Esempio n. 1
0
def test_find_test_statistic(df, tails):
    """
    """
    test_statistic_s = 1.96
    p_value = find_p_value(test_statistic_s, df, tails=tails)
    test_statistic = find_test_statistic(p_value, df, tails=tails)
    assert np.abs(test_statistic - test_statistic_s) <= 1e-10
Esempio n. 2
0
def test_two_sample_z_test_validated(test1, test2, sample1, sample2, pooled):
    """
    Check that the test outputs match validated results within an acceptable margin of error
    """

    test_statistic, standard_error = test1(sample1=sample1,
                                           sample2=sample2,
                                           null_h=0.0,
                                           pooled=pooled)
    p_value = find_p_value(test_statistic=test_statistic,
                           df=np.inf,
                           tails=True)

    test_statistic_s, p_value_s = test2(x1=sample1,
                                        x2=sample2,
                                        value=0.0,
                                        usevar="pooled",
                                        alternative="two-sided")

    if pooled is True:
        assert np.abs(test_statistic - test_statistic_s) <= 1 * 10**(-10)
        assert np.abs(p_value - p_value_s) <= 1 * 10**(-10)
    else:
        assert np.round(np.abs(p_value - p_value_s), 2) <= 1 * 10**(-2)
        assert p_value < p_value_s  # unpooled p-values consistently skew lower
Esempio n. 3
0
def test_one_sample_z_test_validated(test1, test2, sample):
    """
    Check that the test outputs match validated results within an acceptable margin of error
    """

    test_statistic, standard_error = test1(sample=sample, null_h=0.0)
    p_value = find_p_value(test_statistic=test_statistic,
                           df=np.inf,
                           tails=True)

    test_statistic_s, p_value_s = test2(x1=sample, value=0.0)

    assert np.abs(test_statistic - test_statistic_s) <= 1 * 10**(-10)
    assert np.abs(p_value - p_value_s) <= 1 * 10**(-10)
Esempio n. 4
0
def test_two_sample_t_test_validated(test1, test2, sample1, sample2, pooled):
    """
    Check that the test outputs match validated results within an acceptable margin of error
    """

    test_statistic, standard_error, degrees_freedom = test1(sample1=sample1,
                                                            sample2=sample2,
                                                            null_h=0.0,
                                                            pooled=pooled)
    p_value = find_p_value(test_statistic=test_statistic,
                           df=degrees_freedom,
                           tails=True)

    test_statistic_s, p_value_s = test2(a=sample1, b=sample2, equal_var=pooled)

    assert np.abs(test_statistic - test_statistic_s) <= 1 * 10**(-10)
    assert np.abs(p_value - p_value_s) <= 1 * 10**(-10)
Esempio n. 5
0
def test_one_sample_z_prop_test_validated(test1, test2, sample):
    """
    Check that the test outputs match validated results within an acceptable margin of error
    """

    test_statistic, standard_error = test1(sample=sample, null_h=0.0)
    p_value = find_p_value(test_statistic=test_statistic,
                           df=np.inf,
                           tails=True)

    test_statistic_s, p_value_s = test2(count=sample.sum(),
                                        nobs=sample.shape[0],
                                        value=0.0,
                                        alternative="two-sided",
                                        prop_var=False)

    assert np.abs(test_statistic - test_statistic_s) <= 1 * 10**(-2)
    assert np.abs(p_value - p_value_s) <= 1 * 10**(-2)
Esempio n. 6
0
def test_md5shuffle(sample, random_flg):
    """
    """
    z_statistic = runs_test(sample)
    p_value = find_p_value(test_statistic=z_statistic, df=np.inf, tails=True)
    assert (p_value > 0.05) == random_flg