Esempio n. 1
0
def evaluate(model, train, test, hybrid=False, features=None):
    
    if hybrid:
        auc_train = np.mean(auc_score(model, train, item_features=features))
        pre_train = np.mean(precision_at_k(model, train, item_features=features))
        mrr_train = np.mean(reciprocal_rank(model, train, item_features=features))
        
        auc_test = np.mean(auc_score(model, test, item_features=features))
        pre_test = np.mean(precision_at_k(model, test, item_features=features))
        mrr_test = np.mean(reciprocal_rank(model, test, item_features=features))   
    else:
        auc_train = np.mean(auc_score(model, train))
        pre_train = np.mean(precision_at_k(model, train))
        mrr_train = np.mean(reciprocal_rank(model, train))
        
        auc_test = np.mean(auc_score(model, test))
        pre_test = np.mean(precision_at_k(model, test))
        mrr_test = np.mean(reciprocal_rank(model, test))    
    
    res_dict = {'auc_train': auc_train, 
                'pre_train': pre_train,
                'mrr_train': mrr_train, 
                'auc_test': auc_test, 
                'pre_test': pre_test, 
                'mrr_test': mrr_test}
                  
    print('The AUC Score is in training/validation:                 ',
          auc_train,' / ', auc_test)
    print('The mean precision at k Score in training/validation is: ',
          pre_train, ' / ', pre_test)
    print('The mean reciprocal rank in training/validation is:      ', 
          mrr_train, ' / ', mrr_test)
    print('_________________________________________________________')
    
    return res_dict
    def resultados_colaborativo(self):
        """
        Método resultados_colaboraivo. Obtiene los resultados del modelo colaborativo.

        Este método solo se utiliza en la interfaz de texto.
        """

        global train, test, modelo

        # Se obtienen los resultados
        precision = precision_at_k(modelo,
                                   test,
                                   train_interactions=train,
                                   k=10,
                                   num_threads=self.CPU_THREADS).mean()
        auc = auc_score(modelo,
                        test,
                        train_interactions=train,
                        num_threads=self.CPU_THREADS).mean()
        recall = recall_at_k(modelo,
                             test,
                             train_interactions=train,
                             k=10,
                             num_threads=self.CPU_THREADS).mean()
        reciprocal = reciprocal_rank(modelo,
                                     test,
                                     train_interactions=train,
                                     num_threads=self.CPU_THREADS).mean()

        # Se imprimen los resultados
        imprimir_resultados_clasico(precision, auc, recall, reciprocal)
Esempio n. 3
0
def best_reccomendation():

    #define variables
    best = 0.0
    best_model = ''

    for model in models:
        score = 0.0
        pak_score = evaluation.precision_at_k(model, data2['test'])
        score += np.mean(pak_score)

        rak_score = evaluation.recall_at_k(model, data2['test'])
        score += np.mean(rak_score)

        auc_score = evaluation.auc_score(model, data2['test'])
        score += np.mean(auc_score)

        rr_score = evaluation.reciprocal_rank(model, data2['test'])
        score += np.mean(rr_score)

        print(score)
        if score >= best:
            best = score
            best_model = model

    return best_model
Esempio n. 4
0
def reciprocal_rank_on_ranks(ranks,
                             test_interactions,
                             train_interactions=None,
                             preserve_rows=False):
    return reciprocal_rank(
        model=ModelMockRanksCacher(ranks.copy()),
        test_interactions=test_interactions,
        train_interactions=train_interactions,
        preserve_rows=preserve_rows,
    )
Esempio n. 5
0
def test_intersections_check():

    no_users, no_items = (10, 100)

    train, test = _generate_data(no_users, no_items)

    model = LightFM(loss="bpr")
    model.fit_partial(train)

    # check error is raised when train and test have interactions in common
    with pytest.raises(ValueError):
        evaluation.auc_score(model, train, train_interactions=train, check_intersections=True)

    with pytest.raises(ValueError):
        evaluation.recall_at_k(model, train, train_interactions=train, check_intersections=True)

    with pytest.raises(ValueError):
        evaluation.precision_at_k(model, train, train_interactions=train, check_intersections=True)

    with pytest.raises(ValueError):
        evaluation.reciprocal_rank(model, train, train_interactions=train, check_intersections=True)

    # check no errors raised when train and test have no interactions in common
    evaluation.auc_score(model, test, train_interactions=train, check_intersections=True)
    evaluation.recall_at_k(model, test, train_interactions=train, check_intersections=True)
    evaluation.precision_at_k(model, test, train_interactions=train, check_intersections=True)
    evaluation.reciprocal_rank(model, test, train_interactions=train, check_intersections=True)

    # check no error is raised when there are intersections but flag is False
    evaluation.auc_score(model, train, train_interactions=train, check_intersections=False)
    evaluation.recall_at_k(model, train, train_interactions=train, check_intersections=False)
    evaluation.precision_at_k(model, train, train_interactions=train, check_intersections=False)
    evaluation.reciprocal_rank(model, train, train_interactions=train, check_intersections=False)
Esempio n. 6
0
        def mrr():
            """Evaluates models on their Mean Reciprocal Rank.

            Measure the reciprocal rank metric for a model: 1 / the rank of the highest ranked positive example.
            A perfect score is 1.0.

            """

            mrr = reciprocal_rank(model=model,
                                  test_interactions=test,
                                  train_interactions=train,
                                  item_features=item_features).mean()
            logger.info(model_name + ' MRR: %s' % (mrr))
Esempio n. 7
0
def test_intersections_check():

    no_users, no_items = (10, 100)

    train, test = _generate_data(no_users, no_items)

    model = LightFM(loss="bpr")
    model.fit_partial(train)

    # check error is raised when train and test have interactions in common
    with pytest.raises(ValueError):
        evaluation.auc_score(
            model, train, train_interactions=train, check_intersections=True
        )

    with pytest.raises(ValueError):
        evaluation.recall_at_k(
            model, train, train_interactions=train, check_intersections=True
        )

    with pytest.raises(ValueError):
        evaluation.precision_at_k(
            model, train, train_interactions=train, check_intersections=True
        )

    with pytest.raises(ValueError):
        evaluation.reciprocal_rank(
            model, train, train_interactions=train, check_intersections=True
        )

    # check no errors raised when train and test have no interactions in common
    evaluation.auc_score(
        model, test, train_interactions=train, check_intersections=True
    )
    evaluation.recall_at_k(
        model, test, train_interactions=train, check_intersections=True
    )
    evaluation.precision_at_k(
        model, test, train_interactions=train, check_intersections=True
    )
    evaluation.reciprocal_rank(
        model, test, train_interactions=train, check_intersections=True
    )

    # check no error is raised when there are intersections but flag is False
    evaluation.auc_score(
        model, train, train_interactions=train, check_intersections=False
    )
    evaluation.recall_at_k(
        model, train, train_interactions=train, check_intersections=False
    )
    evaluation.precision_at_k(
        model, train, train_interactions=train, check_intersections=False
    )
    evaluation.reciprocal_rank(
        model, train, train_interactions=train, check_intersections=False
    )
Esempio n. 8
0
def reciprocal_rank(model,
                    test_interactions,
                    train_interactions=None,
                    user_features=None,
                    item_features=None,
                    preserve_rows=False,
                    num_threads=1,
                    check_intersections=True):
    return evaluation.reciprocal_rank(model,
                                      test_interactions=test_interactions,
                                      train_interactions=train_interactions,
                                      user_features=user_features,
                                      item_features=item_features,
                                      preserve_rows=preserve_rows,
                                      num_threads=num_threads,
                                      check_intersections=check_intersections)
    def resultados_por_contenido(self):
        """
        Método resultados_por_contenido. Obtiene los resultados del modelo basado en contenido.

        Este método solo se utiliza en la interfaz de texto.
        """

        global train, test, modelo, item_features, user_features

        # Se obtienen los resultados
        precision = precision_at_k(modelo,
                                   test,
                                   train_interactions=train,
                                   k=10,
                                   user_features=user_features,
                                   item_features=item_features,
                                   num_threads=self.CPU_THREADS).mean()
        auc = auc_score(modelo,
                        test,
                        train_interactions=train,
                        user_features=user_features,
                        item_features=item_features,
                        num_threads=self.CPU_THREADS).mean()
        recall = recall_at_k(modelo,
                             test,
                             train_interactions=train,
                             k=10,
                             user_features=user_features,
                             item_features=item_features,
                             num_threads=self.CPU_THREADS).mean()
        reciprocal = reciprocal_rank(modelo,
                                     test,
                                     train_interactions=train,
                                     user_features=user_features,
                                     item_features=item_features,
                                     num_threads=self.CPU_THREADS).mean()

        # Se imprimen los resultados
        imprimir_resultados_clasico(precision, auc, recall, reciprocal)
Esempio n. 10
0
print("Train precision@7: %.2f" %
      precision_at_k(model,
                     train_interactions,
                     k=7,
                     user_features=users_features,
                     item_features=items_features).mean())
print("Test precision@7: %.2f" %
      precision_at_k(model,
                     test_interactions,
                     train_interactions,
                     k=7,
                     user_features=users_features,
                     item_features=items_features).mean())
print("Train reciprocal rank: %.2f" %
      reciprocal_rank(model,
                      train_interactions,
                      user_features=users_features,
                      item_features=items_features).mean())
print("Test reciprocal rank: %.2f" %
      reciprocal_rank(model,
                      test_interactions,
                      train_interactions,
                      user_features=users_features,
                      item_features=items_features).mean())


def get_predict(user, model, list_item):
    print("=========================")
    print("User %d" % user)
    scores = model.predict(user - 1,
                           list_item,
                           item_features=items_features,
    def obtener_metricas_gui(self):
        """
        Método obtener_metricas_gui. Obtiene las métricas del modelo escogido.

        Este método solo se utiliza en la interfaz web.

        Returns
        -------

        metricas_devueltas: dict
            diccionario con las métricas del modelo
        """

        global train, test, modelo, item_features, user_features

        # Se guardan las métricas en un diccionario para su futura muestra en la interfaz web
        metricas = dict()

        # Se calculan las métricas
        if self.opcion_modelo == 1:
            precision = precision_at_k(modelo,
                                       test,
                                       train_interactions=train,
                                       k=10,
                                       num_threads=self.CPU_THREADS).mean()
            auc = auc_score(modelo,
                            test,
                            train_interactions=train,
                            num_threads=self.CPU_THREADS).mean()
            recall = recall_at_k(modelo,
                                 test,
                                 train_interactions=train,
                                 k=10,
                                 num_threads=self.CPU_THREADS).mean()
            reciprocal = reciprocal_rank(modelo,
                                         test,
                                         train_interactions=train,
                                         num_threads=self.CPU_THREADS).mean()
        else:
            precision = precision_at_k(modelo,
                                       test,
                                       train_interactions=train,
                                       k=10,
                                       user_features=user_features,
                                       item_features=item_features,
                                       num_threads=self.CPU_THREADS).mean()
            auc = auc_score(modelo,
                            test,
                            train_interactions=train,
                            user_features=user_features,
                            item_features=item_features,
                            num_threads=self.CPU_THREADS).mean()
            recall = recall_at_k(modelo,
                                 test,
                                 train_interactions=train,
                                 k=10,
                                 user_features=user_features,
                                 item_features=item_features,
                                 num_threads=self.CPU_THREADS).mean()
            reciprocal = reciprocal_rank(modelo,
                                         test,
                                         train_interactions=train,
                                         user_features=user_features,
                                         item_features=item_features,
                                         num_threads=self.CPU_THREADS).mean()

        # Se guardan las métricas en el diccionario y se formatea su salida
        metricas_devueltas = {
            "Precisión k": format(precision, '.4f'),
            "AUC Score": format(auc, '.4f'),
            "Recall k": format(recall, '.4f'),
            "Ranking recíproco": format(reciprocal, '.4f')
        }
        metricas_a_guardar = {
            "Precisión k": [format(precision, '.4f')],
            "AUC Score": [format(auc, '.4f')],
            "Recall k": [format(recall, '.4f')],
            "Ranking recíproco": [format(reciprocal, '.4f')]
        }

        # Se guardan las métricas en un archivo .csv
        guardar_resultados(metricas_a_guardar)

        return metricas_devueltas
def model(df, params, u=None, i=None):
    state = np.random.RandomState(params['seed'])
    data = Dataset()
    data.fit(df['userID'].unique(),
             df['poiID'].unique(),
             user_features=u[1] if u is not None else None,
             item_features=i[1] if i is not None else None)

    if u is not None:
        user_features_iterable = map(lambda l: (l[0], l[1]), u[0].iteritems())
        user_features = data.build_user_features(user_features_iterable,
                                                 normalize=False)
    else:
        user_features = None

    if i is not None:
        item_features_iterable = map(lambda l: (l[0], [l[1]]),
                                     i[0].iteritems())
        item_features = data.build_item_features(item_features_iterable,
                                                 normalize=False)
    else:
        item_features = None

    ratings, weights = data.build_interactions(df[['userID', 'poiID'
                                                   ]].itertuples(index=False,
                                                                 name=None))

    train, test = random_train_test_split(ratings,
                                          test_percentage=params['test'],
                                          random_state=state)

    lfm = LightFM(no_components=params['f'],
                  learning_rate=params['lr'],
                  loss=params['loss'],
                  user_alpha=params['alpha'],
                  random_state=state)
    lfm.fit(train,
            epochs=params['epochs'],
            user_features=user_features,
            item_features=item_features)

    return {
        'pr-train':
        100.0 * precision_at_k(lfm,
                               train,
                               k=params['k'],
                               user_features=user_features,
                               item_features=item_features).mean(),
        'mrr-train':
        100.0 * reciprocal_rank(lfm,
                                train,
                                user_features=user_features,
                                item_features=item_features).mean(),
        'pr-test':
        100.0 * precision_at_k(lfm,
                               test,
                               k=params['k'],
                               user_features=user_features,
                               item_features=item_features).mean(),
        'mrr-test':
        100.0 * reciprocal_rank(lfm,
                                test,
                                user_features=user_features,
                                item_features=item_features).mean()
    }
Esempio n. 13
0
model = LightFM(loss='warp', random_state=0)
model.fit(train_interactions, epochs=100, num_threads=1)

from lightfm.evaluation import recall_at_k
from lightfm.evaluation import precision_at_k

print("Train recall@7: %.2f" %
      recall_at_k(model, train_interactions, k=7).mean())
print("Test recall@7: %.2f" %
      recall_at_k(model, test_interactions, train_interactions, k=7).mean())
print("Train precision@7: %.2f" %
      precision_at_k(model, train_interactions, k=7).mean())
print("Test precision@7: %.2f" %
      precision_at_k(model, test_interactions, train_interactions, k=7).mean())
print("Train reciprocal rank: %.2f" %
      reciprocal_rank(model, train_interactions).mean())
print("Test reciprocal rank: %.2f" %
      reciprocal_rank(model, test_interactions, train_interactions).mean())


def get_predict(user, model, list_item):
    print("=========================")
    print("User %d" % user)
    scores = model.predict(user - 1, list_item)
    print("Liked items from history:")
    known_result = train[train[3] == user][1].values
    print(known_result)
    print("Favorite items ( haven't seen ):")
    # print(ratings2[ratings2[3] == 1][1].values)
    print(test[test[3] == user][1].values)
    print("Predict results")