def fake_neuron(stepsize=0.001, offset=.8): stimulus = np.random.randn(102000) * 2.5 b, a = signal.butter(2, 7.5, fs=1. / stepsize, btype="low") stimulus = signal.filtfilt(b, a, stimulus) stimulus = stimulus[1000:-1000] lif_model = lif.LIF(stepsize=stepsize, offset=offset) time, v, spike_times = lif_model.run_stimulus(stimulus) return time, v, stimulus, spike_times
def fake_neuron(stepsize=0.001, offset=.8): stimulus = np.random.randn(80000) * 2.5 b, a = signal.butter(8, 0.125) stimulus = signal.filtfilt(b, a, stimulus[:]) s = np.hstack((np.zeros(10000), stimulus, np.zeros(10000))) lif_model = lif.LIF(stepsize=stepsize, offset=offset) time, v, spike_times = lif_model.run_stimulus(s) stimulus_onset = 10000 * stepsize stimulus_duration = len(stimulus) * stepsize return time, v, stimulus, stimulus_onset, stimulus_duration
def fake_neuron(stepsize=0.001, offset=.8, sta_offset=100): stimulus = np.random.randn(100000) * 2.5 b, a = signal.butter(8, 0.25) stimulus = signal.filtfilt(b, a, stimulus) lif_model = lif.LIF(stepsize=stepsize, offset=offset) time, v, spike_times = lif_model.run_stimulus(stimulus) snippets = np.zeros((len(spike_times), 2 * sta_offset)) for i, t in enumerate(spike_times): index = int(round(t / stepsize)) if index < sta_offset: snip = stimulus[0:index + sta_offset] snippets[i, -len(snip):] = snip elif (index + sta_offset) > len(stimulus): snip = stimulus[index - sta_offset:] snippets[i, 0:len(snip)] = snip else: snippets[i, :] = stimulus[index - sta_offset:index + sta_offset] return time, v, spike_times, snippets
def fake_neuron(): lif_model = lif.LIF(offset=1.0) t, v, spike_times = lif_model.run_const_stim(5000, 0.00025) return t, v, spike_times
def fake_neuron(): lif_model = lif.LIF() t, v, spike_times = lif_model.run_const_stim(10000, 0.005) return t, v, spike_times