Esempio n. 1
0
    def getFormattedResult(self, specs=None, decimalmark='.', sciformat=1):
        """Formatted result:
        1. If the result is not floatable, return it without being formatted
        2. If the analysis specs has hidemin or hidemax enabled and the
           result is out of range, render result as '<min' or '>max'
        3. If the result is floatable, render it to the correct precision
        specs param is optional. A dictionary as follows:
            {'min': <min_val>,
             'max': <max_val>,
             'error': <error>,
             'hidemin': <hidemin_val>,
             'hidemax': <hidemax_val>}
        :param sciformat: 1. The sci notation has to be formatted as aE^+b
                          2. The sci notation has to be formatted as a·10^b
                          3. As 2, but with super html entity for exp
                          4. The sci notation has to be formatted as a·10^b
                          5. As 4, but with super html entity for exp
                          By default 1
        """
        result = self.getResult()
        service = self.getService()

        # 1. If the result is not floatable, return it without being formatted
        try:
            result = float(result)
        except:
            return result

        # 2. If the analysis specs has enabled hidemin or hidemax and the
        #    result is out of range, render result as '<min' or '>max'
        belowmin = False
        abovemax = False
        if not specs:
            uid = self.getServiceUID()
            specs = self.aq_parent.getResultsRangeDict().get(uid, {})
        hidemin = specs.get('hidemin', '')
        hidemax = specs.get('hidemax', '')
        try:
            belowmin = hidemin and result < float(hidemin) or False
        except:
            belowmin = False
            pass
        try:
            abovemax = hidemax and result > float(hidemax) or False
        except:
            abovemax = False
            pass

        # 2.1. If result is below min and hidemin enabled, return '<min'
        if belowmin:
            return formatDecimalMark('< %s' % hidemin, decimalmark)

        # 2.2. If result is above max and hidemax enabled, return '>max'
        if abovemax:
            return formatDecimalMark('> %s' % hidemax, decimalmark)

        # 3. If the result is floatable, render it to the correct precision
        return formatDecimalMark(format_numeric_result(self, result, sciformat), decimalmark)
Esempio n. 2
0
    def _analysis_data(self, analysis):
        """ Returns a dict that represents the analysis
        """
        decimalmark = analysis.aq_parent.aq_parent.getDecimalMark()
        keyword = analysis.getKeyword()
        service = analysis.getService()
        andict = {'obj': analysis,
                  'id': analysis.id,
                  'title': analysis.Title(),
                  'keyword': keyword,
                  'scientific_name': service.getScientificName(),
                  'accredited': service.getAccredited(),
                  'point_of_capture': to_utf8(POINTS_OF_CAPTURE.getValue(service.getPointOfCapture())),
                  'category': to_utf8(service.getCategoryTitle()),
                  'result': analysis.getResult(),
                  'unit': to_utf8(service.getUnit()),
                  'formatted_unit': format_supsub(to_utf8(service.getUnit())),
                  'capture_date': analysis.getResultCaptureDate(),
                  'request_id': analysis.aq_parent.getId(),
                  'formatted_result': '',
                  'uncertainty': analysis.getUncertainty(),
                  'formatted_uncertainty': '',
                  'retested': analysis.getRetested(),
                  'remarks': to_utf8(analysis.getRemarks()),
                  'resultdm': to_utf8(analysis.getResultDM()),
                  'outofrange': False,
                  'type': analysis.portal_type,
                  'reftype': analysis.getReferenceType() \
                            if hasattr(analysis, 'getReferenceType')
                            else None,
                  'worksheet': None,
                  'specs': {},
                  'formatted_specs': ''}

        andict['refsample'] = analysis.getSample().id \
                            if analysis.portal_type == 'Analysis' \
                            else '%s - %s' % (analysis.aq_parent.id, analysis.aq_parent.Title())

        # Which analysis specs must be used?
        # Try first with those defined at AR Publish Specs level
        if analysis.portal_type == 'ReferenceAnalysis':
            # The analysis is a Control or Blank. We might use the
            # reference results instead other specs
            uid = analysis.getServiceUID()
            specs = analysis.aq_parent.getResultsRangeDict().get(uid, {})

        elif analysis.portal_type == 'DuplicateAnalysis':
            specs = analysis.getAnalysisSpecs()

        else:
            ar = analysis.aq_parent
            specs = ar.getPublicationSpecification()
            if not specs or keyword not in specs.getResultsRangeDict():
                specs = analysis.getAnalysisSpecs()
            specs = specs.getResultsRangeDict().get(keyword, {}) \
                    if specs else {}

        andict['specs'] = specs
        scinot = self.context.bika_setup.getScientificNotationReport()
        andict['formatted_result'] = analysis.getFormattedResult(
            specs=specs, sciformat=int(scinot), decimalmark=decimalmark)

        fs = ''
        if specs.get('min', None) and specs.get('max', None):
            fs = '%s - %s' % (specs['min'], specs['max'])
        elif specs.get('min', None):
            fs = '> %s' % specs['min']
        elif specs.get('max', None):
            fs = '< %s' % specs['max']
        andict['formatted_specs'] = formatDecimalMark(fs, decimalmark)
        andict['formatted_uncertainty'] = format_uncertainty(
            analysis,
            analysis.getResult(),
            decimalmark=decimalmark,
            sciformat=int(scinot))

        # Out of range?
        if specs:
            adapters = getAdapters((analysis, ), IResultOutOfRange)
            bsc = getToolByName(self.context, "bika_setup_catalog")
            for name, adapter in adapters:
                ret = adapter(specification=specs)
                if ret and ret['out_of_range']:
                    andict['outofrange'] = True
                    break
        return andict
Esempio n. 3
0
def format_uncertainty(analysis, result, decimalmark='.', sciformat=1):
    """
    Returns the formatted uncertainty according to the analysis, result
    and decimal mark specified following these rules:

    If the "Calculate precision from uncertainties" is enabled in
    the Analysis service, and

    a) If the the non-decimal number of digits of the result is above
       the service's ExponentialFormatPrecision, the uncertainty will
       be formatted in scientific notation. The uncertainty exponential
       value used will be the same as the one used for the result. The
       uncertainty will be rounded according to the same precision as
       the result.

       Example:
       Given an Analysis with an uncertainty of 37 for a range of
       results between 30000 and 40000, with an
       ExponentialFormatPrecision equal to 4 and a result of 32092,
       this method will return 0.004E+04

    b) If the number of digits of the integer part of the result is
       below the ExponentialFormatPrecision, the uncertainty will be
       formatted as decimal notation and the uncertainty will be
       rounded one position after reaching the last 0 (precision
       calculated according to the uncertainty value).

       Example:
       Given an Analysis with an uncertainty of 0.22 for a range of
       results between 1 and 10 with an ExponentialFormatPrecision
       equal to 4 and a result of 5.234, this method will return 0.2

    If the "Calculate precision from Uncertainties" is disabled in the
    analysis service, the same rules described above applies, but the
    precision used for rounding the uncertainty is not calculated from
    the uncertainty neither the result. The fixed length precision is
    used instead.

    For further details, visit
    https://jira.bikalabs.com/browse/LIMS-1334

    If the result is not floatable or no uncertainty defined, returns
    an empty string.

    The default decimal mark '.' will be replaced by the decimalmark
    specified.

    :param analysis: the analysis from which the uncertainty, precision
                     and other additional info have to be retrieved
    :param result: result of the analysis. Used to retrieve and/or
                   calculate the precision and/or uncertainty
    :param decimalmark: decimal mark to use. By default '.'
    :param sciformat: 1. The sci notation has to be formatted as aE^+b
                  2. The sci notation has to be formatted as ax10^b
                  3. As 2, but with super html entity for exp
                  4. The sci notation has to be formatted as a·10^b
                  5. As 4, but with super html entity for exp
                  By default 1
    :return: the formatted uncertainty
    """
    try:
        result = float(result)
    except ValueError:
        return ""

    objres = None
    try:
        objres = float(analysis.getResult())
    except ValueError:
        pass

    service = analysis.getService()
    uncertainty = None
    if result == objres:
        # To avoid problems with DLs
        uncertainty = analysis.getUncertainty()
    else:
        uncertainty = analysis.getUncertainty(result)

    if uncertainty is None or uncertainty == 0:
        return ""

    # Scientific notation?
    # Get the default precision for scientific notation
    threshold = service.getExponentialFormatPrecision()
    # Current result precision is above the threshold?
    sig_digits = get_significant_digits(result)
    negative = sig_digits < 0
    sign = '-' if negative else ''
    sig_digits = abs(sig_digits)
    sci = sig_digits >= threshold and sig_digits > 0

    formatted = ''
    if sci:
        # Scientific notation
        # 3.2014E+4
        if negative == True:
            res = float(uncertainty)*(10**sig_digits)
        else:
            res = float(uncertainty)/(10**sig_digits)
            res = float(str("%%.%sf" % (sig_digits-1)) % res)
        res = int(res) if res.is_integer() else res

        if sciformat in [2,3,4,5]:
            if sciformat == 2:
                # ax10^b or ax10^-b
                formatted = "%s%s%s%s" % (res,"x10^",sign,sig_digits)
            elif sciformat == 3:
                # ax10<super>b</super> or ax10<super>-b</super>
                formatted = "%s%s%s%s%s" % (res,"x10<sup>",sign,sig_digits,"</sup>")
            elif sciformat == 4:
                # ax10^b or ax10^-b
                formatted = "%s%s%s%s" % (res,"·10^",sign,sig_digits)
            elif sciformat == 5:
                # ax10<super>b</super> or ax10<super>-b</super>
                formatted = "%s%s%s%s%s" % (res,"·10<sup>",sign,sig_digits,"</sup>")
        else:
            # Default format: aE^+b
            sig_digits = "%02d" % sig_digits
            formatted = "%s%s%s%s" % (res,"e",sign,sig_digits)
            #formatted = str("%%.%se" % sig_digits) % uncertainty
    else:
        # Decimal notation
        prec = analysis.getPrecision(result)
        prec = prec if prec else ''
        formatted = str("%%.%sf" % prec) % uncertainty

    return formatDecimalMark(formatted, decimalmark)
Esempio n. 4
0
    def _analysis_data(self, analysis, decimalmark=None):
        keyword = analysis.getKeyword()
        service = analysis.getService()
        andict = {'obj': analysis,
                  'id': analysis.id,
                  'title': analysis.Title(),
                  'keyword': keyword,
                  'scientific_name': service.getScientificName(),
                  'accredited': service.getAccredited(),
                  'point_of_capture': to_utf8(POINTS_OF_CAPTURE.getValue(service.getPointOfCapture())),
                  'category': to_utf8(service.getCategoryTitle()),
                  'result': analysis.getResult(),
                  'isnumber': isnumber(analysis.getResult()),
                  'unit': to_utf8(service.getUnit()),
                  'formatted_unit': format_supsub(to_utf8(service.getUnit())),
                  'capture_date': analysis.getResultCaptureDate(),
                  'request_id': analysis.aq_parent.getId(),
                  'formatted_result': '',
                  'uncertainty': analysis.getUncertainty(),
                  'formatted_uncertainty': '',
                  'retested': analysis.getRetested(),
                  'remarks': to_utf8(analysis.getRemarks()),
                  'resultdm': to_utf8(analysis.getResultDM()),
                  'outofrange': False,
                  'type': analysis.portal_type,
                  'reftype': analysis.getReferenceType() \
                            if hasattr(analysis, 'getReferenceType')
                            else None,
                  'worksheet': None,
                  'specs': {},
                  'formatted_specs': ''}

        if analysis.portal_type == 'DuplicateAnalysis':
            andict['reftype'] = 'd'

        ws = analysis.getBackReferences('WorksheetAnalysis')
        andict['worksheet'] = ws[0].id if ws and len(ws) > 0 else None
        andict['worksheet_url'] = ws[0].absolute_url if ws and len(ws) > 0 else None
        andict['refsample'] = analysis.getSample().id \
                            if analysis.portal_type == 'Analysis' \
                            else '%s - %s' % (analysis.aq_parent.id, analysis.aq_parent.Title())

        # Which analysis specs must be used?
        # Try first with those defined at AR Publish Specs level
        if analysis.portal_type == 'ReferenceAnalysis':
            # The analysis is a Control or Blank. We might use the
            # reference results instead other specs
            uid = analysis.getServiceUID()
            specs = analysis.aq_parent.getResultsRangeDict().get(uid, {})

        elif analysis.portal_type == 'DuplicateAnalysis':
            specs = analysis.getAnalysisSpecs();

        else:
            ar = analysis.aq_parent
            specs = ar.getPublicationSpecification()
            if not specs or keyword not in specs.getResultsRangeDict():
                specs = analysis.getAnalysisSpecs()
            specs = specs.getResultsRangeDict().get(keyword, {}) \
                    if specs else {}

        andict['specs'] = specs
        scinot = self.context.bika_setup.getScientificNotationReport()
        andict['formatted_result'] = analysis.getFormattedResult(specs=specs, sciformat=int(scinot), decimalmark=decimalmark)

        fs = ''
        if specs.get('min', None) and specs.get('max', None):
            fs = '%s - %s' % (specs['min'], specs['max'])
        elif specs.get('min', None):
            fs = '> %s' % specs['min']
        elif specs.get('max', None):
            fs = '< %s' % specs['max']
        andict['formatted_specs'] = formatDecimalMark(fs, decimalmark)
        andict['formatted_uncertainty'] = format_uncertainty(analysis, analysis.getResult(), decimalmark=decimalmark, sciformat=int(scinot))

        # Out of range?
        if specs:
            adapters = getAdapters((analysis, ), IResultOutOfRange)
            bsc = getToolByName(self.context, "bika_setup_catalog")
            for name, adapter in adapters:
                ret = adapter(specification=specs)
                if ret and ret['out_of_range']:
                    andict['outofrange'] = True
                    break
        return andict
Esempio n. 5
0
def format_numeric_result(analysis, result, decimalmark='.', sciformat=1):
    """
    Returns the formatted number part of a results value.  This is
    responsible for deciding the precision, and notation of numeric
    values in accordance to the uncertainty. If a non-numeric
    result value is given, the value will be returned unchanged.

    The following rules apply:

    If the "Calculate precision from uncertainties" is enabled in
    the Analysis service, and

    a) If the non-decimal number of digits of the result is above
       the service's ExponentialFormatPrecision, the result will
       be formatted in scientific notation.

       Example:
       Given an Analysis with an uncertainty of 37 for a range of
       results between 30000 and 40000, with an
       ExponentialFormatPrecision equal to 4 and a result of 32092,
       this method will return 3.2092E+04

    b) If the number of digits of the integer part of the result is
       below the ExponentialFormatPrecision, the result will be
       formatted as decimal notation and the resulta will be rounded
       in accordance to the precision (calculated from the uncertainty)

       Example:
       Given an Analysis with an uncertainty of 0.22 for a range of
       results between 1 and 10 with an ExponentialFormatPrecision
       equal to 4 and a result of 5.234, this method will return 5.2

    If the "Calculate precision from Uncertainties" is disabled in the
    analysis service, the same rules described above applies, but the
    precision used for rounding the result is not calculated from
    the uncertainty. The fixed length precision is used instead.

    For further details, visit
    https://jira.bikalabs.com/browse/LIMS-1334

    The default decimal mark '.' will be replaced by the decimalmark
    specified.

    :param analysis: the analysis from which the uncertainty, precision
                     and other additional info have to be retrieved
    :param result: result to be formatted.
    :param decimalmark: decimal mark to use. By default '.'
    :param sciformat: 1. The sci notation has to be formatted as aE^+b
                      2. The sci notation has to be formatted as ax10^b
                      3. As 2, but with super html entity for exp
                      4. The sci notation has to be formatted as a·10^b
                      5. As 4, but with super html entity for exp
                      By default 1
    :return: the formatted result
    """
    try:
        result = float(result)
    except ValueError:
        return result

    service = analysis.getService()
    # Scientific notation?
    # Get the default precision for scientific notation
    threshold = service.getExponentialFormatPrecision()
    # Current result precision is above the threshold?
    sig_digits = get_significant_digits(result)
    negative = sig_digits < 0
    sign = '-' if negative else ''
    sig_digits = abs(sig_digits)
    sci = sig_digits >= threshold

    formatted = ''
    if sci:
        # Scientific notation
        if sciformat in [2,3,4,5]:
            if negative == True:
                res = float(result)*(10**sig_digits)
            else:
                res = float(result)/(10**sig_digits)
                res = float(str("%%.%sf" % (sig_digits-1)) % res)
            res = int(res) if res.is_integer() else res
            if sciformat == 2:
                # ax10^b or ax10^-b
                formatted = "%s%s%s%s" % (res,"x10^",sign,sig_digits)
            elif sciformat == 3:
                # ax10<super>b</super> or ax10<super>-b</super>
                formatted = "%s%s%s%s%s" % (res,"x10<sup>",sign,sig_digits,"</sup>")
            elif sciformat == 4:
                # ax10^b or ax10^-b
                formatted = "%s%s%s%s" % (res,"·10^",sign,sig_digits)
            elif sciformat == 5:
                # ax10<super>b</super> or ax10<super>-b</super>
                formatted = "%s%s%s%s%s" % (res,"·10<sup>",sign,sig_digits,"</sup>")
        else:
            # Default format: aE^+b
            formatted = str("%%.%se" % sig_digits) % result
    else:
        # Decimal notation
        prec = analysis.getPrecision(result)
        prec = prec if prec else ''
        formatted = str("%%.%sf" % prec) % result
        formatted = str(int(float(formatted))) if float(formatted).is_integer() else formatted

    return formatDecimalMark(formatted, decimalmark)