Esempio n. 1
0
            for hp in self.hpg.enumerate()
        ]
        return expts


'''
Config Instances
'''

B1 = Build(image_url='efnet:latest',
           build_steps=['docker build -t efnet:latest .'])

Co1 = Container(build=B1)
S1 = StorageDirs(working_dir='.', data_dir='/data/imagenette-160')

L = LoggerConfig(mlflow=MLFlowConfig())
Re1 = Resources(storage=S1, ctr=Co1, loggers=L)

H1 = HP(batch_size=32, epochs=1, gpu_id=0, model_name='efficientnet-b0')
HPG1 = HPG(batch_size=16,
           epochs=1,
           gpu_id=0,
           model_name=['efficientnet-b0', 'efficientnet-b1'])

# docker engine
Ru1 = Run(
    cmd="python main.py {{run.data_dir}} --output-dir {{run.output_dir}}\
        -a {{hp.model_name}} --pretrained  -b {{hp.batch_size}} \
        -j 0  --epochs {{hp.epochs}} --gpu {{hp.gpu_id}}",  # --experiment_name {{er.run.experiment_name}}
    experiment_name="efnet0")
Esempio n. 2
0
        expts = [Experiment(er=self.er, hp=hp, run=self.run) for hp in hps]
        return expts


'''
Config Instances
'''

B1 = Build(image_url='pytorch_expt',
           build_steps=['docker build -t pytorch_expt .'])
Co1 = Container(build=B1)

S1 = StorageDirs(data_dir='./data')
#L = LoggerConfig(names=['mlflow', 'trains'])

Lm = MLFlowConfig(port=5000)
L = LoggerConfig(mlflow=Lm)
R1 = Resources(storage=S1, ctr=Co1, loggers=L)  #or ctr=None

# for k8 engine
# replace multiple attributes, recursively
R2 = rreplace(R1, {
    'loggers.mlflow.client_in_cluster': True,
    'loggers.mlflow.port': 30005,
})

H1 = HPGroup(alpha=0.05, l1_ratio=[0.01, 0.015, 0.0015])

Ru1 = Run(
    cmd=
    "python train.py --data-dir {{run.data_dir}} --output-dir {{run.output_dir}} --alpha {{hp.alpha}} \
Esempio n. 3
0
        expts = [Experiment(er=self.er, hp=self.hp, run=self.run)]
        return expts[:1]


'''
Config Instances
'''

B1 = Build(image_url='tensorflow/tensorflow:latest-devel-gpu-py3', 
            build_steps=[]) #'docker build -t xx .'])

Ho1 = HostStore(working_dir='.', data_dir='./data')
S1 = Storage(host=Ho1)
Co1 = ContainerDirs()

Lm = MLFlowConfig(client_in_cluster=False, port=5000)
L = LoggerConfig(mlflow=Lm)
from lightex.mulogger.trains_logger import TrainsConfig
L.register_logger('trains', TrainsConfig())

R1 = Resources(build=B1, storage=S1, ctr=Co1, loggers=L)
H1 = HP()

Ru1 = Run(
    cmd="python tensorflow_mnist_with_summaries.py --data_dir {{run.data_dir}}\
        --max_steps {{hp.max_steps}}\
        --log_dir {{run.output_dir}}/logs\
        --save_path {{run.output_dir}}/models/model.ckpt",
    experiment_name="tf_mnist_summ",
    )
Esempio n. 4
0
    def get_experiments(self):
        expts = [Experiment(er=self.er, hp=self.hp, run=self.run)]
        return expts


'''
Config Instances
'''

B1 = Build(image_url='ptlex:latest',
           build_steps=['docker build -t ptlex:latest .'])

Co1 = Container(build=B1)
S1 = StorageDirs(working_dir='.', data_dir='./data')

Lm = MLFlowConfig()
L = LoggerConfig(mlflow=Lm)

Re1 = Resources(storage=S1, ctr=Co1, loggers=L)

H1 = HP()

Ru1 = Run(cmd="python mnist_tensorboard_artifact.py \
            --data-dir {{run.data_dir}} \
            --batch-size {{hp.batch_size}} \
            --test-batch-size {{hp.test_batch_size}} \
            --epochs {{hp.epochs}} \
            --lr {{hp.lr}} \
            --momentum {{hp.momentum}} \
            --enable-cuda {{hp.enable_cuda}} \
            --seed {{hp.seed}} \