Esempio n. 1
0
def eof_anal(data, show=False, label='', **kwargs):
	'''
	eof/pca to synthetic dataset
	'''
	import numpy as np
	import matplotlib.pyplot as plt
	from numpy.random import randn
	import matplotlib.cm as cm
	from numpy.linalg import svd, eig
	from numpy import dot, product, arange
	import libtools as lt
	
	#_if this is a 3d dataset, blorgh
	if data.ndim > 2:
		shape = data.shape
		data  = data.reshape( shape[0], product( shape[1:]) )
		multi = True
	else:
		multi = False	
		
	#_create fake data
	nt, nx	= data.shape
	x, t	= arange(nx), arange(nt)
	
	#_get covariance matrix of data
	covar	= dot( data.T, data ) / (nt-1.)

	eigV, eigL, pca, percent = eof(data)

	#_create fake data
	nt, nx	= data.shape
	x, t	= np.arange(nx), np.arange(nt)
	
	#_apply eof analysis (s is the sqrt of eigenvalues)
	#_ using SVG
##	l, s, r = svd(dataN, full_matrices=False)
##	eigV	= r.T.copy()
##	eigL	= s**2 / (nt-1.)
##	pca		= np.dot(l, np.diag(eigL))

##	#_using EIG
##	eigL, eigV 	= eig( covar )				#_get eigValues and eigVectors
##	idx 	= np.argsort(eigL)[::-1]		#_get eigenvalues in order
##	eigL 	= eigL[idx]						#
##	eigV 	= eigV[:,idx]					#_and eigenvectors
##	pca 	= np.dot( dataN, eigV )			#_calculate principal comps

	#_calc variance explained by each EOF
	percent = eigL / eigL.sum() * 100.
	lamberr = eigL * np.sqrt(2./(nt-1))

	#_initialize draw object
	fig = plt.figure( )
	arg = { 
		'extend': 'both', 
		'cmap' 	: cm.RdBu_r, 
		'levels': np.linspace(-1,1,11) }
	shape = (5,2)

	#_make unimportant eigenvectors plot lightly
	lw = np.ones((percent.size)) * 0.5
	lw[percent < 10.] = 0.2
	
	if not multi:
		#_create hovmuller diagram of synthetic data
		ax0 = plt.subplot2grid( shape, (0,0), rowspan=2 )
		ap0 = ax0.contourf( x, t, data, **arg )
		ax0.set_title( label ); ax0.set_ylabel('t')
		plt.colorbar( ap0 )
	
		#_create hovmuller diagram of synthetic data
		ax1 = plt.subplot2grid( shape, (0,1), rowspan=2 )
		ap1 = ax1.contourf( x, t, dataN, **arg )
		ax1.set_title( 'with white noise' )
		plt.colorbar( ap1 )
	
		#_plot the eigenspectrum with error bars (100 indep samples)
		ax2 = plt.subplot2grid( shape, (2,0), colspan=2 )
	##	ax2.errorbar( x+0.01, percent, yerr=lamberr, fmt='o', markersize=1.3)
		ax2.errorbar( x+0.01, eigL, yerr=lamberr, fmt='o', markersize=1.3)
		ax2.set_xlim(-1,nx); ##ax2.set_ylim(0,40)
		ax2.set_title('eigenspectrum scree plot')
	
		#_plot the EOFs scaled by the sqrt of the eigenvalues
		eof0 = dot( eigV[:,0], np.sqrt(eigL[0]) )
		eof1 = dot( eigV[:,1], np.sqrt(eigL[1]) )
		eof2 = dot( eigV[:,2], np.sqrt(eigL[2]) )
		ax3 = plt.subplot2grid( shape, (3,0), colspan=2 )
		ax3.plot( x, eof0, '-k', linewidth=lw[0] )
		ax3.plot( x, eof1, '-r', linewidth=lw[1] )
		ax3.plot( x, eof2, '-b', linewidth=lw[2] )
		ax3.set_title('first three eofs : black=1,red=2,blue=3')
		ax3.set_xlim(0,len(x)-1)

		#_plot first three pcs
		ax4 = plt.subplot2grid( shape, (4,0), colspan=2 )
		pc0 = pca[:,0] / np.sqrt(eigL[0])
		pc1 = pca[:,1] / np.sqrt(eigL[1])
		pc2 = pca[:,2] / np.sqrt(eigL[2])
		ax4.plot( t, pc0, '-k', linewidth=lw[0] )
		ax4.plot( t, pc1, '-r', linewidth=lw[1] )
		ax4.plot( t, pc2, '-b', linewidth=lw[2] )
		ax4.set_title('first three pcs : black=1,red=2,blue=3')
	##	ax4.set_ylim(-4,4)
		ax4.set_xlim(0,len(t)-1)
		
	elif multi:
		pass
	
	for ax in fig.axes: lt.shrink_ticks(ax,size=8)
	
	plt.tight_layout()
	if show: plt.show()
	else: plt.savefig('problem_'+label+'_.png')
Esempio n. 2
0
def plot_bias(fname=None,
              out_label='',
              experiment='hs3',
              dir_out='.',
              dir_plot='.',
              **kwargs):
    ''' read in output from calc bias, plot '''
    import numpy as np
    import matplotlib.pyplot as plt
    from libtools import shrink_ticks

    #_
    if fname is None:
        fname = 'shis-lbl.{0}.csv'.format(experiment)
        fname = os.path.join(dir_out, fname)

    #_open file
    f = open(fname, 'r')

    #_get wavenumbers
    f.readline()
    wvn = f.readline().split(',')
    wvn = [float(a) for a in wvn]

    data = []
    for line in f.readlines():
        data.append([float(a) for a in line.split(',')])

    data = np.array(data)
    nfov, nchan2 = data.shape

    #_shis is [:,0,:], lbldis is [:,1,:]
    data = data.reshape(nfov, 2, nchan2 / 2)

    diff = data[:, 1, :] - data[:, 0, :]
    bias_mu = diff.mean(0)
    bias_sd = diff.std(0)

    h, w = plt.figaspect(6)
    fig = plt.figure(figsize=(w, h))
    ax = fig.add_subplot(111)
    #fig, ax = plt.subplots(1)

    with open('/home/wsessions/bias.py', 'w') as f:
        for i, wave in enumerate(wvn):
            f.write("{0:7.3f}\t:\t{1:8.5f}\n".format(wave, bias_mu[i]))

    arg = (experiment, diff.shape[0])
    ax.set_title('Clear Sky Bias (LBLDIS minus S-HIS)')
    #	ax.set_title('LBLDIS minus S-HIS, experiment={0}, N={1:d}'.format(*arg))
    ax.scatter(wvn, bias_mu)
    ax.errorbar(wvn, bias_mu, yerr=bias_sd, linestyle='None')
    ax.set_ylim(-3, 3)
    ax.set_xlim([800, 1200])
    ax.grid(True)
    ax.set_xlabel('wavenumber')
    ax.set_ylabel('$\Delta B_{\\nu}T$ (K)')
    shrink_ticks(ax)
    pname = 'bias.{0}.png'.format(out_label)
    pname = os.path.join(dir_plot, pname)
    print pname
    plt.savefig(pname)

    #_close up file
    f.close()
def fig_00(pname='delta_bt.png', dir_plot='.', dv=-26, **kwargs):
    '''
	Spectral signatures of habits by wavenumber

	x == wavenumber
	y == change in radiance from clear sky?
	'''
    import matplotlib.pyplot as plt
    import os
    from lblrtm_utils import read_lbldis_out as read_lbldis
    from libtools import shrink_ticks
    from libgeo import planck_inv
    from lblrtm_utils import read_microwindows_header as mw
    from numpy import abs

    dir_in = '/data/wsessions/LBL-RTM_simulated/std_tropical'
    habits = {  #'quartz'	: 'blue', 
        'kaolinite': 'red',
        'gypsum': 'green'
    }

    fig, axis = plt.subplots(1)

    lines = []
    names = []
    #_read in all data and plot
    for h, c in habits.iteritems():

        #_gen filename
        fname = os.path.join(dir_in, '{0}.cdf'.format(h))
        fn_in = os.path.join(dir_in, 'lbldis_input.{0}'.format(h))

        #_read in output file
        data = read_lbldis(fname, fname_input=fn_in)

        #_convert to brightness temperatures
        wavs = data[0].wavenumber
        bt0 = planck_inv(data[0].radiances, wavs * 100, domain='wavenumber')
        bt1 = planck_inv(data[1].radiances, wavs * 100, domain='wavenumber')
        d_bt = bt0 - bt1

        line = axis.plot(wavs,
                         d_bt,
                         c=c,
                         linewidth=0.4,
                         label='changes by {0}'.format(h),
                         zorder=1)

    #_plot clear sky bt
    atwn = axis.twinx()
    line = atwn.plot(wavs, bt0, 'k-', linewidth=0.2, label='clear sky')

    #_plot microwindow numbers
    chans = mw()[abs(dv + 1)]
    for n, x in chans:
        v = (n + x) / 2.
        axis.plot([v, v], [0, 20], 'k--', linewidth=0.2)

    axis.set_xlim(600, 1300)
    axis.set_ylim(0, 20)

    axis.set_ylabel("$\Delta B_{\\nu}T$ $(K)$", size='small')
    axis.set_xlabel("wavenumber $(cm^{-1})$", size='small')
    atwn.set_ylabel("$B_{\\nu}T$ $(K)$", size='small', rotation=-90)

    axis.legend(loc=2, frameon=False, fontsize=8)
    atwn.legend(loc=1, frameon=False, fontsize=8)

    #_save
    [shrink_ticks(a) for a in [axis, atwn]]
    pname = os.path.join(dir_plot, pname)
    dbg(pname)
    plt.savefig(pname)
Esempio n. 4
0
def main(dir_cpl='{0}/cpl'.format(os.environ['PRODUCTS']), start_dtg=None,
	dir_plot='.', end_dtg=None, type_coa='a', **kwargs):
	'''
	start_dtg   str{14},    Starting date-time-group for subsetting
	end_dtg     str{14},    Can you solve the mystery?	

	'''
	from glob import glob
	from hs3_utils import Flight_segment 
	import matplotlib.pyplot as plt
	from libtools import shrink_ticks, epoch2iso, dtg2epoch, mkdir_p
	from numpy import arange, array, ceil, linspace
	from numpy.ma import mean
	from libcmap import rgbcmap
	from flight_namelists import experiments

	mkdir_p(dir_plot)

	#_get segments
	segments = experiments['HS3']

	#_convert bounding limits
	if start_dtg is not None:
		ep0 = dtg2epoch(start_dtg, full=True)
		ep1 = dtg2epoch(end_dtg, full=True)
	else:
		ep0 = '19000101000000'
		ep1 = '99999999999999'

	#_image setup
	smooth = False 
	label = 'nosmooth'
	files = glob('{0}/nc/*nc'.format(dir_cpl))
	files.sort()
	nrow = 6
	ncol = 2
	npag = ceil(len(files) / (nrow/ncol))
	calipso = rgbcmap('calipso')

	dtgs = segments.keys()
	dtgs.sort()
	#_loop over all cpl files (netcdf)
#	for i, fname in enumerate(files):
	for i, dtg in enumerate(dtgs):

		#_start new page
		if not i % (nrow*ncol):
			fig = plt.figure()
			fig.suptitle('CPL 532 Backscatter', size='small')
		#_calc column index

		#_calc row index

		ax_backscatter = fig.add_subplot(nrow, ncol, i%(nrow*ncol)+1)
		ax = ax_backscatter.twinx() 

		#_read in cpl data		
	#	cpl = read_cpl(f, None)
		cpl = Flight_segment(dtg=dtg)

		#_check if file is within limits
		if cpl.CPL_epoch.min() > ep1 and cpl.CPL_epoch.max() < ep0:
			continue

		#_get values of just aerosl
		aod = calc_aod(cpl, type_coa)
		bck	= calc_backscatter(cpl)
		if smooth:
			aod = smooth_aod(aod)

		#_generate list of times
		time = [epoch2iso(e) for e in cpl.CPL_epoch]

		#_get number of fovs
		nfov = aod.size
		nt = nfov / 2 

		ax.set_xticks(arange(aod.size)[nt:-nt:nt])
		ax.set_xticklabels(time[nt:-nt:nt])
		ax.xaxis.set_visible(False)

		props = dict(boxstyle='round', facecolor='white', alpha=.5)
	#	ax.text(nt/4., 3, f, color='k', size='x-small', bbox=props)
		f = '{0} - {1}'.format(time[0], time[-1]) 
		ax.text(nt/4., .75, f, color='k', size='xx-small', bbox=props)
		ax.set_ylim(0, 1)

		#_plotbackscatter
		cb=ax_backscatter.pcolormesh(bck,vmin=-4e-7,vmax=1e-4,cmap=calipso,
			zorder=0)
		ax.plot(aod, linewidth=0.2, zorder=1, color=(1,1,1,.5))

		if i % ncol:
		#	ax.set_ylabel('aod', size='xx-small')
			ax_backscatter.yaxis.set_visible(False)
		elif not i % ncol:
			ax.yaxis.set_visible(False)
			
		xlim=ax_backscatter.xaxis.get_data_interval()
		ax_backscatter.set_xlim(xlim)
		ax_backscatter.set_yticks(linspace(170,900,9))
		ax_backscatter.set_yticklabels(linspace(0,20,9)) 
		ax_backscatter.set_ylim(170,900)

		shrink_ticks(ax)
		shrink_ticks(ax_backscatter)

		#_I think this is bailing
		if (i % (nrow*ncol)) == ((nrow*ncol) - 1):
			page_num = i / (nrow*ncol)
			pname = 'page_{1}_{0:02d}_{2}OD_segments.png'.format(page_num,
				label, type_coa)
			pname = os.path.join(dir_plot, pname)
			print pname

			#_make a common y label
			fig.text(0.04, 0.5, 'altitude (km)', va='center',
				rotation='vertical', size='x-small')
			fig.text(0.96, 0.5, '{0}OD'.format(type_coa.upper()), va='center',
				rotation=270, size='x-small')

			fig.savefig(pname)
			plt.close()

	#_after everything is done	
	else:
		page_num = i / (nrow*ncol)
		pname = 'page_{1}_{0:02d}_{2}OD_segments.png'.format(page_num,
			label, type_coa)
		pname = os.path.join(dir_plot, pname)
		print pname

		#_make a common y label
		fig.text(0.04, 0.5, 'altitude (km)', va='center',
			rotation='vertical', size='x-small')
		fig.text(0.96, 0.5, 'AOD', va='center',
			rotation=270, size='x-small')

		fig.savefig(pname)
		plt.close()
def plot_simulated_histogram(out_label='',
                             plot_var='tau',
                             dir_hs3=os.path.join(os.environ['PRODUCTS'],
                                                  'hs3'),
                             **kwargs):
    '''
	produce some plots for this god damn stuff

	out_label	str,	experiment is not used so that it can
						denote specific input files as opposed 
						to output.  in_label should have been used.
	'''
    import matplotlib.pyplot as plt
    from libtools import mkdir_p, shrink_ticks
    from numpy import array, append

    #_read in retrieval data
    fname = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.retrieved'.format(out_label)
    fname = os.path.join(dir_hs3, fname)
    try:
        truth, retr, uncrt = read_simulated_retrieval(fname, **kwargs)
    except IOError:
        dbg(('Did you complete this retrieval yet?', out_label))
        os._exit(23)

    #_what are we working with?
    state_vars = retr.keys()  # truth.keys()
    dbg(state_vars)

    #_kick back if not available
    if plot_var not in state_vars:
        dbg(('Variable not retrieved:', plot_var))
        return

    #_color dictionary
    order = ['low', 'mid', 'high', 'very_high']
    ranges = {
        'low': {
            'color': 'blue',
            'tau': (-9999., 0.5),
            'ref': (0.5, 0.675),
        },
        'mid': {
            'color': 'green',
            'tau': (0.5, 1.0),
            'ref': (0.625, 0.75),
        },
        'high': {
            'color': 'orange',
            'tau': (1.0, 1.5),
            'ref': (0.75, 0.875),
        },
        'very_high': {
            'color': 'red',
            'tau': (1.5, 2.0),
            'ref': (0.875, 1.0),
        },
    }

    #_output directory for plots
    ppath = 'PLOTS_{0}'.format(out_label)
    if not os.path.exists(ppath):
        mkdir_p(ppath)

    #_produce for each state variable
    for sv in state_vars:
        #_get residual
        res = truth[sv] - retr[sv]

        #_initialize figure and axes
        fig = plt.figure()
        axes = []
        figtext = []

        ymax, xmax, xmin = 0, 0, 0
        nbin = 100
        axes.append(plt.subplot2grid((1, 1), (0, 0)))

        #_plot histogram of residuals
        (n, bins, patches) = axes[0].hist(res,
                                          bins=nbin,
                                          facecolor='b',
                                          edgecolor='b')
        xmax = max((xmax, bins.max()))
        xmin = min((xmin, bins.min()))
        ymax = max((ymax, n.max()))

        axes[0].plot([0, 0], [0, n.max()], 'k--')

        axes[0].set_xlabel('diff in tau, {0}'.format(sv), size='x-small')
        axes[0].set_title('retrieval residuals'.format(out_label),
                          size='xx-small')

        axes[0].set_ylabel('residuals, truth - oe_retrieval', size='x-small')

        #_max symmetric
        xbnd = max((abs(xmin), abs(xmax)))

        #_shrink...ticks...
        [ax.set_xlim(-xbnd, xbnd) for ax in axes]
        [ax.set_ylim(top=100) for ax in axes]
        [shrink_ticks(ax) for ax in axes]

        #_create image name
        pname = 'hist_{0}_{1}.png'.format(out_label, sv)
        pname = os.path.join(ppath, pname)
        plt.savefig(pname)
        plt.close()

        dbg(pname)
def plot_simulated_retrieval(out_label='',
                             plot_var='tau',
                             fsim=None,
                             dir_hs3=os.path.join(os.environ['PRODUCTS'],
                                                  'hs3'),
                             **kwargs):
    '''
	produce some plots for this god damn stuff

	out_label	str,	experiment is not used so that it can
						denote specific input files as opposed 
						to output.  in_label should have been used.
	'''
    import matplotlib.pyplot as plt
    from libtools import mkdir_p, shrink_ticks
    from numpy import array, append

    res = re.search('SIMULATED.(.*?).nc', fsim)
    sim_experiment = res.group(1)

    #_read in retrieval data
    fname = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.{1}.retrieved'.format(
        sim_experiment, out_label)
    fname = os.path.join(dir_hs3, fname)
    try:
        truth, retr, uncrt = read_simulated_retrieval(fname, **kwargs)
    except IOError:
        dbg(('Did you complete this retrieval yet?', out_label))
        os._exit(23)

    #_what are we working with?
    state_vars = retr.keys()  # truth.keys()
    dbg(state_vars)

    #_kick back if not available
    if plot_var not in state_vars:
        dbg(('Variable not retrieved:', plot_var))
        return

    #_color dictionary
    order = ['low', 'mid', 'high', 'very_high']
    ranges = {
        'low': {
            'color': 'blue',
            'tau': (-9999., 0.5),
            'ref': (0.5, 0.675),
        },
        'mid': {
            'color': 'green',
            'tau': (0.5, 1.0),
            'ref': (0.625, 0.75),
        },
        'high': {
            'color': 'orange',
            'tau': (1.0, 1.5),
            'ref': (0.75, 0.875),
        },
        'very_high': {
            'color': 'red',
            'tau': (1.5, 9999),
            'ref': (0.875, 1.0),
        },
    }

    #_output directory for plots
    ppath = 'PLOTS_{0}'.format(out_label)
    if not os.path.exists(ppath):
        mkdir_p(ppath)

    #_produce for each state variable
    for sv in state_vars:
        #_get residual
        res = truth[sv] - retr[sv]

        #_get indices for ranges
        for label, opts in ranges.iteritems():
            min_val, max_val = opts[sv]
            #	idx0 = truth[sv] >= min_val
            #	idx1 = truth[sv] < max_val
            #	idx = append(idx0[:,None], idx1[:,None], axis=1).all(axis=1)
            idx = (truth[sv] >= min_val) * (truth[sv] < max_val)
            ranges[label]['idx'] = idx

        #_initialize figure and axes
        fig = plt.figure()
        axes = []
        axis = plt.subplot2grid((2, 4), (1, 0), colspan=len(ranges.keys()))
        figtext = []

        ymax, xmax, xmin = 0, 0, 0
        nbin = 20
        for i, label in enumerate(order):  #ranges):
            min_val, max_val = ranges[label][sv]

            idx = ranges[label]['idx']
            col = ranges[label]['color']
            if idx.sum() == 0:
                continue

            axes.append(plt.subplot2grid((2, 4), (0, i)))

            #_plot histogram of residuals
            (n, bins, patches) = axes[i].hist(res[idx],
                                              bins=nbin,
                                              facecolor=col,
                                              edgecolor=col)
            xmax = max((xmax, bins.max()))
            xmin = min((xmin, bins.min()))
            ymax = max((ymax, n.max()))

            #_add label
            figtext.append('{0}\nmin {1:5.1f}\nmax {2:5.1f}'.format(
                label, min_val, max_val))

            axes[i].set_xlabel('difference in {0}'.format(sv), size='x-small')

            #_plot uncertainty by truth
            fract = uncrt[sv][idx] / truth[sv][idx]
            x_truth, y_fract = [], []
            for value in set(truth[sv][idx]):
                x_truth.append(value)
                y_fract.append(fract[truth[sv][idx] == value])

        ##	axis.scatter(truth[sv][idx], fract, marker='x', color=col)
            axis.boxplot(y_fract, positions=x_truth, widths=0.05)
        ##	axis.plot(truth[sv][idx], fract, marker='x', color=col)
        ##	axis.scatter(truth[sv][idx], uncrt[sv][idx], marker='x', color=col)

        axis.set_xticks(list(set(truth[sv])))
        axes[0].set_title('{0} (experiment label)'.format(out_label),
                          size='xx-small')

        #_various things for uncertainty
        axis.set_ylim(bottom=0)
        axis.set_xlim(truth[sv].min() - 0.1, truth[sv].max() + 0.1)
        axis.set_ylabel('posterior uncercertainty', size='x-small')
        axis.set_xlabel('{0}'.format(sv), size='x-small')
        axis.grid(False)

        axes[0].set_ylabel('residuals, truth - oe_retrieval', size='x-small')

        #_max symmetric
        xbnd = max((abs(xmin), abs(xmax)))
        for i, label in enumerate(order):
            axes[i].text(0, ymax - ymax / 5., figtext[i], size='xx-small')

        #_shrink...ticks...
        [ax.set_xlim(-xbnd, xbnd) for ax in axes]
        [ax.set_ylim(top=ymax) for ax in axes]
        [shrink_ticks(ax) for ax in axes]
        shrink_ticks(axis)

        #_create image name
        pname = 'hist_uncert.{0}.{1}.{2}.png'.format(sim_experiment, out_label,
                                                     sv)
        pname = os.path.join(ppath, pname)
        plt.savefig(pname)
        plt.close()

        dbg(pname)
def fig_02(sv='tau',
           fnames=[],
           delta_ts=[0],
           dir_plot='.',
           dir_hs3='.',
           by_var=False,
           threshold_aod=0.1,
           **kwargs):
    '''
	plot histograms of all the surf temperature tests (alpha it up)

	delta_ts	array of departures from the true surface temp
	fnames		list,		names of input files (SIMULATED)
	'''
    from oe_sim import read_simulated_retrieval
    import matplotlib.pyplot as plt
    from numpy import array, append, linspace
    from libtools import shrink_ticks, colors_spag

    fig, axis = plt.subplots(1)
    nshift = len(delta_ts)

    #_loop over shift in T
    for j, shift_temp in enumerate(delta_ts):
        #_ignore non-shifted
        if shift_temp == 0:
            continue

        #_define out_label
    ##	kwargs.update({'out_label' : 'SFC_TEMP_{0:4.2f}'.format(shift_temp)})
        out_label = 'SFC_TEMP_{0:4.2f}'.format(shift_temp)

        #_loop over input files
        for i, fname in enumerate(fnames):
            lab = re.search('SIMULATED.(.*?).nc$', fname).group(1)
            lab = '{0}.{1}'.format(lab, out_label)
            fname = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.retrieved'.format(lab)
            fname = os.path.join(dir_hs3, fname)

            if not i:  #_read in data
                truth, retr, uncrt = read_simulated_retrieval(fname, **kwargs)
            else:  #_append data together
                t, r, u = read_simulated_retrieval(fname, **kwargs)
                for sv in truth:
                    truth[sv] = append(truth[sv], t[sv])
                for sv in retr:
                    retr[sv] = append(retr[sv], r[sv])
                for sv in uncrt:
                    uncrt[sv] = append(uncrt[sv], u[sv])

        #_calculate residuals
        res = truth[sv] - retr[sv]

        #_setup plot
        args = {'bins': 100, 'alpha': 0.5, 'range': (-1, 1)}

        #_Make and image separating out heights
        #_make whisker plot

        #_make histogram
        if by_var != False:
            vars = list(set(truth[by_var]))
            nvar = len(vars)

            #_only do this crap first time through
            if j == 0:
                cols = colors_spag(nshift * nvar)

            for k, v in enumerate(vars):
                idx = truth[by_var] == v

                #_calculate percentage within thresh?
                P = (abs(res[idx]) <= threshold_aod).sum() / float(idx.sum())
                P *= 100
                fmt = '$\Delta$T={0:>5.2f}, {4}={1:>4.2f},{2:>6.1f}%' +\
                 '$\pm${3:>5.2f}'
                args.update({
                    'facecolor':
                    cols[j * nvar + k],
                    'edgecolor':
                    cols[j * nvar + k],
                    'label':
                    fmt.format(shift_temp, v, P, threshold_aod, by_var)
                })
                (n, bins, patches) = axis.hist(res[idx], **args)

        #_make histogram
        else:
            if j == 0:
                #_only do this crap first time through
                cols = colors_spag(nshift)
                k = 0

            #_calculate percentage within thresh?
            P = (abs(res) <= threshold_aod).sum() / float(res.size)
            P *= 100
            fmt = '$\Delta$T={0:>5.2f},{1:>6.1f}%$\pm${2:>5.2f}'
            args.update({
                'facecolor': cols[j],
                'edgecolor': cols[j],
                'label': fmt.format(shift_temp, P, threshold_aod)
            })
            (n, bins, patches) = axis.hist(res, **args)

    #_add legend
    rem = 1 if (j + k) % 26 else 0
    ncol = (j + k) / 26 + rem
    dbg((ncol, rem, j + k))
    lgd = axis.legend(fontsize=8,
                      loc=2,
                      bbox_to_anchor=(1.05, 1.),
                      borderaxespad=0.,
                      frameon=False)
    #_highlight within TOLERANCE level (90% within 0.01?)

    #_particulars
    axis.set_xlabel('Residuals (True OD - S-HIS OE Retrieval)', size='small')
    axis.set_xlim(-1, 1)
    axis.set_xticks(linspace(-1, 1, 21))
    shrink_ticks(axis)

    #_savefig
    tf = type(by_var) == str
    pname = 'surf_temp_tolerance{0}.png'.format(tf * '_{0}'.format(by_var))
    pname = os.path.join(dir_plot, pname)
    dbg(pname)
    plt.savefig(pname, bbox_extra_artists=(lgd, ), bbox_inches='tight')
def fig_01_check(var,
                 out_label='',
                 plot_var='tau',
                 fsim=None,
                 dir_lblrtm=None,
                 dir_hs3=os.path.join(os.environ['PRODUCTS'], 'hs3'),
                 **kwargs):
    '''
	Uncertainty by optical depth
	
	First does plot of all median uncertainties?  Or by specific ref/z

	Plot uncertainty broken down by ref/z with box/whisker plots.

	Plot them in total.

	plot_simulated_by_var
	produce some plots for this god damn stuff

	out_label	str,	experiment is not used so that it can
						denote specific input files as opposed 
						to output.  in_label should have been used.
	'''
    import matplotlib.pyplot as plt
    from libtools import mkdir_p, shrink_ticks
    from numpy import array, append

    dbg('running...')
    #_read in retrieval data
    if type(fsim) != list:
        res = re.search('SIMULATED.(.*?).nc', fsim)
        sim_experiment = res.group(1)
        fname = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.{1}.retrieved'.format(
            sim_experiment, out_label)
        fname = os.path.join(dir_hs3, fname)

        try:
            truth, retr, uncrt = read_simulated_retrieval(fname, **kwargs)
        except IOError:
            dbg(('Did you complete this retrieval yet?', out_label))
            os._exit(23)

    else:
        for fname in fsim:
            res = re.search('SIMULATED.(.*?).nc', fname)
            sim_experiment = res.group(1)
            fname = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.{1}.retrieved'.format(
                sim_experiment, out_label)
            fname = os.path.join(dir_hs3, fname)
            t, r, u = read_simulated_retrieval(fname, **kwargs)
            try:
                [append(truth[sv], t[sv]) for sv in t.keys()]
                [append(retr[sv], r[sv]) for sv in r.keys()]
                [append(uncrt[sv], u[sv]) for sv in u.keys()]
            except UnboundLocalError:
                truth, retr, uncrt = t, r, u

        sim_experiment = 'NOISE'

    #_what are we working with?
    state_vars = retr.keys()  # truth.keys()

    #_kick back if not available
    if plot_var not in state_vars:
        dbg(('Variable not retrieved:', plot_var))
        return

    #_output directory for plots
    ppath = 'PLOTS_{0}'.format(out_label)
    if not os.path.exists(ppath):
        mkdir_p(ppath)

    #_get potential settings for value
    values = list(set(truth[var]))
    nval = len(values)
    values.sort()

    nrow = 6
    npag = nval / nrow  #_do we need this?
    page = 0

    #_produce for each state variable
    for sv in state_vars:

        for j, value in enumerate(values):
            dbg((sv, var, value))

            #_initialize new figure
            if not j % nrow:
                page += 1
                fig = plt.figure()
                k = 0

            #_get indices of limit
            idx = truth[var] == value

            #_get residual
            res = truth[sv][idx] - retr[sv][idx]

            #_initialize figure and axes
            axis = fig.add_subplot(nrow, 1, k + 1)

            ymax, xmax, xmin = 0, 0, 0
            nbin = 20

            #_plot uncertainty by truth
            fract = uncrt[sv][idx] / truth[sv][idx]
            x_truth, y_fract = [], []
            for value_truth in set(truth[sv]):
                x_truth.append(value_truth)
                y_fract.append(fract[truth[sv][idx] == value_truth])

            ##	axis.scatter(truth[sv][idx], fract, marker='x', color=col)
            axis.boxplot(y_fract, positions=x_truth, widths=0.05)

            axis.set_xticks(list(set(truth[sv])))

            #_various things for uncertainty
            axis.set_ylim(bottom=0, top=2)
            axis.set_xlim(truth[sv].min() - 0.1, truth[sv].max() + 0.1)
            axis.set_ylabel('{0} = {1}'.format(var, value), size='x-small')
            axis.grid(False)

            #_shrink...ticks...
            shrink_ticks(axis)

            #_save when page full
            if k == (nrow - 1) or j == nval - 1:
                #_create image name
                pname = 'hist_uncert.{0}.{1}.{2}.by_{3}.p{4:02d}.png'.format(
                    sim_experiment, out_label, sv, var, page)
                pname = os.path.join(ppath, pname)
                plt.savefig(pname)
                plt.close()

                dbg(pname)

            k += 1
def fig_01(var,
           out_label='',
           plot_var='tau',
           fsim=None,
           dir_hs3=os.path.join(os.environ['PRODUCTS'], 'hs3'),
           dir_plot='.',
           files=[],
           **kwargs):
    '''
	produce some plots for this god damn stuff

	out_label	str,	experiment is not used so that it can
						denote specific input files as opposed 
						to output.  in_label should have been used.
	'''
    import matplotlib.pyplot as plt
    from libtools import mkdir_p, shrink_ticks
    from numpy import array, append
    import re
    from oe_sim import read_simulated_retrieval

    if len(files) == 0:
        print type(fsim)
        res = re.search('SIMULATED.(.*?).nc', fsim)
        sim_experiment = res.group(1)

        #_read in retrieval data
        fname = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.{1}.retrieved'.format(
            sim_experiment, out_label)
        fname = os.path.join(dir_hs3, fname)
        try:
            truth, retr, uncrt = read_simulated_retrieval(fname, **kwargs)
        except IOError:
            dbg(('Did you complete this retrieval yet?', out_label))
            os._exit(23)
    else:
        for i, f in enumerate(files):
            res = re.search('SIMULATED.(.*?).nc', f)
            sim_experiment = res.group(1)
            f = 'SHIS.CPL.GDAS.COLLOC.SIMULATED.{0}.{1}.retrieved'.format(
                sim_experiment, out_label)
            f = os.path.join(dir_hs3, f)
            try:
                if i == 0:  #_initialize
                    truth, retr, uncrt = read_simulated_retrieval(f, **kwargs)
                else:  #_append
                    t, r, u = read_simulated_retrieval(f, **kwargs)
                    for sv in truth:
                        truth[sv] = append(truth[sv], t[sv])
                    for sv in retr:
                        retr[sv] = append(retr[sv], r[sv])
                    for sv in uncrt:
                        uncrt[sv] = append(uncrt[sv], u[sv])
            except IOError:
                dbg(('Did you complete this retrieval yet?', f))
                os._exit(23)

        res = re.search('SIMULATED.(.*?).nc', fsim)
        sim_experiment = res.group(1).split('.')[0]
        out_label = 'summary'

    #_what are we working with?
    state_vars = retr.keys()  # truth.keys()
    dbg('')
    dbg(state_vars)

    #_kick back if not available
    if plot_var not in state_vars:
        dbg(('Variable not retrieved:', plot_var))
        return

    #_color dictionary
    order = ['low', 'mid', 'high', 'very_high']
    ranges = {
        'low': {
            'color': 'blue',
            'tau': (-9999., 0.5),
            'ref': (0.5, 0.675),
        },
        'mid': {
            'color': 'green',
            'tau': (0.5, 1.0),
            'ref': (0.625, 0.75),
        },
        'high': {
            'color': 'orange',
            'tau': (1.0, 1.5),
            'ref': (0.75, 0.875),
        },
        'very_high': {
            'color': 'red',
            'tau': (1.5, 9999),
            'ref': (0.875, 1.0),
        },
    }

    #_output directory for plots
    ppath = '{1}.{0}'.format(out_label, sim_experiment)
    ppath = os.path.join(dir_plot, ppath)
    if not os.path.exists(ppath):
        mkdir_p(ppath)

    #_get potential settings for value
    values = list(set(truth[var]))
    nval = len(values)
    values.sort()
    ''' make loop over pages, 6 per page '''
    nrow = 6
    npag = nval / nrow  #_do we need this?
    page = 0

    #_produce for each state variable
    for sv in state_vars:

        for j, value in enumerate(values):
            dbg((sv, var, value))

            #_initialize new figure
            if not j % nrow:
                page += 1
                fig = plt.figure()
                k = 0
                fig.suptitle('Fractional Uncertainty')

            #_get indices of limit
            idx = truth[var] == value

            #_get residual
            res = truth[sv][idx] - retr[sv][idx]

            #_initialize figure and axes
            axis = fig.add_subplot(nrow, 1, k + 1)

            ymax, xmax, xmin = 0, 0, 0
            nbin = 20

            #_plot uncertainty by truth
            fract = uncrt[sv][idx] / truth[sv][idx]
            x_truth, y_fract = [], []

            #_pull out values across all over vars, at truth value
            for value_truth in set(truth[sv]):
                x_truth.append(value_truth)
                y_fract.append(fract[truth[sv][idx] == value_truth])

            #_pull out number of retrievals going into these
            y_bar = [len(y) for y in y_fract]

            ##	axis.scatter(truth[sv][idx], fract, marker='x', color=col)
            axis.boxplot(y_fract, positions=x_truth, widths=0.05)
            axis.set_xticks(list(set(truth[sv])))

            abar = axis.twinx()
            bar_width = (max(x_truth) - min(x_truth)) / float(len(x_truth))\
              - 0.05

            abar.bar(x_truth - bar_width / 2.,
                     y_bar,
                     bar_width,
                     alpha=0.24,
                     color='brown')
            #_get how high we can go and still be 95 % certain of the AOD
            ##	m95 = truth[sv][certainty_garbage(res)]

            #_various things for uncertainty
            #	axis.text(truth[sv].max()-0.2, 1.6, 'n={0}'.format(len(y_fract))
            axis.set_ylim(bottom=0, top=2)
            axis.set_xlim(truth[sv].min() - 0.1, truth[sv].max() + 0.1)
            axis.set_ylabel('{0} = {1}'.format(var, value), size='xx-small')
            axis.set_ylabel('{0} = {1}'.format(var, value), size='x-small')
            ##			axis.set_xlabel('{0}, max_95 {1:5.2f}'.format(sv,m95), size='x-small')
            axis.grid(False)

            #_shrink...ticks...
            shrink_ticks(axis)
            shrink_ticks(abar)

            #_save when page full

            if k == (nrow - 1) or j == nval - 1:
                #_create image name
                pname = 'hist_uncert.{0}.{1}.{2}.by_{3}.p{4:02d}.png'.format(
                    sim_experiment, out_label, sv, var, page)
                pname = os.path.join(ppath, pname)
                plt.savefig(pname)
                plt.close()

                dbg(pname)

            k += 1
Esempio n. 10
0
def plot_period(data, e0, e1, plot_oe=True, plot_caliop=False,
	cmfile='/home/wsessions/lib/cmaps/calipso-backscatter.cmap', **kwargs):
	''' plot all the crep in data '''
	#_read in retrieval data for period
	##	obs = read_oe(airs.AIRS_epoch, **kwargs)
	import matplotlib.pyplot as plt
	from libcmap import rgbcmap
	from libtools import epoch2iso as e2i
	from numpy import array, vstack, arange, recarray, append
	from libtools import shrink_ticks
	from numpy.ma import masked_where as mw
	import ccplot_cmap as ccc

	nplot = sum([plot_oe, plot_caliop])
	fig, ax = plt.subplots(nplot)

	try:
		ax_oe, ax_cal = ax
	except:
		ax_oe = ax

	dbg(e2i([e0, e1]))

	#_plot retrievals from optimal estimation
	#_AIRS_____#
	def fix_oe_crap(d, **kwargs):
		''' get the oe values out of stupid dictionaries '''
		example = array([f is not None for f in d.values]) 
		example = d[example.argmin()]
		ssp_dbs = example.values.ssp_db
		names = [n.split('.')[-2] for n in ssp_dbs]

		#_build recarray to store these
		nssp = len(ssp_dbs)
		nt = d.size
		dtype = [('tau','f4'), ('lat','f4'), ('lon','f4'), ('epoch', 'f8'),
				('name','a20'), ('habit', 'a20'), ('ref_wvnum', 'f4'),
				('z_top', 'f4'), ('z', 'f4'), ('ref', 'f4')]  
		data = recarray((nssp*nt), dtype)

		#_loop over layers and pull all this crap out
		for i, vals in enumerate(d.values):
			for ii, l in enumerate(vals.layers):
				idx = ii + nssp*i

				habit = vals.ssp_db[l['dbnum']].split('.')[-2]
				arg = (l['tau'][0], d.lat[i], d.lon[i], d.epoch[i], d.name[i],
					habit, l['ref_wvnum'], l['z_top'], l['z'], l['ref'])
				data[idx] = arg

		data = data[data.tau != -9999]		
		return data

	#_pull out oe
	oe = data[data.name == 'oe']
	idx = array([d is not None for d in oe.values])
	oe = oe[idx]
	oe = oe[oe.epoch.argsort()]
	oe = oe[(oe.epoch >= e0) * (oe.epoch <= e1)]

	#_pull out optical depths and put into dictionary by specie
	oe = fix_oe_crap(oe, **kwargs)
	ssps = set(oe.habit)
	for habit in set(oe.habit):
		if habit == 'mie_wat':
			continue
	
		#_pull out this ssp habit
		oe_habit = oe[oe.habit == habit]
		oe_habit = oe_habit[oe_habit.epoch.argsort()]

		#_
		x = oe_habit.epoch
		y = oe_habit.tau
		nt = x.size
		max_oe_epoch, min_oe_epoch = x.max(), x.min()
		
		ax_oe.plot(x, y, label=habit, linewidth=0.5)
		xticks = append(x[::nt/5], x[-1])
		if xticks[-1] - xticks[-2] < nt/20:
			xticks[-2] = xticks[-1]
		xticklabels = [tmp[11:19] for tmp in e2i(xticks)]
		ax_oe.set_xticks(xticks)
		ax_oe.set_xticklabels(xticklabels)
		shrink_ticks(ax_oe)

		#_crop plotting area.
		ax_oe.set_xlim(x.min(), x.max())
		ax_oe.set_ylim(0, 3.)

	#_drop box, make smaller
	ax_oe.legend()

	##########
	#_CALIOP_#
	if plot_caliop:
		import numpy as np
	
		#_ pull out caliop data
		caliop = data[data.name == 'caliop']
		idx_c = (caliop.epoch >= e0) * (caliop.epoch <= e1)
		caliop = caliop[(caliop.epoch >= min_oe_epoch) * (caliop.epoch <= max_oe_epoch)]
	##	caliop = caliop[(caliop.epoch >= e0) * (caliop.epoch <= e1)]
		caliop = caliop[caliop.epoch.argsort()]
		x = caliop.epoch

		#_put into ONE BIG OL 2d array 
		caliop = vstack(caliop.values)
		caliop = mw(caliop == -9999, caliop)
		calipo = np.ma.masked_invalid(caliop)
	##	caliop[caliop < 0] = 0.
	##	caliop[caliop > 1.5] = 1.5

		#_coords
		y = arange(caliop.shape[1])

		dbg(('REMOVE TRUNCATION'))
		#_load up backscatter colormaps
		cmap, norm, ticks = ccc.loadcolormap(cmfile, 'caliop')
	##	cb = ax_cal.imshow(caliop.T, cmap=cmap, norm=norm, interpolation='nearest')
		im = ax_cal.pcolormesh(x, y, caliop.T, cmap=cmap, norm=norm)#, vmin=0, vmax=1.5)
		ax_cal.set_xlabel('{0:e}, {1:e}'.format(caliop.max(), caliop.min()))

		#_label bottom
		xticks = append(x[::x.size/5], x[-1])
		if xticks[-1] - xticks[-2] < 100:
			xticks[-2] = xticks[-1]
		xticklabels = [tmp[11:19] for tmp in e2i(xticks)]

		ax_cal.set_xticks(xticks)
		ax_cal.set_xticklabels(xticklabels)
		ax_cal.invert_yaxis()
		ax_cal.get_yaxis().set_visible(False)
		ax_cal.set_xlim(x.min(), x.max())
		shrink_ticks(ax_cal)

	##	cb = fig.colorbar(im, ax=axes, cax=cbaxes, orientation="vertical",
    ##                  extend="both", ticks=ticks, norm=norm,
    ##                  format=SciFormatter())

	##	cb.set_label(name)

	pname = 'oe_{0}_{1}.png'.format(e2i(e0), e2i(e1))
	pname = pname.replace(':', '-')
	dbg(pname)
	plt.savefig(pname)
Esempio n. 11
0
def main(dir_cpl='{0}/cpl'.format(os.environ['PRODUCTS']),
         start_dtg=None,
         dir_plot='.',
         end_dtg=None,
         **kwargs):
    '''
	start_dtg   str{14},    Starting date-time-group for subsetting
	end_dtg     str{14},    Can you solve the mystery?	

	'''
    from glob import glob
    from hs3_utils import read_cpl
    import matplotlib.pyplot as plt
    from libtools import shrink_ticks, epoch2iso, dtg2epoch, mkdir_p
    from numpy import arange, array, ceil, linspace
    from numpy.ma import mean
    from libcmap import rgbcmap

    mkdir_p(dir_plot)

    #_convert bounding limits
    if start_dtg is not None:
        ep0 = dtg2epoch(start_dtg, full=True)
        ep1 = dtg2epoch(end_dtg, full=True)
    else:
        ep0 = '19000101000000'
        ep1 = '99999999999999'

    #_image setup
    smooth = False
    label = 'nosmooth'
    files = glob('{0}/nc/*nc'.format(dir_cpl))
    files.sort()
    nrow = 6
    npag = ceil(len(files) / nrow)
    calipso = rgbcmap('calipso')

    #_loop over all cpl files (netcdf)
    i = 0
    for q, fname in enumerate(files):

        f = fname.split('/')[-1]

        #_read in cpl data
        cpl = read_cpl(f, None)

        #_check if file is within limits
        if cpl.epoch.min() > ep1 or cpl.epoch.max() < ep0:
            continue

        #_start new page
        if not i % nrow:
            fig = plt.figure()

        ax_backscatter = fig.add_subplot(nrow, 1, i % nrow + 1)
        ax = ax_backscatter.twinx()

        print 'MADE IT'

        #_get values of just aerosl
        aod = calc_aod(cpl)
        bck = calc_backscatter(cpl)
        if smooth:
            aod = smooth_aod(aod)

        #_generate list of times
        time = [epoch2iso(e) for e in cpl.epoch]

        #_get number of fovs
        nfov = aod.size
        nt = nfov / 5

        ax.set_xticks(arange(aod.size)[nt:-nt:nt])
        ax.set_xticklabels(time[nt:-nt:nt])

        props = dict(boxstyle='round', facecolor='white', alpha=.5)
        ax.text(nt / 4., 3, f, color='k', size='x-small', bbox=props)
        ax.set_ylim(0, 4)

        #_plotbackscatter
        cb = ax_backscatter.pcolormesh(bck,
                                       vmin=-4e-7,
                                       vmax=1e-4,
                                       cmap=calipso,
                                       zorder=0)
        ax.plot(aod, linewidth=0.2, zorder=1, color=(1, 1, 1, .5))
        ax.set_ylabel('aod', size='xx-small')
        xlim = ax_backscatter.xaxis.get_data_interval()
        ax_backscatter.set_xlim(xlim)
        ##	ax_backscatter.set_ylim(0,900)
        ax_backscatter.set_yticks(linspace(170, 900, 11))
        ax_backscatter.set_yticklabels(linspace(0, 20, 11))
        ax_backscatter.set_ylim(170, 900)

        shrink_ticks(ax)
        shrink_ticks(ax_backscatter)

        i += 1
        if (i % nrow) == (nrow - 1):
            page_num = i / nrow
            pname = 'page_{1}_{0:02d}_0.png'.format(page_num, label)
            pname = os.path.join(dir_plot, pname)
            print pname

            #_make a common y label
            fig.text(0.04,
                     0.5,
                     'altitude (km)',
                     va='center',
                     rotation='vertical',
                     size='x-small')

            fig.savefig(pname)
            plt.close()

    else:
        page_num = i / nrow
        pname = 'page_{1}_{0:02d}_0.png'.format(page_num, label)
        pname = os.path.join(dir_plot, pname)
        print pname

        #_make a common y label
        fig.text(0.04,
                 0.5,
                 'altitude (km)',
                 va='center',
                 rotation='vertical',
                 size='x-small')

        fig.savefig(pname)
        plt.close()