Esempio n. 1
0
    def testMetricHistoriesFiles(self):
        logdir = tf.test.get_temp_dir()
        tf.gfile.MkDir(os.path.join(logdir, 'job1'))
        tf.gfile.MkDir(os.path.join(logdir, 'job2'))

        p = early_stop.MetricHistory.Params().Set(logdir=logdir)
        mh1 = early_stop.MetricHistory(
            p.Set(jobname='job1', metric='m1', local_filesystem=True))
        mh2 = early_stop.MetricHistory(
            p.Set(jobname='job2', metric='m2', local_filesystem=True))

        early_stop.MetricHistory.ConditionalAppend('job1', 'm1', 1, 10.0)
        early_stop.MetricHistory.ConditionalAppend('job1', 'm2', 1, 10.0)
        early_stop.MetricHistory.ConditionalAppend('job2', 'm2', 1, 10.0)
        early_stop.MetricHistory.ConditionalAppend('job1', 'm1', 2, 5.0)

        self.assertTrue(tf.gfile.Exists(mh1.hist_file))
        self.assertTrue(tf.gfile.Exists(mh2.hist_file))
        with tf.gfile.GFile(mh1.hist_file) as f:
            lines = f.readlines()
            self.assertEqual(len(lines), 2)
            self.assertEqual(lines[0].rstrip(), '1 10.000000')
            self.assertEqual(lines[1].rstrip(), '2 5.000000')
        with tf.gfile.GFile(mh2.hist_file) as f:
            lines = f.readlines()
            self.assertEqual(len(lines), 1)
            self.assertEqual(lines[0].rstrip(), '1 10.000000')
Esempio n. 2
0
    def testMetricHistoriesMapUniqueness(self):
        # pylint: disable=unused-variable
        p = early_stop.MetricHistory.Params()
        mh1 = early_stop.MetricHistory(p.Set(jobname='job1', metric='m1'))
        mh2 = early_stop.MetricHistory(p.Set(jobname='job2', metric='m2'))
        mh3 = early_stop.MetricHistory(p.Set(jobname='job1', metric='m1'))

        m = early_stop.MetricHistory._metric_histories_map
        self.assertEqual(len(m), 2)
        self.assertEqual(m[early_stop.MetricHistory._Key('job1', 'm1')], mh3)
        self.assertEqual(m[early_stop.MetricHistory._Key('job2', 'm2')], mh2)
Esempio n. 3
0
    def __init__(self, params):
        super(AdaptiveScheduler, self).__init__(params)
        if len(self.params.tasks) != 2 or len(self.params.expected) != 2:
            raise ValueError('Only two tasks are supported by this scheduler.')

        if self.params.epsilon < 0:
            raise ValueError('Epsilon should be positive.')

        self.tasks = self.params.tasks

        self.last_scores = [0.0] * 2

        self._metric_histories = [
            early_stop.MetricHistory(self.params.mh_a),
            early_stop.MetricHistory(self.params.mh_b)
        ]
Esempio n. 4
0
  def __init__(self, params):
    super().__init__(params)

    p = self.params

    with tf.variable_scope(p.name):
      wp = py_utils.WeightParams(
          shape=[],
          init=py_utils.WeightInit.Constant(1.0),
          collections=['DevBasedSchedule_vars'],
          dtype=tf.float32)
      self._cur_factor = py_utils.CreateVariable(
          'cur_factor', wp, trainable=False)
      wp = py_utils.WeightParams(
          shape=[],
          init=py_utils.WeightInit.Constant(0),
          collections=['DevBasedSchedule_vars'],
          dtype=tf.int64)
      self._ref_step = py_utils.CreateVariable('ref_step', wp, trainable=False)
      self._metric_history = early_stop.MetricHistory(p.metric_history)
      self._best_step = ops.best_step(self._metric_history.hist_file,
                                      p.tolerance)
Esempio n. 5
0
 def __init__(self, params):
     super().__init__(params)
     p = self.params
     self._metric_history = early_stop.MetricHistory(p.metric_history)
Esempio n. 6
0
 def __init__(self, params):
   super().__init__(params)
   self.SetVariableFree(False)
   p = self.params
   self._metric_history = early_stop.MetricHistory(p.metric_history)