Esempio n. 1
0
        (IntInterval(1, 3),),
        (IntInterval(2, 5),),
])

# schema definition of the data stream
data_schema = Schema()
data_schema.append(Attribute('name', str))
data_schema.append(Attribute('age', int))

data_schema.append(Attribute('rowid', int, True))
data_source = DBTable('test.db', 'person', data_schema)

# create a data accessor
data_accessor = DataAccessor(
    query_streamer.output(), 
    data_source,
    FindRange
)

query_grouper = Group(
    query_streamer.output(), 
    {'age': lambda a, b: a is b}
)

qselect = Select(
    query_grouper.output(), 
    AttributeRename(
        query_grouper.output().schema(),
        { 'age': 'age_range' }
    )
)
Esempio n. 2
0

engines = []
counters = []

# The query stream contains only a single query box.
query_streamer = ArrayStreamer(query_schema, [
    (query, ),
])
engines.append(query_streamer)

counties_source = Rtree(counties_file, 'counties.the_geom')

counties_accessor = DataAccessor(
    query_streamer.output(),
    counties_source,
    FindRange,
)
engines.append(counties_accessor)

demux = Demux(counties_accessor.output())


def intersection(a, b):
    g1 = a.geom()
    g2 = b.geom()
    try:
        if g1.is_valid and g2.is_valid:
            i = g1.intersection(g2)
            return Geometry(i)
        else:
Esempio n. 3
0
        for i, c in enumerate(self._c):
            self._c[i] = self._af[i][1](c, r[i])


engines = []

# The query stream contains only a single query.
query_streamer = ArrayStreamer(query_schema, [
    (IntInterval(0, int(1E10)), ),
])
engines.append(query_streamer)

# Create a family data source: a table in the input database.
family_source = DBTable(input_file, 'family', family_schema)
# Data accessor for the species data source.
family_accessor = DataAccessor(query_streamer.output(), family_source,
                               FindRange)
engines.append(family_accessor)

# A group mini-engine to split the family IDs into groups.
family_id_grouper = Group(family_accessor.output(), {
    'family.id': lambda a, b: a == b
})
engines.append(family_id_grouper)

# Select only the family ID for querying genera.
family_id_select = Select(
    family_accessor.output(),
    UniversalSelect(
        family_accessor.output().schema(), {
            'genus.family_id': {
                'type': int,
Esempio n. 4
0
    except:
        return None


engines = []
counters = []

# The query stream contains only a single query box.
query_streamer = ArrayStreamer(query_schema, [
    (query, ),
])
engines.append(query_streamer)

# Query the states from the data source.
states_source = Rtree(states_file, 'states.the_geom')
states_accessor = DataAccessor(query_streamer.output(), states_source,
                               FindRange)
engines.append(states_accessor)

# Trim the states to the query region.
states_select = Select(
    states_accessor.output(),
    UniversalSelect(
        states_accessor.output().schema(),
        {
            # trim geometry
            'states.the_geom': {
                'type': Geometry,
                'args': ['states.the_geom'],
                'function': lambda v: intersection(v, query),
            },
            # keep OID
Esempio n. 5
0
        """
        self._calls += 1
        for i, c in enumerate(self._c):
            self._c[i] = self._af[i][1](c, r[i])


engines = []
counters = []

# The query stream contains only a single query box.
query_streamer = ArrayStreamer(query_schema, [(query,)])
engines.append(query_streamer)

counties_source = Rtree(counties_file, "counties.the_geom")

counties_accessor = DataAccessor(query_streamer.output(), counties_source, FindRange)
engines.append(counties_accessor)

demux = Demux(counties_accessor.output())


def intersection(a, b):
    g1 = a.geom()
    g2 = b.geom()
    try:
        if g1.is_valid and g2.is_valid:
            i = g1.intersection(g2)
            return Geometry(i)
        else:
            return None
    except:
Esempio n. 6
0
        (IntInterval(1, 3),),
        (IntInterval(2, 5),),
])

# schema definition of the data stream
data_schema = Schema()
data_schema.append(Attribute('name', str))
data_schema.append(Attribute('age', int))

data_schema.append(Attribute('rowid', int, True))
data_source = DBTable('test.db', 'person', data_schema)

# create a data accessor
data_accessor = DataAccessor(
    query_streamer.output(), 
    data_source,
    FindRange
)
name_age_combiner = NameAgeCombiner(data_accessor.output().schema())
select = Select(data_accessor.output(), name_age_combiner)

query_grouper = Group(
    query_streamer.output(), 
    {'age': lambda a, b: a is b}
)

joiner = Join(query_grouper.output(), select.output())
filter = Filter(joiner.output(), FilterNameAge(joiner.output().schema()))

result_stack = ResultStack(
    filter.output(),
Esempio n. 7
0
        query_streamer.output().schema(),
        {
            'states.geom': {
                'type': Geometry,
                'args': ['queries.geom'],
                'function': lambda v: v,
            },
        }
    )
)
engines.append(states_query)

states_source = Rtree(states_file, 'states.geom')
states_accessor = DataAccessor(
    states_query.output(),
    states_source,
    FindRange
)
engines.append(states_accessor)

states_select = Select(
    states_accessor.output(),
    UniversalSelect(
        states_accessor.output().schema(),
        {
            'states.oid': {
                'type': int,
                'args': ['oid'],
                'function': lambda v: v,
            },
            'states.geom': {
Esempio n. 8
0
    (IntInterval(2, 5), ),
    (IntInterval(2, 5), ),
    (IntInterval(1, 3), ),
    (IntInterval(2, 5), ),
])

# schema definition of the data stream
data_schema = Schema()
data_schema.append(Attribute('name', str))
data_schema.append(Attribute('age', int))

data_schema.append(Attribute('rowid', int, True))
data_source = DBTable('test.db', 'person', data_schema)

# create a data accessor
data_accessor = DataAccessor(query_streamer.output(), data_source, FindRange)
name_age_combiner = NameAgeCombiner(data_accessor.output().schema())
select = Select(data_accessor.output(), name_age_combiner)

query_grouper = Group(query_streamer.output(), {'age': lambda a, b: a is b})

joiner = Join(query_grouper.output(), select.output())
filter = Filter(joiner.output(), FilterNameAge(joiner.output().schema()))

result_stack = ResultStack(
    filter.output(),
    #    joiner.output(),
    #    query_streamer.output(),
    #    query_grouper.output(),
    #    select.output(),
)
Esempio n. 9
0
# schema definition of the data stream
data_schema = Schema()
data_schema.append(Attribute('name', str))
data_schema.append(Attribute('age', int))

data_schema.append(Attribute('rowid', int, True))
data_source = DBTable('test.db', 'person', data_schema)

# definition of the data source
#data_source = CSVFile('test.csv', data_schema)

data_accessors = []
selects = []
for i in range(0, 1):
    # create a data accessor
    data_accessor = DataAccessor(demux, data_source, FindRange)
    name_age_combiner = NameAgeCombiner(data_accessor.output().schema())
    selects.append(Select(data_accessor.output(), name_age_combiner))
    data_accessors.append(data_accessor)

mux = Mux(*[s.output() for s in selects])

#name_age_combiner_reverse = NameAgeCombinerReverse(demux.schema())
#select2 = Select(demux, name_age_combiner_reverse)

#name_age_combiner = NameAgeCombiner(data_accessor.output().schema())
#select = Select(data_accessor.output(), name_age_combiner)
#name_age_combiner_reverse = NameAgeCombinerReverse(data_accessor.output().schema())
#select2 = Select(data_accessor.output(), name_age_combiner_reverse)

result_stack = ResultStack(
Esempio n. 10
0
            self._c[i] = self._af[i][1](c, r[i])

engines = []

# The query stream contains only a single query.
query_streamer = ArrayStreamer(query_schema, [
        (IntInterval(0, int(1E10)),),
])
engines.append(query_streamer)

# Create a family data source: a table in the input database.
family_source = DBTable(input_file, 'family', family_schema)
# Data accessor for the species data source.
family_accessor = DataAccessor(
    query_streamer.output(), 
    family_source,
    FindRange
)
engines.append(family_accessor)

# A group mini-engine to split the family IDs into groups.
family_id_grouper = Group(
    family_accessor.output(), 
    {'family.id': lambda a, b: a == b}
)
engines.append(family_id_grouper)

# Select only the family ID for querying genera.
family_id_select = Select(
    family_accessor.output(),
    UniversalSelect(
Esempio n. 11
0
        Adds the specified record to the aggregate value.
        '''
        self._calls += 1
        for i, c in enumerate(self._c):
            self._c[i] = self._af[i][1](c, r[i])


# The query stream contains only a single query.
query_streamer = ArrayStreamer(query_schema, [
    (IntInterval(0, int(1E10)), ),
])

# Create a species data source: a  table in the input database.
species_source = DBTable(input_file, 'species', species_schema)
# Data accessor for the species data source.
species_accessor = DataAccessor(query_streamer.output(), species_source,
                                FindRange)

demux = Demux(species_accessor.output())

engines = []
mux_streams = []
for i in range(tracks):
    channel = demux.channel()

    # Select only the species ID for querying plants.
    species_id_select = Select(
        channel,
        UniversalSelect(
            species_accessor.output().schema(), {
                'plants.species_id': {
                    'type': int,
Esempio n. 12
0
        return None

engines = []
counters = []

# The query stream contains only a single query box.
query_streamer = ArrayStreamer(query_schema, [
        (query,),
])
engines.append(query_streamer)

# Query the states from the data source.
states_source = Rtree(states_file, 'states.the_geom')
states_accessor = DataAccessor(
    query_streamer.output(),
    states_source,
    FindRange
)
engines.append(states_accessor)

# Trim the states to the query region.
states_select = Select(
    states_accessor.output(),
    UniversalSelect(
        states_accessor.output().schema(),
        {
            # trim geometry
            'states.the_geom': {
                'type': Geometry,
                'args': ['states.the_geom'],
                'function': lambda v: intersection(v, query),
Esempio n. 13
0
data_schema.append(Attribute('name', str))
data_schema.append(Attribute('age', int))

data_schema.append(Attribute('rowid', int, True))
data_source = DBTable('test.db', 'person', data_schema)

# definition of the data source
#data_source = CSVFile('test.csv', data_schema)

data_accessors = []
selects = []
for i in range(0, 1):
    # create a data accessor
    data_accessor = DataAccessor(
        demux, 
        data_source,
        FindRange
    )
    name_age_combiner = NameAgeCombiner(data_accessor.output().schema())
    selects.append(Select(data_accessor.output(), name_age_combiner))
    data_accessors.append(data_accessor)

mux = Mux(*[s.output() for s in selects])

#name_age_combiner_reverse = NameAgeCombinerReverse(demux.schema())
#select2 = Select(demux, name_age_combiner_reverse)

#name_age_combiner = NameAgeCombiner(data_accessor.output().schema())
#select = Select(data_accessor.output(), name_age_combiner)
#name_age_combiner_reverse = NameAgeCombinerReverse(data_accessor.output().schema())
#select2 = Select(data_accessor.output(), name_age_combiner_reverse)
Esempio n. 14
0
#############################################################

states_query = Select(
    query_streamer.output(),
    UniversalSelect(
        query_streamer.output().schema(), {
            'states.geom': {
                'type': Geometry,
                'args': ['queries.geom'],
                'function': lambda v: v,
            },
        }))
engines.append(states_query)

states_source = Rtree(states_file, 'states.geom')
states_accessor = DataAccessor(states_query.output(), states_source, FindRange)
engines.append(states_accessor)

states_select = Select(
    states_accessor.output(),
    UniversalSelect(
        states_accessor.output().schema(), {
            'states.oid': {
                'type': int,
                'args': ['oid'],
                'function': lambda v: v,
            },
            'states.geom': {
                'type': Geometry,
                'args': ['states.geom'],
                'function': lambda v: v,
Esempio n. 15
0
        '''
        self._calls += 1
        for i, c in enumerate(self._c):
            self._c[i] = self._af[i][1](c, r[i])

# The query stream contains only a single query.
query_streamer = ArrayStreamer(query_schema, [
        (IntInterval(0, int(1E10)),),
])

# Create a species data source: a  table in the input database.
species_source = DBTable(input_file, 'species', species_schema)
# Data accessor for the species data source.
species_accessor = DataAccessor(
    query_streamer.output(), 
    species_source,
    FindRange
)

demux = Demux(species_accessor.output())

engines = []
mux_streams = []
for i in range(tracks):
    channel = demux.channel()
    
    # Select only the species ID for querying plants.
    species_id_select = Select(
        channel,
        UniversalSelect(
            species_accessor.output().schema(),