########## #For linear import linear h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 0, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDAxisAligned) X = datasets.TwoDAxisAligned.X Y = datasets.TwoDAxisAligned.Y #mlGraphics.plotLinearClassifier(h, X, Y) h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 10, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDAxisAligned) h = linear.LinearClassifier({'lossFunction': linear.SquaredLoss(), 'lambda': 10, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDDiagonal) h = linear.LinearClassifier({'lossFunction': linear.HingeLoss(), 'lambda': 1, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(h, datasets.TwoDDiagonal) log = linear.LinearClassifier({'lossFunction': linear.LogisticLoss(), 'lambda': 1, 'numIter': 100, 'stepSize': 0.5}) runClassifier.trainTestSet(log, datasets.TwoDDiagonal)
# # Training accuracy 0.98, test accuracy 0.86 # print(f) # # w=array([ 1.17110065, 4.67288657]) # # # LogisticLoss # # f = linear.LinearClassifier({'lossFunction': linear.LogisticLoss(), 'lambda': 10, 'numIter': 100, 'stepSize': 0.5}) # runClassifier.trainTestSet(f, datasets.TwoDDiagonal) # # Training accuracy 0.99, test accuracy 0.86 # print(f) # # w=array([ 0.29809083, 1.01287561]) # WU5 print("Logistic:") f = linear.LinearClassifier({ 'lossFunction': linear.LogisticLoss(), 'lambda': 1, 'numIter': 100, 'stepSize': 0.5 }) runClassifier.trainTestSet(f, datasets.WineDataBinary) large = [ 0.606423261902, 0.689199007903, 0.710890552154, 0.770124769156, 0.883289753118 ] small = [ -1.1695212164, -0.765309390643, -0.683593167789, -0.629590728143, -0.532191672468 ]