(10**(1+int(math.log10(a))))+a)
    paircache[(a, b)] = result
    return result
Esempio n. 2
0
def primes(n):
    assert n % 10 == 0
    global steps, plistsize
    n2 = n * n
    for s in steps:  # if any are composite
        if not lib.miller_rabin_verified(n2 + s): return False
    for s in range(1, steps[-1], 2):  # make sure they are consecutive
        if (not s in steps) and lib.miller_rabin_verified(n2 + s): return False
    return True
Esempio n. 3
0
def recurse(num,dsum): # assume arguments satisfy num % dsum == 0
    global hsum, limit
    if num*10 >= limit: return
    if num % dsum == 0: # harshad number
        if lib.prime(num//dsum): # also strong harshad number
            num *= 10
            if lib.miller_rabin_verified(num+1): hsum += num+1; print(':',num+1)
            if lib.miller_rabin_verified(num+3): hsum += num+3; print(':',num+3)
            if lib.miller_rabin_verified(num+7): hsum += num+7; print(':',num+7)
            if lib.miller_rabin_verified(num+9): hsum += num+9; print(':',num+9)
        else: num *= 10
        for d in range(10): # recursively make right trunc harshad numbers
            if num % dsum == 0: recurse(num,dsum)
            num += 1
            dsum += 1
Esempio n. 4
0
def recurse(n, p):  # recurse admissible numbers, p is last prime factor used
    global limit, pfset
    p += 1  # find next prime
    while not lib.miller_rabin_verified(p):
        p += 1
    n *= p
    while n < limit:
        # find M>1 such than N+M is prime
        M = 2
        while True:
            if lib.miller_rabin_verified(n + M):
                pfset.add(M)
                break
            M += 1
        recurse(n, p)
        n *= p
Esempio n. 5
0
def MNS(n,d):
    Nnd, Snd = 0, 0
    for Mnd in range(n-1,0,-1):
        mask = ([0] * (n-Mnd)) + ([1] * Mnd) # 1=replaced digit, 0=other digits
        # mask is in big endian
        hasnextpermutation = True
        while hasnextpermutation: # try all mask permutations
            if d == 0 and mask[0] == 1: # cant have 0 at start of number
                hasnextpermutation = lib.lexico_next(mask)
                continue
            # use base 9 to select digits for replacement digits
            # if the b9 digit is b, b<d --> use itself, b>=d --> use b+1
            for b9 in range(0,9**(n-Mnd)): # form numbers with the digits
                if d != 0 and mask[0] == 0 and b9 % 9 == 0:
                    continue # cant put 0 at start of number
                num = 0
                for m in mask:
                    if m == 1: num = (num*10) + d # replaced digit
                    else: # other digits
                        b = b9 % 9
                        if b >= d: b += 1
                        num = (num*10) + b
                        b9 //= 9
                if lib.miller_rabin_verified(num):
                    Nnd += 1 # count
                    Snd += num # sum
            hasnextpermutation = lib.lexico_next(mask)
        if Nnd != 0: # found primes with Mnd instances of d
            print(': M(',n,',',d,') = ',Mnd,sep='')
            print(': N(',n,',',d,') = ',Nnd,sep='')
            print(': S(',n,',',d,') = ',Snd,sep='')
            return (Mnd, Nnd, Snd)
    assert 0 # should not reach here
Esempio n. 6
0
def primes(n):
    assert n % 10 == 0
    global steps
    n2 = n * n
    d = 3  # skip 2, odd steps so none are divisible by 2
    while d <= n:  # search for factors
        for s in steps:
            if (n2 + s) % d == 0: return False
        d += 2
    # make sure there arent any primes in between, miller rabin test
    for s in range(1, steps[-1], 2):
        if (not s in steps) and lib.miller_rabin_verified(n2 + s):
            return False
    return True
Esempio n. 7
0
# we must find the smallest n such that 2*n*p_n > modexceed
# prime number theorem tells us n ~= p_n / ln(p_n)
# pick a p_n estimate that gives 2*n*p_n ~= modexceed, then move up or down to
# find the solution

pn = 2 # approximate p_n with binary method
while 2*int(pn/math.log(pn))*pn < modexceed: pn *= 2
pn //= 2 # step back
add = pn // 2
while add != 0:
    pn += add
    if 2*int(pn/math.log(pn))*pn > modexceed: pn -= add
    add //= 2
print(': estimated p_n =',pn,'with n ~=',int(pn/math.log(pn)))
# step back to find prime near p_n
while not lib.miller_rabin_verified(pn): pn -= 1
print(': found prime value p_n =',pn)
# count primes
n = len(lib.list_primes2(pn))
print(': found n =',n)
# count down if needed
while 2*n*pn > modexceed:
    n -= 1
    pn -= 1 # find previous prime
    while not lib.miller_rabin_verified(pn): pn -= 1
# go up to first n value that exceeds
while 2*n*pn <= modexceed:
    n += 1
    pn += 1
    while not lib.miller_rabin_verified(pn): pn += 1
print(': found p_',n,' = ',pn,' with product 2*n*p_n = ',2*n*pn,sep='')
Esempio n. 8
0
import libtkoz as lib

maxn = 50 * 10**6

t = lambda n: 2 * n * n - 1

# very simple brute force, extremely slow, ~20min (pypy / i5-2540m)

count = 0
for n in range(2, maxn + 1):
    if lib.miller_rabin_verified(t(n)): count += 1
print(count)