Esempio n. 1
0
def fit_skewedgauss(led_esp, led):
    model = SkewedGaussianModel()
    params = model.make_params(amplitude=1, center=400, sigma=5, gamma=1)
    result = model.fit(led_esp[led][:, 1],
                       params,
                       x=led_esp[led][:, 0],
                       nan_policy='propagate')
    return result
def skewed_gaussian_fit(x, y, title_name):
	mod = SkewedGaussianModel()
	params = mod.make_params(amplitude=-2000, center=6562.801, sigma=1, gamma=0)
	result = mod.fit(y, params, x=x)
	print(result.fit_report())
	#out = mod.fit(y, pars, x=x)
	plt.figure()
	plt.plot(x, y)
	plt.plot(x, result.best_fit)
	plt.title(title_name)
	plt.show()
def SkewedGaussianFit(x, y, plot=True):
    from lmfit.models import SkewedGaussianModel
    model = SkewedGaussianModel()
    params = model.make_params(amplitude=1, center=60, sigma=30, gamma=0)

    # adjust parameters  to best fit data.
    result = model.fit(y, params, x=x)

    v = result.values
    plt.plot(x, result.best_fit)
    return v['center'], v['gamma']
Esempio n. 4
0
    def _computeLag(self, data):
        """
        Given the output of conditional average compute the
        time lag corresponding to the maximum correlation
        of each of the structure with respect to the first. In order
        increase resolution we make a gaussian fit of the cross-correlation
        function in analogy to what done for TCV using the
        lmfit class and determine the center of the gaussian

        Parameters
        ----------
        data
            xarray DataArray containing the saved Conditional Average structure
        Returns
        -------
        Dictionary with keys indicating the names of the signals for which cross-correlation
        are saved and reporting correlation and error
        """

        lag = np.arange(data.shape[1], dtype='float') - data.shape[1]/2.
        lag *= self.dt
        outDictionary = {}
        _Name = [n for n in data.sig.values if n != self.refSignal]
        for n in _Name:
            a = data.sel(sig=n).values
            b = data.sel(sig=self.refSignal).values
            xcor = np.correlate(a,
                                b,
                                mode='same')
            xcor /= np.sqrt(np.dot(a, a) *
                            np.dot(b, b))
            # the gaussian fit is not approriate for AUG
            # since the cross-correlation function is strongly asymmetric
            # we used for fit a Skewed Gaussian Distribution
            # This is used to estimate the error
            mod = SkewedGaussianModel()
            pars = mod.guess(xcor, x=lag)
            pars['sigma'].set(value=1e-5, vary=True)
            pars['gamma'].set(value=stats.skew(xcor),vary=True)
            out = mod.fit(xcor, pars, x=lag)
            # for a better estimate of the lag we use the computation of the
            # roots of the hilbert transform of the cross-correlation
            # function
            h = hilbert(xcor)
            S = UnivariateSpline(lag, np.imag(h), s=0)
            tau = S.roots()[np.argmin(np.abs(S.roots()))]

            outDictionary[n + '-' + self.refSignal] = {'tau': tau,
                                                       'err': out.params['center'].stderr, 
                                                       'maxlag':lag[np.argmax(xcor)]}

        return outDictionary
Esempio n. 5
0
def skewed_gaussian_fit(x, y, title_name):
    mod = SkewedGaussianModel()
    params = mod.make_params(amplitude=-2000,
                             center=6562.801,
                             sigma=1,
                             gamma=0)
    result = mod.fit(y, params, x=x)
    print(result.fit_report())
    #out = mod.fit(y, pars, x=x)
    plt.figure()
    plt.plot(x, y)
    plt.plot(x, result.best_fit)
    plt.title(title_name)
    plt.show()
Esempio n. 6
0
        def scan_dcmpitch(sgnl):
            line1 = '%s, %s, %.3f, %.3f, %d -- starting at %.3f\n' % \
                    (motor.name, sgnl, start, stop, nsteps, motor.user_readback.get())

            yield from abs_set(user_ns['_locked_dwell_time'], 0.1, wait=True)
            yield from dcm.kill_plan()

            yield from mv(slits3.vsize, 3)
            if sgnl == 'Bicron':
                yield from mv(slitsg.vsize, 5)

            uid = yield from rel_scan(dets, motor, start, stop, nsteps)
            #yield from rel_adaptive_scan(dets, 'I0', motor,
            #                             start=start,
            #                             stop=stop,
            #                             min_step=0.002,
            #                             max_step=0.03,
            #                             target_delta=.15,
            #                             backstep=True)
            t = db[-1].table()
            signal = t[sgnl]
            if choice.lower() == 'com':
                position = com(signal)
                top = t[motor.name][position]
            elif choice.lower() == 'fit':
                pitch = t['dcm_pitch']
                mod = SkewedGaussianModel()
                pars = mod.guess(signal, x=pitch)
                out = mod.fit(signal, pars, x=pitch)
                print(whisper(out.fit_report(min_correl=0)))
                out.plot()
                top = out.params['center'].value
            else:
                position = peak(signal)
                top = t[motor.name][position]

            yield from sleep(3.0)
            yield from abs_set(motor.kill_cmd, 1, wait=True)
            RE.msg_hook = BMM_msg_hook

            BMM_log_info('rocking curve scan: %s\tuid = %s, scan_id = %d' %
                         (line1, uid, user_ns['db'][-1].start['scan_id']))
            yield from mv(motor, top)
            if sgnl == 'Bicron':
                yield from mv(slitsg.vsize, gonio_slit_height)
def fit_GC_residual__(x, y, peak, peak_center):
    mod = SkewedGaussianModel(prefix='peak_') + LinearModel(prefix='bkg_')

    pars = mod.make_params()
    pars['peak_amplitude'].value = 1e6
    pars['peak_center'].value = peak_center
    pars['peak_gamma'].value = 4
    pars['peak_sigma'].value = 0.4
    pars['bkg_intercept'].value = 1e5  #
    pars['bkg_slope'].value = 500

    out = mod.fit(y, pars, x=x)  #, iter_cb=per_iteration)

    if peak == 'H2':
        #print('Nfev = ', out.nfev)
        print(out.fit_report())
        #print(out.pars['peak_amplitude'].value)

    return out
Esempio n. 8
0
def clean(spectra, sigma=2.6):
    
    md = np.median(spectra[1])
    n = int(len(spectra[0])*0.8)
    offset = (len(spectra[0])-n)/2
    absor = md - min(spectra[1][offset:n-offset])
    freq, bin = np.histogram(spectra[1], bins=50, range=(md-absor, md+absor))
    rebin = [(bin[b+1]+bin[b])/2 for b in range(len(bin)-1)]
    
    gauss = SkewedGaussianModel()
    pars = gauss.make_params()
    pars['center'].set(value=md, vary=True)
    pars['amplitude'].set(vary=True)
    pars['sigma'].set(vary=True)
    pars['gamma'].set(vary=True)
    out = gauss.fit(freq, pars, x=rebin)
    
    var = sigma*out.best_values['sigma']
    xrbn = np.linspace(rebin[0], rebin[-1], num=100)
    yrbn = list(out.eval(x=xrbn))
    mode = xrbn[yrbn.index(max(yrbn))]
    
    xn = np.copy(spectra[0])
    yn = np.copy(spectra[1])
    
    ist=0
    pts=[]
    errflg = False
    for i in range(len(xn)):
        if (yn[i] > mode+var) and (errflg == False):
            cnt = 0
            errflg = True
            ist = np.copy(i)
            cnt += 1
        if (yn[i] > mode+var) and (errflg == True):
            cnt += 1
        if (yn[i] < mode+var) and (errflg == True):
            pts = np.linspace(yn[ist-1], yn[i], cnt+2)[1:-1]
            for p in range(ist, i):
                yn[p] = pts[p-ist]
            errflg = False
            
    return np.array([xn, yn])
def clean(spectra, sigma=4.5):
    rej = []
    for i, w in enumerate(spectra[1]):
        if w <= 0:
            rej.append(i)
    spectra[0] = np.delete(spectra[0], rej)
    spectra[1] = np.delete(spectra[1], rej)

    md = np.median(spectra[1])
    n = int(len(spectra[0]) * 0.8)
    offset = (len(spectra[0]) - n) / 2
    absor = md - min(spectra[1][offset:n - offset])
    freq, bin = np.histogram(spectra[1],
                             bins=30,
                             range=(md - absor, md + absor))
    rebin = [(bin[b + 1] + bin[b]) / 2 for b in range(len(bin) - 1)]

    gauss = SkewedGaussianModel()
    pars = gauss.make_params()
    pars['center'].set(vary=True)
    pars['amplitude'].set(vary=True)
    pars['sigma'].set(vary=True)
    pars['gamma'].set(vary=True)
    out = gauss.fit(freq, pars, x=rebin)

    var = sigma * out.best_values['sigma']
    xrbn = np.linspace(rebin[0], rebin[-1], num=100)
    yrbn = list(out.eval(x=xrbn))
    mode = xrbn[yrbn.index(max(yrbn))]

    xn = np.copy(spectra[0])
    yn = np.copy(spectra[1])

    var = mode

    for i, w in enumerate(yn):
        if w > mode + var:
            rej.append(i)
    xn = np.delete(xn, rej)
    yn = np.delete(yn, rej)

    return np.array([xn, yn])
Esempio n. 10
0
    def scan_dcm_pitch():
        line1 = "%s, %s, %.3f, %.3f, %d -- starting at %.3f\n" % (
            pitch.name,
            "I0",
            start,
            stop,
            nsteps,
            pitch.readback.get(),
        )
        uid = yield from rel_scan([I0], pitch, start, stop, nsteps)

        # The data that we just acquired has been cached in memory by src.
        # Access it as a pandas DataFrame so that we can conveniently do some
        # math on it.
        run = src.retrieve()
        t = run.primary.read().to_dataframe()
        if choice.lower() == "com":
            signal = numpy.array(t["I0"])
            position = com(signal)
            top = t['pitch'].iloc[position]
        elif choice.lower() == "fit":
            signal = numpy.array(t["I0"])
            pitch_ = numpy.array(t["pitch"])
            mod = SkewedGaussianModel()
            pars = mod.guess(signal, x=pitch_)
            out = mod.fit(signal, pars, x=pitch_)
            print(out.fit_report(min_correl=0))
            out.plot()
            top = out.params["center"].value
        else:
            signal = t['I0']
            position = peak(signal)
            top = t[pitch.name][position]

        print(
            "rocking curve scan: %s\tuid = %s, scan_id = %d"
            % (line1, uid, run.metadata["start"]["scan_id"])
        )
        print(f"Found and moved to peak at {top:.3} via method {choice}")
        yield from mv(pitch, top)
 def BuiltInModels(self) :
     
     FitInfo = self.FitInfo
     
     ModelString = list()
     for key in FitInfo['Models'] :
         ModelString.append((key,FitInfo['Models'][key]['model']))
     
     for Model in ModelString :
         try :
             FitModel
         except :
             if Model[1] == 'Constant' :
                 FitModel = ConstantModel(prefix=Model[0]+'_')
             if Model[1] == 'Linear' :
                 FitModel = LinearModel(prefix=Model[0]+'_')
             if Model[1] == 'Gaussian' :
                 FitModel = GaussianModel(prefix=Model[0]+'_')
             if Model[1] == 'SkewedGaussian' :
                 FitModel = SkewedGaussianModel(prefix=Model[0]+'_')
             if Model[1] == 'Voigt' :
                 FitModel = VoigtModel(prefix=Model[0]+'_')
         else :
             if Model[1] == 'Constant' :
                 FitModel = FitModel + ConstantModel(prefix=Model[0]+'_')
             if Model[1] == 'Linear' :
                 FitModel = FitModel + LinearModel(prefix=Model[0]+'_')
             if Model[1] == 'Gaussian' :
                 FitModel = FitModel + GaussianModel(prefix=Model[0]+'_')
             if Model[1] == 'SkewedGaussian' :
                 FitModel = FitModel + SkewedGaussianModel(prefix=Model[0]+'_')
             if Model[1] == 'Voigt' :
                 FitModel = FitModel + VoigtModel(prefix=Model[0]+'_')
     
     self.FitModel = FitModel
     self.ModelParameters = FitModel.make_params()
                v_model = VoigtModel()

                v_pars = v_model.guess(y, x=x)
                v_out = v_model.fit(y, v_pars, x=x)
                v_qc = v_out.redchi

                # print(v_out.fit_report(min_correl=0.25))

                # other models to try

                do_model = DampedOscillatorModel()
                do_pars = do_model.guess(y, x=x)
                do_out = do_model.fit(y, do_pars, x=x)
                do_qc = do_out.redchi

                sg_model = SkewedGaussianModel()
                sg_pars = sg_model.guess(y, x=x)
                sg_out = sg_model.fit(y, sg_pars, x=x)
                sg_qc = sg_out.redchi

                sv_model = SkewedVoigtModel()
                sv_pars = sv_model.guess(y, x=x)
                sv_out = sv_model.fit(y, sv_pars, x=x)
                sv_qc = sv_out.redchi

                d_model = DonaichModel()
                d_pars = d_model.guess(y, x=x)
                d_out = d_model.fit(y, d_pars, x=x)
                d_qc = d_out.redchi

                # try-except for Pearson as if fails sometimes
Esempio n. 13
0
def fit(spectra, obj, sigma=2.0, ord=4, iter=4):
    
    poly = PolynomialModel(3)
    pars = poly.make_params()
    for p in range(4):
        label = 'c'+str(p)
        pars[label].set(value=1., vary=True)
    wkcopy = np.copy(spectra[1])
    truesp = [i for i in wkcopy if i > 5]
    truex = [spectra[0][i] for i in range(len(spectra[1])) if spectra[1][i] > 5]
    outcont = poly.fit(truesp, pars, x=truex)
    firstcont = outcont.eval(x=spectra[0])
    
    xn = np.copy(spectra[0])
    yn = np.copy(spectra[1])/firstcont
    
    pl1=plt.subplot((iter+1)*100+11)
    pl1.plot(xn, spectra[1], 'k-', linewidth=0.3)
    pl1.plot(xn, firstcont, 'r-', linewidth=0.6)
    pl1.set_ylim([0, np.mean(firstcont)*1.5])
    
    for i in range(iter):
        i_=np.copy(i)
        niter=str(i_+1)
        sigma = sigma-i*0.21*sigma
        
        md = np.median(yn)
        n = len([i for i in yn if i > 0.1])
        offset = (len(xn)-n)/2
        absor = md - min(yn[offset:n-offset])
        freq, bin = np.histogram(yn, bins=50, range=(md-absor, md+absor))
        rebin = [(bin[b+1]+bin[b])/2 for b in range(len(bin)-1)]
        
        
        gauss = SkewedGaussianModel()
        pars = gauss.make_params()
        pars['center'].set(value=md, vary=True)
        pars['amplitude'].set(vary=True)
        pars['sigma'].set(vary=True)
        pars['gamma'].set(vary=True)
        out = gauss.fit(freq, pars, x=rebin)
        
        var = sigma*out.best_values['sigma']
        xrbn = np.linspace(rebin[0], rebin[-1], num=100)
        yrbn = list(out.eval(x=xrbn))
        mode = xrbn[yrbn.index(max(yrbn))]
        
        ync = np.copy(spectra[1])
        xnc = np.copy(spectra[0])
        
        mask = []
        for j in range(len(yn)):
            if (yn[j] > mode+var/2) or (yn[j] < mode-var/2):
                mask.append(False)
            else:
                mask.append(True)
        mask = np.array(mask)
        ync = ync[mask]
        xnc = xnc[mask]
        
        poly2 = PolynomialModel(ord)
        pars2 = poly2.make_params()
        for p in range(ord+1):
            label = 'c'+str(p)
            pars2[label].set(value=1., vary=True)
        outcont2 = poly2.fit(ync, pars2, x=xnc)
        
        contf = outcont2.eval(x=xn)
        yn = spectra[1]/contf
        err = spectra[2]/contf
        
        pln=plt.subplot(int((iter+1)*100+10+(i_+2)))
        pln.plot(xn, yn*(np.mean(contf)*0.8), 'k-', linewidth=0.3)
        pln.plot(xnc, ync, 'r-', linewidth=0.3)
        pln.plot(xn, contf, 'b-', linewidth=0.6)
        pln.set_ylim([0, np.mean(contf)*1.2])
        
    plt.savefig(obj[0]+'_fit.png', dpi=300)
    plt.clf()
        
    return np.array([xn, yn, err])
Esempio n. 14
0
if savefigures==True: plt.savefig('PDF1-modified.pdf')
plt.show()

n_hist, b_hist, patches_hist = plt.hist(hist_values1,bins=200,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF")
plt.hist(hist_values1,bins=200,normed=1,facecolor="black",edgecolor='None',alpha=0.1,label="PDF")
plt.xlabel('Midpoint Phase Position')
plt.ylabel('Normalised PDF')
if savefigures == True: plt.savefig('plottemp.pdf')
bin_max = np.where(n_hist == n_hist.max())
print "Mode:", b_hist[bin_max][0]

### CONFIDENCE INTERVAL SELECTOR: ########################################
bin_heights, bin_borders, _ = n_hist, b_hist, patches_hist
bin_center = bin_borders[:-1] + np.diff(bin_borders) / 2
xvals, yvals = bin_center, bin_heights
model = SkewedGaussianModel()
params = model.guess(yvals, x=xvals)
result = model.fit(yvals, params, x=xvals)
print result.fit_report()
plt.plot(xvals, result.best_fit,c='c',lw=2)

#Mode Finder:
maxval=0
maxvalx=0
for i in range(len(xvals)):
    if result.best_fit[i]>maxval:
        maxval=result.best_fit[i]
        maxvalx=xvals[i]

print "Curve Mode:", maxvalx
def fit(spectra, sigma=4.0, ptreg=8., ord=4, iter=2):
    rej = []
    for i, w in enumerate(spectra[1]):
        if w <= 0:
            rej.append(i)
    spectra[0] = np.delete(spectra[0], rej)
    spectra[1] = np.delete(spectra[1], rej)

    # prepare first kick
    poly = PolynomialModel(3)
    pars = poly.make_params()
    for p in range(4):
        label = 'c' + str(p)
        pars[label].set(value=1., vary=True)
    wkcopy = np.copy(spectra[1])
    truesp = [i for i in wkcopy if i >= 0]
    truex = [
        spectra[0][i] for i in range(len(spectra[1])) if spectra[1][i] >= 0
    ]
    outcont = poly.fit(truesp, pars, x=truex)
    firstcont = outcont.eval(x=spectra[0])

    xn = np.copy(spectra[0])
    yn = np.copy(spectra[1]) / firstcont

    # start cont. cleaning iterations
    for i in range(iter):
        i_ = np.copy(i)
        niter = str(i_ + 1)
        sigma = sigma - i * 0.21 * sigma

        md = np.median(yn)
        n = len([i for i in yn if i > 0.1])
        offset = (len(xn) - n) / 2
        absor = md - min(yn[offset:n - offset])
        freq, bin = np.histogram(yn, bins=50, range=(md - absor, md + absor))
        rebin = [(bin[b + 1] + bin[b]) / 2 for b in range(len(bin) - 1)]

        gauss = SkewedGaussianModel()
        pars = gauss.make_params()
        pars['center'].set(vary=True)
        pars['amplitude'].set(vary=True)
        pars['sigma'].set(vary=True)
        pars['gamma'].set(vary=True)
        out = gauss.fit(freq, pars, x=rebin)

        var = sigma * out.best_values['sigma']
        xrbn = np.linspace(rebin[0], rebin[-1], num=100)
        yrbn = list(out.eval(x=xrbn))
        mode = xrbn[yrbn.index(max(yrbn))]

        # clean cont.
        ync = np.copy(spectra[1])
        xnc = np.copy(spectra[0])

        mask = []
        for j in range(len(yn)):
            if (yn[j] > mode + var / 2) or (yn[j] < mode - var / 2):
                mask.append(False)
            else:
                mask.append(True)
        mask = np.array(mask)
        ync = ync[mask]
        xnc = xnc[mask]

        # re-fitting
        poly2 = PolynomialModel(ord)
        pars2 = poly2.make_params()
        for p in range(ord + 1):
            label = 'c' + str(p)
            pars2[label].set(value=1., vary=True)
        try:
            outcont2 = poly2.fit(ync, pars2, x=xnc)
        except:
            plt.plot(xn, yn, 'k-')
            plt.plot([xn[0], xn[-1]], [mode, mode], 'b-')
            plt.plot([xn[0], xn[-1]], [mode + var / 2, mode + var / 2], 'r-')
            plt.plot([xn[0], xn[-1]], [mode - var / 2, mode - var / 2], 'r-')
            plt.show()

        contf = outcont2.eval(x=xn)
        yn = spectra[1] / contf

    clspec = [xnc, ync]

    # start slicing
    firstv = clspec[0][0]
    wavrange = clspec[0][-1] - firstv
    sliceno = wavrange / ptreg
    slisize = wavrange / sliceno
    points = [[], []]

    # continuum point definition
    for s in range(int(sliceno)):
        i = bissec(clspec[0], firstv + s * slisize)
        f = bissec(clspec[0], firstv + (s + 1) * slisize)
        slc = [clspec[0][i:f], clspec[1][i:f]]
        if len(slc[1]) > 2.:
            md = np.median(slc[1])
            absor = min(slc[1])
            high = max(slc[1])
            freq, bin = np.histogram(slc[1], bins=20, range=(absor, high))
            rebin = [(bin[b + 1] + bin[b]) / 2 for b in range(len(bin) - 1)]

            fmode = rebin[list(freq).index(max(freq))]
            fsigma = rebin[-1] - rebin[0]

            gauss = GaussianModel()
            pars = gauss.make_params()
            pars['center'].set(value=fmode, vary=True)
            pars['amplitude'].set(value=max(freq), vary=True)
            pars['sigma'].set(value=fsigma, vary=True)
            out = gauss.fit(freq, pars, x=rebin)

            xrbn = np.linspace(rebin[0], rebin[-1], num=100)
            yrbn = list(out.eval(x=xrbn))
            mode = xrbn[yrbn.index(max(yrbn))]
            xp = slc[0][len(slc[0]) / 2]
            points[0].append(xp)
            points[1].append(mode)

    spline = splrep(points[0], points[1], k=3)
    contx = splev(clspec[0], spline)
    continuum = splev(spectra[0], spline)

    return [spectra[0], spectra[1] / continuum]
Esempio n. 16
0
def convert_catalog(cat_table):
    '''
	This function selects stars from a size-mag catalogue
	Inputs: 
	cat_table: directory of catalogue of all sources on an image. Must contain FWHM_IMAGE or FLUX_RADIUS; MAG_APER or FLUX_APER; FLAGS; VIGNET; etc
	cat_4PSFEx_table: FITS_LDAC catalogue ready to be processed by PSFEx.
	'''
    path = os.getcwd()
    direc = cat_table.split('/')[-1]
    if not os.path.exists(direc):
        os.makedirs(direc)
    os.chdir(direc)
    hdu = p.open(cat_table)
    data = hdu[2].data
    reff = data['FLUX_RADIUS']
    flux = data['FLUX_APER']
    mags = 30 - 2.5 * n.log10(flux)
    flags = data['FLAGS']
    mask = n.where((flux > 0) & (flags < 4) & (reff > 0))[0]
    reff1 = reff[mask]
    mags1 = mags[mask]
    s = n.argsort(mags1)
    mags1 = mags1[s]
    reff1 = reff1[s]
    perc = 0.1
    i = 1
    medians = []
    mad_stds = []
    gammas = []
    chisq = []
    centers = []
    sigmas = []
    while perc < 5:
        mask2 = n.where(mags1 < n.percentile(mags1, perc))[0]
        reff2 = reff1[mask2]
        mags2 = mags1[mask2]
        # N,bins,patches=hist(reff2,bins='scotts',label='clean, n_obj='+str(len(reff2)),normed=True,histtype='step')
        # hist(reff1,bins=bins,label='not so clean, n_obj='+str(len(reff1)),normed=True,histtype='step')
        # hist(reff,bins=bins,label='not clean at all, n_obj='+str(len(reff)),normed=True,histtype='step')
        # pl.legend()
        # pl.xlim(bins[0],bins[-1])
        # pl.savefig('hist_'+str(i)+'.png')
        # pl.clf()
        # print 'done hist'
        medians.append(n.median(reff2))
        mad_stds.append(mad_std(reff2))
        N, bins, patches = hist(reff2,
                                bins='scotts',
                                histtype='stepfilled',
                                color='g',
                                normed=False)
        pl.axvline(n.median(reff2), color='red')
        pl.axvline(n.median(reff2) + mad_std(reff2), color='black')
        pl.axvline(n.median(reff2) - mad_std(reff2), color='black')
        pl.axvline(n.median(reff2) + n.std(reff2), color='grey')
        pl.axvline(n.median(reff2) - n.std(reff2), color='grey')
        X = reff2[:, n.newaxis]
        X_plot = n.linspace(min(X)[0], max(X)[0], 10000)[:, n.newaxis]
        kde = KDE(kernel='gaussian', bandwidth=min(mad_stds)).fit(X)
        ld = kde.score_samples(X_plot)
        pl.plot(X_plot[:, 0], n.exp(ld) * min(mad_stds) * len(reff2), lw=3)
        #		pl.xscale('log')
        #		pl.yscale('log')
        '''
		model = SkewedGaussianModel()
		x = n.array([0.5 * (bins[i] + bins[i+1]) for i in xrange(len(bins)-1)])
		pars = model.guess(N, x=x)
		result=model.fit(N,pars,x=x)
		print(result.fit_report())
		pl.plot(x, result.best_fit,'k--',lw=3) 
		'''
        pl.savefig('hist_clean_log_' + str(i) + '.png')
        pl.clf()
        mask3 = n.where((reff2 >= n.median(reff2) - mad_std(reff2))
                        & (reff2 <= n.median(reff2) + mad_std(reff2)))[0]
        reff3 = reff2[mask3]
        N, bins, patches = hist(reff3,
                                bins='scotts',
                                histtype='stepfilled',
                                color='g',
                                alpha=.5,
                                normed=True)
        x = n.array(
            [0.5 * (bins[j] + bins[j + 1]) for j in xrange(len(bins) - 1)])
        #X=reff3[:,n.newaxis]
        x_plot = n.linspace(min(bins), max(bins), 100)
        #kde=KDE(kernel='epanechnikov',bandwidth=min(mad_stds)).fit(X)
        #ld=kde.score_samples(X_plot)
        #pl.plot(X_plot[:,0],n.exp(ld),lw=3)
        model = SkewedGaussianModel()
        pars = model.guess(N, x=x)
        result = model.fit(N, pars, x=x)
        gammas.append(result.params['gamma'].value)
        chisq.append(result.redchi)
        centers.append(result.params['center'].value)
        sigmas.append(result.params['sigma'].value)
        #print result.fit_report()
        pl.plot(x_plot, result.eval(x=x_plot), 'k--', lw=3)
        #		pl.axvline(result.params['center'].value,color='red')
        #		pl.axvline(result.params['center'].value+result.params['sigma'].value,color='grey')
        #		pl.axvline(result.params['center'].value-result.params['sigma'].value,color='grey')
        pl.axvline(result.params['center'].value, color='red')
        pl.axvline(result.params['center'].value +
                   result.params['sigma'].value,
                   color='black')
        pl.axvline(result.params['center'].value -
                   result.params['sigma'].value,
                   color='black')
        mu, sigma = norm.fit(reff3,
                             loc=max(result.eval(x=x_plot)),
                             scale=result.params['sigma'].value)
        pdf = norm.pdf(x_plot, loc=mu, scale=sigma)
        pl.plot(x_plot, pdf, color='yellow')
        pl.savefig('hist_stellarseq_' + str(i) + '.png')
        pl.clf()
        print 'done hist stellarseq'

        pl.plot(reff, mags, 'b.', label='not clean at all', alpha=.5)
        #pl.plot(reff1,mags1,'k.',label='not so clean',alpha=.5)
        pl.plot(reff2,
                mags2,
                'r.',
                label='clean, mag_lims = ' + str(n.min(mags2)) + ', ' +
                str(n.max(mags2)),
                alpha=.5)
        pl.axvline(n.median(reff2), color='green')
        pl.axhline(n.max(mags2), color='black')
        pl.xlim([0, 20])
        pl.ylim([n.percentile(mags1, 99), n.percentile(mags1, 0)])
        pl.legend()
        pl.savefig('magsize_' + str(i) + '.png')
        pl.clf()
        print 'done all'
        perc = perc + 0.05
        print 'end loop ' + str(i)
        i = i + 1
    pl.clf()
    f, axes = pl.subplots(2, 3, sharex=True)
    names = ('median', 'mad_std', 'gamma', 'redchi', 'center', 'sigma')
    for ax, ind, name in zip(
            axes.flat, (medians, mad_stds, gammas, chisq, centers, sigmas),
            names):
        ax.plot(ind, 'o')
        ax.set_title(name)


#	plt.show()
#	pl.plot(medians/n.max(medians),'o',label='median')
#	pl.plot(mad_stds/n.max(mad_stds),'o',label='mad_std')
#	pl.plot(gammas/n.max(gammas),'o',label='gammas')
#	pl.plot(chisq/n.max(chisq),'o',label='chisqr')
#	pl.legend(loc='best')
    pl.savefig('param_variations.png')
    pl.clf()
    os.chdir(path)
    '''
Esempio n. 17
0
def convert_catalog(cat_table):
	'''
	This function selects stars from a size-mag catalogue
	Inputs: 
	cat_table: directory of catalogue of all sources on an image. Must contain FWHM_IMAGE or FLUX_RADIUS; MAG_APER or FLUX_APER; FLAGS; VIGNET; etc
	cat_4PSFEx_table: FITS_LDAC catalogue ready to be processed by PSFEx.
	'''
	path=os.getcwd()
	direc=cat_table.split('/')[-1]
	if not os.path.exists(direc):
		os.makedirs(direc)
	os.chdir(direc)
	hdu=p.open(cat_table)
	data=hdu[2].data
	reff=data['FLUX_RADIUS']
	flux=data['FLUX_APER']
	mags=30-2.5*n.log10(flux)
	flags=data['FLAGS']
	mask = n.where((flux > 0) & (flags < 4) & (reff>0))[0]
	reff1=reff[mask]
	mags1=mags[mask]
	s=n.argsort(mags1)
	mags1=mags1[s]
	reff1=reff1[s]
	perc=0.1
	i=1
	medians=[]
	mad_stds=[]
	gammas=[]
	chisq=[]
	centers=[]
	sigmas=[]
	while perc<5:
		mask2=n.where(mags1<n.percentile(mags1,perc))[0]
		reff2=reff1[mask2]
		mags2=mags1[mask2]
		# N,bins,patches=hist(reff2,bins='scotts',label='clean, n_obj='+str(len(reff2)),normed=True,histtype='step')
		# hist(reff1,bins=bins,label='not so clean, n_obj='+str(len(reff1)),normed=True,histtype='step')
		# hist(reff,bins=bins,label='not clean at all, n_obj='+str(len(reff)),normed=True,histtype='step')
		# pl.legend()
		# pl.xlim(bins[0],bins[-1])
		# pl.savefig('hist_'+str(i)+'.png')
		# pl.clf()
		# print 'done hist'
		medians.append(n.median(reff2))
		mad_stds.append(mad_std(reff2))
		N,bins,patches=hist(reff2,bins='scotts',histtype='stepfilled',color='g',normed=False)
		pl.axvline(n.median(reff2),color='red')
		pl.axvline(n.median(reff2)+mad_std(reff2),color='black')
		pl.axvline(n.median(reff2)-mad_std(reff2),color='black')
		pl.axvline(n.median(reff2)+n.std(reff2),color='grey')
		pl.axvline(n.median(reff2)-n.std(reff2),color='grey')
		X=reff2[:,n.newaxis]
		X_plot=n.linspace(min(X)[0],max(X)[0],10000)[:,n.newaxis]
		kde=KDE(kernel='gaussian',bandwidth=min(mad_stds)).fit(X)
		ld=kde.score_samples(X_plot)
		pl.plot(X_plot[:,0],n.exp(ld)*min(mad_stds)*len(reff2),lw=3)
#		pl.xscale('log')
#		pl.yscale('log')
		'''
		model = SkewedGaussianModel()
		x = n.array([0.5 * (bins[i] + bins[i+1]) for i in xrange(len(bins)-1)])
		pars = model.guess(N, x=x)
		result=model.fit(N,pars,x=x)
		print(result.fit_report())
		pl.plot(x, result.best_fit,'k--',lw=3) 
		'''
		pl.savefig('hist_clean_log_'+str(i)+'.png')
		pl.clf()
		mask3=n.where((reff2 >= n.median(reff2)-mad_std(reff2)) & (reff2 <= n.median(reff2)+mad_std(reff2)))[0]
		reff3=reff2[mask3]
		N,bins,patches=hist(reff3,bins='scotts',histtype='stepfilled',color='g',alpha=.5,normed=True)
		x = n.array([0.5 * (bins[j] + bins[j+1]) for j in xrange(len(bins)-1)])
		#X=reff3[:,n.newaxis]
		x_plot=n.linspace(min(bins),max(bins),100)
		#kde=KDE(kernel='epanechnikov',bandwidth=min(mad_stds)).fit(X)
		#ld=kde.score_samples(X_plot)
		#pl.plot(X_plot[:,0],n.exp(ld),lw=3)
		model = SkewedGaussianModel()
		pars = model.guess(N, x=x)
		result=model.fit(N,pars,x=x)
		gammas.append(result.params['gamma'].value)
		chisq.append(result.redchi)
		centers.append(result.params['center'].value)
		sigmas.append(result.params['sigma'].value)
		#print result.fit_report()
		pl.plot(x_plot, result.eval(x=x_plot),'k--',lw=3) 
#		pl.axvline(result.params['center'].value,color='red')
#		pl.axvline(result.params['center'].value+result.params['sigma'].value,color='grey')
#		pl.axvline(result.params['center'].value-result.params['sigma'].value,color='grey')
		pl.axvline(result.params['center'].value,color='red')
		pl.axvline(result.params['center'].value+result.params['sigma'].value,color='black')
		pl.axvline(result.params['center'].value-result.params['sigma'].value,color='black')
		mu,sigma=norm.fit(reff3,loc=max(result.eval(x=x_plot)),scale=result.params['sigma'].value)
		pdf=norm.pdf(x_plot,loc=mu,scale=sigma)
		pl.plot(x_plot,pdf,color='yellow')
		pl.savefig('hist_stellarseq_'+str(i)+'.png')
		pl.clf()
		print 'done hist stellarseq'
	
		pl.plot(reff,mags,'b.',label='not clean at all',alpha=.5)
		#pl.plot(reff1,mags1,'k.',label='not so clean',alpha=.5)
		pl.plot(reff2,mags2,'r.',label='clean, mag_lims = '+str(n.min(mags2))+', '+str(n.max(mags2)),alpha=.5)
		pl.axvline(n.median(reff2),color='green')
		pl.axhline(n.max(mags2),color='black')
		pl.xlim([0,20])
		pl.ylim([n.percentile(mags1,99),n.percentile(mags1,0)])
		pl.legend()
		pl.savefig('magsize_'+str(i)+'.png')
		pl.clf()
		print 'done all'
		perc=perc+0.05
		print 'end loop '+str(i)
		i=i+1
	pl.clf()
	f, axes = pl.subplots(2,3,sharex=True)
	names=('median','mad_std','gamma','redchi','center','sigma')
	for ax,ind,name in zip(axes.flat,(medians,mad_stds,gammas,chisq,centers,sigmas),names):
		ax.plot(ind,'o')
		ax.set_title(name)
#	plt.show()
#	pl.plot(medians/n.max(medians),'o',label='median')
#	pl.plot(mad_stds/n.max(mad_stds),'o',label='mad_std')
#	pl.plot(gammas/n.max(gammas),'o',label='gammas')
#	pl.plot(chisq/n.max(chisq),'o',label='chisqr')
#	pl.legend(loc='best')
	pl.savefig('param_variations.png')
	pl.clf()
	os.chdir(path)
	'''