def _iteration_function(self, x, iteration_number, step_size): if iteration_number == 0: self.r = self.y - self.A * x self.p = self.r else: # Helper variables Ap = self.A * self.p pAp = yp.sum(yp.real((yp.conj(self.p) * Ap))) r2 = yp.sum(yp.real((yp.conj(self.r) * self.r))) # Update alpha alpha = r2 / pAp # Update x x += alpha * self.p # Update r self.r -= alpha * Ap # Update beta beta = yp.sum(yp.real((yp.conj(self.r) * self.r))) / r2 # Update p self.p = self.r + beta * self.p return (x)
def psnr(signal, noise_roi=None, signal_roi=None): """ Calculate the peak signal to noise ratio (SNR) of a signal """ # Reference: https://en.wikipedia.org/wiki/Signal-to-noise_ratio # Calculate full power of signal signal_power = yp.sum(yp.abs(signal)**2) if signal_roi is None else yp.sum( yp.abs(signal[noise_roi.slice])**2) # Calculate noise standard deviation, using ROI if provided signal_var = yp.std(signal)**2 if noise_roi is None else yp.std( signal[noise_roi.slice])**2 return yp.log10(signal_power / signal_var)
def _forward(self, x, y): fill(self._forward_y, 0) # Take finite differences for dim in range(len(self.shape)): self._forward_y += abs(roll(x, 1, axis=dim) - x) # Normalize self._forward_y[:] = sqrt(self._forward_y) # Return sum y[:] = sum(self._forward_y)
def calcDnfFromKernel(x): if len(x) == 0: return 0 else: # Normalize x = x / yp.scalar(yp.sum(x)) # Take fourier transform intensity x_fft = yp.Ft(x) sigma_x = yp.abs(x_fft) ** 2 # Calculate DNF return np.sqrt(1 / len(x) * np.sum(1 / sigma_x))
def _inverse(x, y): """Inverse using phase correlation.""" # Extract two arrays to correlate xf_1 = array_to_register_to_f xf_2 = x # Compute normalized cross-correlation phasor = (conj(xf_1) * xf_2) / abs(conj(xf_1) * xf_2) phasor[isnan(phasor)] = 0 # Convert phasor to delta function delta = F.H * phasor # If axes is defined, return only one axis if len(axes) != ndim(x) or any( [ax != index for (ax, index) in zip(axes, range(len(axes)))]): axes_not_used = [ index for index in range(ndim(x)) if index not in axes ] delta = squeeze(sum(delta, axes=axes_not_used)) if debug: import matplotlib.pyplot as plt plt.figure(figsize=(12, 3)) plt.subplot(131) plt.imshow(abs(F.H * xf_1)) plt.subplot(132) plt.imshow(abs(F.H * xf_2)) plt.subplot(133) if ndim(delta) > 1: plt.imshow(abs(delta)) else: plt.plot(abs(delta)) # Calculate maximum and return if not center: y[:] = reshape(asarray(argmax(delta)), shape(y)) else: y[:] = reshape( asarray(argmax(delta)) - asarray(delta.shape) / 2, shape(y)) # Deal with negative values sizes = reshape(asarray([_shape[ax] for ax in axes]), shape(y)) mask = y[:] > sizes / 2 y[:] -= mask * sizes if debug: plt.title( str(np.real(np.asarray(argmax(delta))).tolist()) + ' ' + str(np.abs(np.asarray(y).ravel())))
def dnfFromConvolutionKernel(h): """Calculate the deconvolution noise factor (DNF) of N-dimensional convolution operator, given it's kernel.""" if len(h) == 0: return 0 else: # Normalize h = copy.deepcopy(h) / yp.scalar(yp.sum(h)) # Take fourier transform intensity h_fft = yp.Ft(h) sigma_h = yp.abs(h_fft)**2 # Calculate DNF return np.sqrt(1 / len(h) * np.sum(1 / sigma_h))
def blur_vectors(self, dtype=None, backend=None, debug=False, use_phase_ramp=False, corrections={}): """ This function generates the object size, image size, and blur kernels from a libwallerlab dataset object. Args: dataset: An io.Dataset object dtype [np.float32]: Which datatype to use for kernel generation (All numpy datatypes supported) Returns: object_size: The object size this dataset can recover image_size: The computed image size of the dataset blur_kernel_list: A dictionary of blur kernels lists, one key per color channel. """ # Assign dataset dataset = self # Get corrections from metadata if len(corrections) is 0 and 'blur_vector' in self.metadata.calibration: corrections = dataset.metadata.calibration['blur_vector'] # Get datatype and backends dtype = dtype if dtype is not None else yp.config.default_dtype backend = backend if backend is not None else yp.config.default_backend # Calculate effective pixel size if necessaey if dataset.metadata.system.eff_pixel_size_um is None: dataset.metadata.system.eff_pixel_size_um = dataset.metadata.camera.pixel_size_um / \ (dataset.metadata.objective.mag * dataset.metadata.system.mag) # Recover and store position and illumination list blur_vector_roi_list = [] position_list, illumination_list = [], [] frame_segment_map = [] for frame_index in range(dataset.shape[0]): frame_state = dataset.frame_state_list[frame_index] # Store which segment this measurement uses frame_segment_map.append(frame_state['position']['common']['linear_segment_index']) # Extract list of illumination values for each time point if 'illumination' in frame_state: illumination_list_frame = [] if type(frame_state['illumination']) is str: illum_state_list = self._frame_state_list[0]['illumination']['states'] else: illum_state_list = frame_state['illumination']['states'] for time_point in illum_state_list: illumination_list_time_point = [] for illumination in time_point: illumination_list_time_point.append( {'index': illumination['index'], 'value': illumination['value']}) illumination_list_frame.append(illumination_list_time_point) else: raise ValueError('Frame %d does not contain illumination information' % frame_index) # Extract list of positions for each time point if 'position' in frame_state: position_list_frame = [] for time_point in frame_state['position']['states']: position_list_time_point = [] for position in time_point: if 'units' in position['value']: if position['value']['units'] == 'mm': ps_um = dataset.metadata.system.eff_pixel_size_um position_list_time_point.append( [1000 * position['value']['y'] / ps_um, 1000 * position['value']['x'] / ps_um]) elif position['value']['units'] == 'um': position_list_time_point.append( [position['value']['y'] / ps_um, position['value']['x'] / ps_um]) elif position['value']['units'] == 'pixels': position_list_time_point.append([position['value']['y'], position['value']['x']]) else: raise ValueError('Invalid units %s for position in frame %d' % (position['value']['units'], frame_index)) else: # print('WARNING: Could not find posiiton units in metadata, assuming mm') ps_um = dataset.metadata.system.eff_pixel_size_um position_list_time_point.append( [1000 * position['value']['y'] / ps_um, 1000 * position['value']['x'] / ps_um]) position_list_frame.append(position_list_time_point[0]) # Assuming single time point for now. # Define positions and position indicies used positions_used, position_indicies_used = [], [] for index, pos in enumerate(position_list_frame): for color in illumination_list_frame[index][0]['value']: if any([illumination_list_frame[index][0]['value'][color] > 0 for color in illumination_list_frame[index][0]['value']]): position_indicies_used.append(index) positions_used.append(pos) # Generate ROI for this blur vector from htdeblur.blurkernel import getPositionListBoundingBox blur_vector_roi = getPositionListBoundingBox(positions_used) # Append to list blur_vector_roi_list.append(blur_vector_roi) # Crop illumination list to values within the support used illumination_list.append([illumination_list_frame[index] for index in range(min(position_indicies_used), max(position_indicies_used) + 1)]) # Store corresponding positions position_list.append(positions_used) # Apply kernel scaling or compression if necessary if 'scale' in corrections: # We need to use phase-ramp based kernel generation if we modify the positions use_phase_ramp = True # Modify position list for index in range(len(position_list)): _positions = np.asarray(position_list[index]) for scale_correction in corrections['scale']: factor, axis = corrections['scale']['factor'], corrections['scale']['axis'] _positions[:, axis] = ((_positions[:, axis] - yp.min(_positions[:, axis])) * factor + yp.min(_positions[:, axis])) position_list[index] = _positions.tolist() # Synthesize blur vectors blur_vector_list = [] for frame_index in range(dataset.shape[0]): # Generate blur vectors if use_phase_ramp: from llops.operators import PhaseRamp kernel_shape = [yp.fft.next_fast_len(max(sh, 1)) for sh in blur_vector_roi_list[frame_index].shape] offset = yp.cast([sh // 2 + st for (sh, st) in zip(kernel_shape, blur_vector_roi_list[frame_index].start)], 'complex32', dataset.backend) # Create phase ramp and calculate offset R = PhaseRamp(kernel_shape, dtype='complex32', backend=dataset.backend) # Generate blur vector blur_vector = yp.zeros(R.M, dtype='complex32', backend=dataset.backend) for pos, illum in zip(position_list[frame_index], illumination_list[frame_index]): pos = yp.cast(pos, dtype=dataset.dtype, backend=dataset.backend) blur_vector += (R * (yp.cast(pos - offset, 'complex32'))) # Take inverse Fourier Transform blur_vector = yp.abs(yp.cast(yp.iFt(blur_vector)), 0.0) if position_list[frame_index][0][-1] > position_list[frame_index][0][0]: blur_vector = yp.flip(blur_vector) else: blur_vector = yp.asarray([illum[0]['value']['w'] for illum in illumination_list[frame_index]], dtype=dtype, backend=backend) # Normalize illuminaiton vectors blur_vector /= yp.scalar(yp.sum(blur_vector)) # Append to list blur_vector_list.append(blur_vector) # Return return blur_vector_list, blur_vector_roi_list
def registerImage(image0, image1, method='xc', axis=None, preprocess_methods=['reflect'], debug=False, **kwargs): # Perform preprocessing if len(preprocess_methods) > 0: image0, image1 = _preprocessForRegistration(image0, image1, preprocess_methods, **kwargs) # Parameter on whether we can trust our registration trust_ratio = 1.0 if method in ['xc' or 'cross_correlation']: # Get energy ratio threshold trust_threshold = kwargs.get('energy_ratio_threshold', 1.5) # Pad arrays for optimal speed pad_size = tuple( [sp.fftpack.next_fast_len(s) for s in yp.shape(image0)]) # Perform padding if pad_size is not yp.shape(image0): image0 = yp.pad(image0, pad_size, pad_value='edge', center=True) image1 = yp.pad(image1, pad_size, pad_value='edge', center=True) # Take F.T. of measurements src_freq, target_freq = yp.Ft(image0, axes=axis), yp.Ft(image1, axes=axis) # Whole-pixel shift - Compute cross-correlation by an IFFT image_product = src_freq * yp.conj(target_freq) # image_product /= abs(src_freq * yp.conj(target_freq)) cross_correlation = yp.iFt(image_product, center=False, axes=axis) # Take sum along axis if we're doing 1D if axis is not None: axis_to_sum = list(range(yp.ndim(image1))) del axis_to_sum[axis] cross_correlation = yp.sum(cross_correlation, axis=axis_to_sum) # Locate maximum shape = yp.shape(src_freq) maxima = yp.argmax(yp.abs(cross_correlation)) midpoints = np.array([np.fix(axis_size / 2) for axis_size in shape]) shifts = np.array(maxima, dtype=np.float64) shifts[shifts > midpoints] -= np.array(shape)[shifts > midpoints] # If its only one row or column the shift along that dimension has no # effect. We set to zero. for dim in range(yp.ndim(src_freq)): if shape[dim] == 1: shifts[dim] = 0 # If energy ratio is too small, set all shifts to zero trust_metric = yp.scalar( yp.max(yp.abs(cross_correlation)**2) / yp.mean(yp.abs(cross_correlation)**2)) # Determine if this registraition can be trusted trust_ratio = trust_metric / trust_threshold elif method == 'orb': # Get user-defined mean_residual_threshold if given trust_threshold = kwargs.get('mean_residual_threshold', 40.0) # Get user-defined mean_residual_threshold if given orb_feature_threshold = kwargs.get('orb_feature_threshold', 25) match_count = 0 fast_threshold = 0.05 while match_count < orb_feature_threshold: descriptor_extractor = ORB(n_keypoints=500, fast_n=9, harris_k=0.1, fast_threshold=fast_threshold) # Extract keypoints from first frame descriptor_extractor.detect_and_extract( np.asarray(image0).astype(np.double)) keypoints0 = descriptor_extractor.keypoints descriptors0 = descriptor_extractor.descriptors # Extract keypoints from second frame descriptor_extractor.detect_and_extract( np.asarray(image1).astype(np.double)) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors # Set match count match_count = min(len(keypoints0), len(keypoints1)) fast_threshold -= 0.01 if fast_threshold == 0: raise RuntimeError( 'Could not find any keypoints (even after shrinking fast threshold).' ) # Match descriptors matches = match_descriptors(descriptors0, descriptors1, cross_check=True) # Filter descriptors to axes (if provided) if axis is not None: matches_filtered = [] for (index_0, index_1) in matches: point_0 = keypoints0[index_0, :] point_1 = keypoints1[index_1, :] unit_vec = point_0 - point_1 unit_vec /= np.linalg.norm(unit_vec) if yp.abs(unit_vec[axis]) > 0.99: matches_filtered.append((index_0, index_1)) matches_filtered = np.asarray(matches_filtered) else: matches_filtered = matches # Robustly estimate affine transform model with RANSAC model_robust, inliers = ransac((keypoints0[matches_filtered[:, 0]], keypoints1[matches_filtered[:, 1]]), EuclideanTransform, min_samples=3, residual_threshold=2, max_trials=100) # Note that model_robust has a translation property, but this doesn't # seem to be as numerically stable as simply averaging the difference # between the coordinates along the desired axis. # Apply match filter matches_filtered = matches_filtered[inliers, :] # Process keypoints if yp.shape(matches_filtered)[0] > 0: # Compute shifts difference = keypoints0[matches_filtered[:, 0]] - keypoints1[ matches_filtered[:, 1]] shifts = (yp.sum(difference, axis=0) / yp.shape(difference)[0]) shifts = np.round(shifts[0]) # Filter to axis mask if axis is not None: _shifts = [0, 0] _shifts[axis] = shifts[axis] shifts = _shifts # Calculate residuals residuals = yp.sqrt( yp.sum( yp.abs(keypoints0[matches_filtered[:, 0]] + np.asarray(shifts) - keypoints1[matches_filtered[:, 1]])**2)) # Define a trust metric trust_metric = residuals / yp.shape( keypoints0[matches_filtered[:, 0]])[0] # Determine if this registration can be trusted trust_ratio = 1 / (trust_metric / trust_threshold) print('===') print(trust_ratio) print(trust_threshold) print(trust_metric) print(shifts) else: trust_metric = 1e10 trust_ratio = 0.0 shifts = np.asarray([0, 0]) elif method == 'optimize': # Create Operators L2 = ops.L2Norm(yp.shape(image0), dtype='complex64') R = ops.PhaseRamp(yp.shape(image0), dtype='complex64') REAL = ops.RealFilter((2, 1), dtype='complex64') # Take Fourier Transforms of images image0_f, image1_f = yp.astype(yp.Ft(image0), 'complex64'), yp.astype( yp.Ft(image1), 'complex64') # Diagonalize one of the images D = ops.Diagonalize(image0_f) # Form objective objective = L2 * (D * R * REAL - image1_f) # Solve objective solver = ops.solvers.GradientDescent(objective) shifts = solver.solve(iteration_count=1000, step_size=1e-8) # Convert to numpy array, take real part, and round. shifts = yp.round(yp.real(yp.asbackend(shifts, 'numpy'))) # Flip shift axes (x,y to y, x) shifts = np.fliplr(shifts) # TODO: Trust metric and trust_threshold trust_threshold = 1 trust_ratio = 1.0 else: raise ValueError('Invalid Registration Method %s' % method) # Mark whether or not this measurement is of good quality if not trust_ratio > 1: if debug: print('Ignoring shift with trust metric %g (threshold is %g)' % (trust_metric, trust_threshold)) shifts = yp.zeros_like(np.asarray(shifts)).tolist() # Show debugging figures if requested if debug: import matplotlib.pyplot as plt plt.figure(figsize=(6, 5)) plt.subplot(131) plt.imshow(yp.abs(image0)) plt.axis('off') plt.subplot(132) plt.imshow(yp.abs(image1)) plt.title('Trust ratio: %g' % (trust_ratio)) plt.axis('off') plt.subplot(133) if method in ['xc' or 'cross_correlation']: if axis is not None: plt.plot(yp.abs(yp.squeeze(cross_correlation))) else: plt.imshow(yp.abs(yp.fftshift(cross_correlation))) else: plot_matches(plt.gca(), yp.real(image0), yp.real(image1), keypoints0, keypoints1, matches_filtered) plt.title(str(shifts)) plt.axis('off') # Return return shifts, trust_ratio
def register_translation(src_image, target_image, upsample_factor=1, energy_ratio_threshold=2, space="real"): """ Efficient subpixel image translation registration by cross-correlation. This code gives the same precision as the FFT upsampled cross-correlation in a fraction of the computation time and with reduced memory requirements. It obtains an initial estimate of the cross-correlation peak by an FFT and then refines the shift estimation by upsampling the DFT only in a small neighborhood of that estimate by means of a matrix-multiply DFT. Parameters ---------- src_image : ndarray Reference image. target_image : ndarray Image to register. Must be same dimensionality as ``src_image``. upsample_factor : int, optional Upsampling factor. Images will be registered to within ``1 / upsample_factor`` of a pixel. For example ``upsample_factor == 20`` means the images will be registered within 1/20th of a pixel. Default is 1 (no upsampling) space : string, one of "real" or "fourier", optional Defines how the algorithm interprets input data. "real" means data will be FFT'd to compute the correlation, while "fourier" data will bypass FFT of input data. Case insensitive. return_error : bool, optional Returns error and phase difference if on, otherwise only shifts are returned Returns ------- shifts : ndarray Shift vector (in pixels) required to register ``target_image`` with ``src_image``. Axis ordering is consistent with numpy (e.g. Z, Y, X) error : float Translation invariant normalized RMS error between ``src_image`` and ``target_image``. phasediff : float Global phase difference between the two images (should be zero if images are non-negative). References ---------- .. [1] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, "Efficient subpixel image registration algorithms," Optics Letters 33, 156-158 (2008). :DOI:`10.1364/OL.33.000156` .. [2] James R. Fienup, "Invariant error metrics for image reconstruction" Optics Letters 36, 8352-8357 (1997). :DOI:`10.1364/AO.36.008352` """ # images must be the same shape if yp.shape(src_image) != yp.shape(target_image): raise ValueError("Error: images must be same size for " "register_translation") # only 2D data makes sense right now if yp.ndim(src_image) > 3 and upsample_factor > 1: raise NotImplementedError("Error: register_translation only supports " "subpixel registration for 2D and 3D images") # assume complex data is already in Fourier space if space.lower() == 'fourier': src_freq = src_image target_freq = target_image # real data needs to be fft'd. elif space.lower() == 'real': src_freq = yp.Ft(src_image) target_freq = yp.Ft(target_image) else: raise ValueError("Error: register_translation only knows the \"real\" " "and \"fourier\" values for the ``space`` argument.") # Whole-pixel shift - Compute cross-correlation by an IFFT shape = yp.shape(src_freq) image_product = src_freq * yp.conj(target_freq) cross_correlation = yp.iFt(image_product, center=False) # Locate maximum maxima = yp.argmax(yp.abs(cross_correlation)) midpoints = np.array([np.fix(axis_size / 2) for axis_size in shape]) shifts = np.array(maxima, dtype=np.float64) shifts[shifts > midpoints] -= np.array(shape)[shifts > midpoints] # if upsample_factor > 1: # # Initial shift estimate in upsampled grid # shifts = np.round(shifts * upsample_factor) / upsample_factor # upsampled_region_size = np.ceil(upsample_factor * 1.5) # # Center of output array at dftshift + 1 # dftshift = np.fix(upsampled_region_size / 2.0) # upsample_factor = np.array(upsample_factor, dtype=np.float64) # normalization = (src_freq.size * upsample_factor ** 2) # # Matrix multiply DFT around the current shift estimate # sample_region_offset = dftshift - shifts*upsample_factor # cross_correlation = _upsampled_dft(image_product.conj(), # upsampled_region_size, # upsample_factor, # sample_region_offset).conj() # cross_correlation /= normalization # # Locate maximum and map back to original pixel grid # maxima = np.array(np.unravel_index( # np.argmax(np.abs(cross_correlation)), # cross_correlation.shape), # dtype=np.float64) # maxima -= dftshift # # shifts = shifts + maxima / upsample_factor # If its only one row or column the shift along that dimension has no # effect. We set to zero. for dim in range(yp.ndim(src_freq)): if shape[dim] == 1: shifts[dim] = 0 # If energy ratio is too small, set all shifts to zero energy_ratio = yp.max(yp.abs(cross_correlation)**2) / yp.sum( yp.abs(cross_correlation)**2) * yp.prod(yp.shape(cross_correlation)) if energy_ratio < energy_ratio_threshold: print('Ignoring shift with energy ratio %g (threshold is %g)' % (energy_ratio, energy_ratio_threshold)) shifts = yp.zeros_like(shifts) return shifts
def _forward(self, x, y): y[:] = 0.5 * sum(conj(x) * (x - self.denoiser(x)))
def demosaic(frame, order='grbg', bayer_coupling_matrix=None, debug=False, white_balance=False): # bayer_coupling_matrix = None # bgrg: cells very green # rggb: slight gteen tint """Demosaic a frame""" frame_out = yp.zeros((int(yp.shape(frame)[0] / 2), int(yp.shape(frame)[1] / 2), 3), yp.getDatatype(frame), yp.getBackend(frame)) if bayer_coupling_matrix is not None: frame_vec = yp.zeros((4, int(yp.shape(frame)[0] * yp.shape(frame)[1] / 4)), yp.getDatatype(frame), yp.getBackend(frame)) # Cast bayer coupling matrix bayer_coupling_matrix = yp.cast(bayer_coupling_matrix, yp.getDatatype(frame), yp.getBackend(frame)) # Define frame vector for bayer_pattern_index in range(4): pixel_offsets = (0, 0) if bayer_pattern_index == 3: img_sub = frame[pixel_offsets[0]::2, pixel_offsets[1]::2] elif bayer_pattern_index == 1: img_sub = frame[pixel_offsets[0]::2, pixel_offsets[1] + 1::2] elif bayer_pattern_index == 2: img_sub = frame[pixel_offsets[0] + 1::2, pixel_offsets[1]::2] elif bayer_pattern_index == 0: img_sub = frame[pixel_offsets[0] + 1::2, pixel_offsets[1] + 1::2] frame_vec[bayer_pattern_index, :] = yp.dcopy(yp.vec(img_sub)) if debug: print("Channel %d mean is %g" % (bayer_pattern_index, yp.scalar(yp.real(yp.sum(img_sub))))) # Perform demosaic using least squares result = yp.linalg.lstsq(bayer_coupling_matrix, frame_vec) result -= yp.amin(result) result /= yp.amax(result) for channel in range(3): values = result[channel] frame_out[:, :, channel] = yp.reshape(values, ((yp.shape(frame_out)[0], yp.shape(frame_out)[1]))) if white_balance: frame_out[:, :, channel] -= yp.amin(frame_out[:, :, channel]) frame_out[:, :, channel] /= yp.amax(frame_out[:, :, channel]) return frame_out else: frame_out = yp.zeros((int(yp.shape(frame)[0] / 2), int(yp.shape(frame)[1] / 2), 3), dtype=yp.getDatatype(frame), backend=yp.getBackend(frame)) # Get color order from order variable b_index = order.find('b') r_index = order.find('r') g1_index = order.find('g') # Get g2 from intersection of sets g2_index = set(list(range(4))).difference({b_index, r_index, g1_index}).pop() # +-----+-----+ # | 0 | 1 | # +-----+-----| # | 2 | 3 | # +-----+-----| if debug: import matplotlib.pyplot as plt plt.figure() plt.imshow(frame[:12, :12]) r_start = (int(r_index in [2, 3]), int(r_index in [1, 3])) g1_start = (int(g1_index in [2, 3]), int(g1_index in [1, 3])) g2_start = (int(g2_index in [2, 3]), int(g2_index in [1, 3])) b_start = (int(b_index in [2, 3]), int(b_index in [1, 3])) frame_out[:, :, 0] = frame[r_start[0]::2, r_start[1]::2] frame_out[:, :, 1] = (frame[g1_start[0]::2, g1_start[1]::2] + frame[g2_start[0]::2, g2_start[1]::2]) / 2.0 frame_out[:, :, 2] = frame[b_start[0]::2, b_start[1]::2] # normalize frame_out /= yp.max(frame_out) # Perform white balancing if desired if white_balance: clims = [] for channel in range(3): clims.append(yp.max(frame_out[:, :, channel])) frame_out[:, :, channel] /= yp.max(frame_out[:, :, channel]) # Return frame return frame_out