Esempio n. 1
0
class LmModel(object):
    """ 
    Base class for all models. 
    
    Models take x and y and return 
    """
    def __init__(self,x,y):
        self.x, self.y=x,y
        self.parameters=Parameters()
        self.min=Minimizer(self.residual, self.parameters)
    
    def print_para(self):
        for i in self.parameters.values:
            print i
            
    def func(self,paras):
        raise NotImplementedError
    
    def est_startvals(self):
        raise NotImplementedError
    
    def residual(self,paras):
        return self.func(paras)-self.y
        
    def fit(self):
        self.min.leastsq()
        self.y_model=self.func(self.parameters)
def test_multidimensional_fit_GH205():
    # test that you don't need to flatten the output from the objective
    # function. Tests regression for GH205.
    pos = np.linspace(0, 99, 100)
    xv, yv = np.meshgrid(pos, pos)
    f = lambda xv, yv, lambda1, lambda2: (np.sin(xv * lambda1)
                                             + np.cos(yv * lambda2))

    data = f(xv, yv, 0.3, 3)
    assert_(data.ndim, 2)

    def fcn2min(params, xv, yv, data):
        """ model decaying sine wave, subtract data"""
        lambda1 = params['lambda1'].value
        lambda2 = params['lambda2'].value
        model = f(xv, yv, lambda1, lambda2)
        return model - data

    # create a set of Parameters
    params = Parameters()
    params.add('lambda1', value=0.4)
    params.add('lambda2', value=3.2)

    mini = Minimizer(fcn2min, params, fcn_args=(xv, yv, data))
    res = mini.minimize()
Esempio n. 3
0
def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = Parameters()
    for i in range(npar):
        pname = 'b%i' % (i+1)
        cval  = NISTdata['cert_values'][i]
        cerr  = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        params.add(pname, value=pval1)


    myfit = Minimizer(resid, params, fcn_args=(x,), fcn_kws={'y':y},
                      scale_covar=True)

    myfit.prepare_fit()
    myfit.leastsq()

    digs = Compare_NIST_Results(DataSet, myfit, params, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(params, x, )
        pylab.plot(x, y, 'r+')
        pylab.plot(x, fit, 'ko--')
        pylab.show()

    return digs > 2
Esempio n. 4
0
    def setup(self):
        self.x = np.linspace(1, 10, 250)
        np.random.seed(0)
        self.y = (3.0 * np.exp(-self.x / 2)
                  - 5.0 * np.exp(-(self.x - 0.1) / 10.)
                  + 0.1 * np.random.randn(len(self.x)))

        self.p = Parameters()
        self.p.add_many(('a1', 4., True, 0., 10.),
                        ('a2', 4., True, -10., 10.),
                        ('t1', 3., True, 0.01, 10.),
                        ('t2', 3., True, 0.01, 20.))

        self.p_emcee = deepcopy(self.p)
        self.p_emcee.add('noise', 0.2, True, 0.001, 1.)

        self.mini_de = Minimizer(Minimizer_Residual,
                                 self.p,
                                 fcn_args=(self.x, self.y),
                                 kws={'seed': 1,
                                      'polish': False,
                                      'maxiter': 100})

        self.mini_emcee = Minimizer(Minimizer_lnprob,
                                    self.p_emcee,
                                    fcn_args=(self.x, self.y))
Esempio n. 5
0
    def fit_single_line(self, x, y, zero_lev, err_continuum, fitting_parameters, bootstrap_iterations = 1000):

        #Simple fit
        if self.fit_dict['MC_iterations'] == 1:
            fit_output = lmfit_minimize(residual_gauss, fitting_parameters, args=(x, y, zero_lev, err_continuum))
            self.fit_dict['area_intg'] = simps(y, x) - simps(zero_lev, x)
            self.fit_dict['area_intg_err'] = 0.0
             
        #Bootstrap
        else:
            mini_posterior  = Minimizer(lnprob_gaussCurve, fitting_parameters, fcn_args = ([x, y, zero_lev, err_continuum]))
            fit_output      = mini_posterior.emcee(steps=200, params = fitting_parameters)
            
            #Bootstrap for the area of the lines
            area_array = empty(bootstrap_iterations) 
            len_x_array = len(x)
            for i in range(bootstrap_iterations):
                y_new =  y + np_normal_dist(0.0, err_continuum, len_x_array)
                area_array[i] = simps(y_new, x) - simps(zero_lev, x)
            self.fit_dict['area_intg'] = mean(area_array)
            self.fit_dict['area_intg_err'] = std(area_array)           
        
        #Store the fitting parameters
        output_params = fit_output.params
        for key in self.fit_dict['parameters_list']:
            self.fit_dict[key + '_norm'] = output_params[key].value
            self.fit_dict[key + '_norm_er'] = output_params[key].stderr
            
        return
Esempio n. 6
0
def polyfit(x,y,u=None):
    '''Determine the weighted least-squares fit for 2nd order polynomial'''

    x = np.asarray(x)    
    y = np.asarray(y)

    if u is not None: 
        u[u==0]=1
        weight = 1./np.asarray(u) 
    else:
        weight = np.ones_like(x)

    params = Parameters()
    params.add('a', value=0)
    params.add('b', value=(y.max()-y.min())/(x.max()-x.min()))
    params.add('c', value=0.0)

    def residual(pars, x, data=None,w=None):
        model = pars['a'].value + pars['b'].value*x + pars['c'].value*x**2
        if data is None:
            return model
        return (model - data) #* w
    
    myfit = Minimizer(residual, params,fcn_args=(x,), fcn_kws={'data':y,'w':weight})
    myfit.leastsq()     
    
    return [params['c'].value,params['b'].value,params['a'].value]
Esempio n. 7
0
def autobk(energy, mu, rbkg=1, nknots=None, group=None, e0=None,
           kmin=0, kmax=None, kw=1, dk=0, win=None, vary_e0=True,
           chi_std=None, nfft=2048, kstep=0.05, _larch=None):
    if _larch is None:
        raise Warning("cannot calculate autobk spline -- larch broken?")

    # get array indices for rkbg and e0: irbkg, ie0
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)
    if e0 is None:
        e0 = find_e0(energy, mu, group=group, _larch=_larch)
    ie0 = _index_nearest(energy, e0)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    kraw = np.sqrt(ETOK*(energy[ie0:] - e0))
    if kmax is None:
        kmax = max(kraw)
    kout  = kstep * np.arange(int(1.01+kmax/kstep))
    ftwin = kout**kw * ftwindow(kout, xmin=kmin, xmax=kmax,
                                window=win, dx=dk)

    # calc k-value and initial guess for y-values of spline params
    nspline = max(4, min(60, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y  = np.zeros(nspline)
    spl_k  = np.zeros(nspline)
    for i in range(nspline):
        q = kmin + i*(kmax-kmin)/(nspline - 1)
        ik = _index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_y[i] = (2*mu[ik] + mu[i1] + mu[i2] ) / 4.0
    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    fparams = Parameters()
    for i, v in enumerate(coefs):
        fparams.add("c%i" % i, value=v, vary=i<len(spl_y))

    fitkws = dict(knots=knots, order=order, kraw=kraw, mu=mu[ie0:],
                  irbkg=irbkg, kout=kout, ftwin=ftwin, nfft=nfft)
    # do fit
    fit = Minimizer(__resid, fparams, fcn_kws=fitkws)
    fit.leastsq()

    # write final results
    coefs = [p.value for p in fparams.values()]
    bkg, chi = spline_eval(kraw, mu[ie0:], knots, coefs, order, kout)
    obkg  = np.zeros(len(mu))
    obkg[:ie0] = mu[:ie0]
    obkg[ie0:] = bkg
    if _larch.symtable.isgroup(group):
        setattr(group, 'bkg',  obkg)
        setattr(group, 'chie', mu-obkg)
        setattr(group, 'k',    kout)
        setattr(group, 'chi',  chi)
def test_constraints1():
    def residual(pars, x, sigma=None, data=None):
        yg = gaussian(x, pars['amp_g'], pars['cen_g'], pars['wid_g'])
        yl = lorentzian(x, pars['amp_l'], pars['cen_l'], pars['wid_l'])

        model =  yg +  yl + pars['line_off'] + x * pars['line_slope']
        if data is None:
            return model
        if sigma is None:
            return (model - data)
        return (model - data)/sigma


    n = 601
    xmin = 0.
    xmax = 20.0
    x = linspace(xmin, xmax, n)

    data = (gaussian(x, 21, 8.1, 1.2) +
            lorentzian(x, 10, 9.6, 2.4) +
            random.normal(scale=0.23,  size=n) +
            x*0.5)


    pfit = Parameters()
    pfit.add(name='amp_g',  value=10)
    pfit.add(name='cen_g',  value=9)
    pfit.add(name='wid_g',  value=1)

    pfit.add(name='amp_tot',  value=20)
    pfit.add(name='amp_l',  expr='amp_tot - amp_g')
    pfit.add(name='cen_l',  expr='1.5+cen_g')
    pfit.add(name='wid_l',  expr='2*wid_g')

    pfit.add(name='line_slope', value=0.0)
    pfit.add(name='line_off', value=0.0)

    sigma = 0.021  # estimate of data error (for all data points)

    myfit = Minimizer(residual, pfit,
                      fcn_args=(x,), fcn_kws={'sigma':sigma, 'data':data},
                      scale_covar=True)

    myfit.prepare_fit()
    init = residual(myfit.params, x)

    result = myfit.leastsq()

    print(' Nfev = ', result.nfev)
    print( result.chisqr, result.redchi, result.nfree)

    report_fit(result.params)
    pfit= result.params
    fit = residual(result.params, x)
    assert(pfit['cen_l'].value == 1.5 + pfit['cen_g'].value)
    assert(pfit['amp_l'].value == pfit['amp_tot'].value - pfit['amp_g'].value)
    assert(pfit['wid_l'].value == 2 * pfit['wid_g'].value)
Esempio n. 9
0
def test_minizers():
    """
    test scale minimizers except newton-cg (needs jacobian) and
    anneal (doesn't work out of the box).
    """
    methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS',
               'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP']
    p_true = Parameters()
    p_true.add('amp', value=14.0)
    p_true.add('period', value=5.33)
    p_true.add('shift', value=0.123)
    p_true.add('decay', value=0.010)

    def residual(pars, x, data=None):
        amp = pars['amp'].value
        per = pars['period'].value
        shift = pars['shift'].value
        decay = pars['decay'].value

        if abs(shift) > pi/2:
            shift = shift - np.sign(shift)*pi
        model = amp*np.sin(shift + x/per) * np.exp(-x*x*decay*decay)
        if data is None:
            return model
        return (model - data)

    n = 2500
    xmin = 0.
    xmax = 250.0
    noise = np.random.normal(scale=0.7215, size=n)
    x     = np.linspace(xmin, xmax, n)
    data  = residual(p_true, x) + noise

    fit_params = Parameters()
    fit_params.add('amp', value=11.0, min=5, max=20)
    fit_params.add('period', value=5., min=1., max=7)
    fit_params.add('shift', value=.10,  min=0.0, max=0.2)
    fit_params.add('decay', value=6.e-3, min=0, max=0.1)

    init = residual(fit_params, x)
    mini = Minimizer(residual, fit_params, [x, data])
    for m in methods:
        print(m)
        mini.scalar_minimize(m, x)

        fit = residual(fit_params, x)

        for name, par in fit_params.items():
            nout = "%s:%s" % (name, ' '*(20-len(name)))
            print("%s: %s (%s) " % (nout, par.value, p_true[name].value))

        for para, true_para in zip(fit_params.values(), p_true.values()):
            check_wo_stderr(para, true_para.value)
Esempio n. 10
0
def test_peakfit():
    from lmfit.utilfuncs import gaussian
    def residual(pars, x, data=None):
        g1 = gaussian(x, pars['a1'].value, pars['c1'].value, pars['w1'].value)
        g2 = gaussian(x, pars['a2'].value, pars['c2'].value, pars['w2'].value)
        model = g1 + g2
        if data is None:
            return model
        return (model - data)

    n    = 601
    xmin = 0.
    xmax = 15.0
    noise = np.random.normal(scale=.65, size=n)
    x = np.linspace(xmin, xmax, n)

    org_params = Parameters()
    org_params.add_many(('a1', 12.0, True, None, None, None),
                        ('c1',  5.3, True, None, None, None),
                        ('w1',  1.0, True, None, None, None),
                        ('a2',  9.1, True, None, None, None),
                        ('c2',  8.1, True, None, None, None),
                        ('w2',  2.5, True, None, None, None))

    data  = residual(org_params, x) + noise


    fit_params = Parameters()
    fit_params.add_many(('a1',  8.0, True, None, 14., None),
                        ('c1',  5.0, True, None, None, None),
                        ('w1',  0.7, True, None, None, None),
                        ('a2',  3.1, True, None, None, None),
                        ('c2',  8.8, True, None, None, None))

    fit_params.add('w2', expr='2.5*w1')

    myfit = Minimizer(residual, fit_params,
                      fcn_args=(x,), fcn_kws={'data':data})

    myfit.prepare_fit()

    init = residual(fit_params, x)


    myfit.leastsq()

    print(' N fev = ', myfit.nfev)
    print(myfit.chisqr, myfit.redchi, myfit.nfree)

    report_fit(fit_params)

    fit = residual(fit_params, x)
    check_paras(fit_params, org_params)
def fit_axis(image_nparray2D,axis,minim_method="nelder"):
	axis_data = np.sum(pic_data,axis = 1) if (axis == 0) else np.sum(pic_data,axis = 0)
	axis_points = np.linspace(1,len(axis_data),len(axis_data))
	param_estimates = startparams_estimate(axis_data)
	params_for_fit = Parameters()
	params_for_fit.add('I_zero',value=param_estimates[0],min=0,max=np.amax(axis_data))
	params_for_fit.add('r_zero',value=param_estimates[1],min=1,max=len(axis_data))
	params_for_fit.add('omega_zero',value=param_estimates[2],min=1,max=len(axis_data))
	params_for_fit.add('backgr',value=param_estimates[3])
	fit = Minimizer(residual,params_for_fit,fcn_args=(axis_points,),\
		fcn_kws={"data":axis_data})
	fit_res = fit.minimize(minim_method)
	return (axis_points,axis_data,fit_res)
Esempio n. 12
0
	def fitevent(self, edat, initguess):
		try:
			dt = 1000./self.Fs 	# time-step in ms.

			# control numpy error reporting
			np.seterr(invalid='ignore', over='ignore', under='ignore')

			ts = np.array([ t*dt for t in range(0,len(edat)) ], dtype='float64')

			self.nStates=len(initguess)
			initRCConst=dt*5.

			# setup fit params
			params=Parameters()

			for i in range(0, len(initguess)):
				params.add('a'+str(i), value=initguess[i][0]) 
				params.add('mu'+str(i), value=initguess[i][1]) 
				if self.LinkRCConst:				
					if i==0:
						params.add('tau'+str(i), value=initRCConst)
					else:
						params.add('tau'+str(i), value=initRCConst, expr='tau0')
				else:
					params.add('tau'+str(i), value=initRCConst)

			params.add('b', value=self.baseMean )
			

			igdict=params.valuesdict()

			optfit=Minimizer(self._objfunc, params, fcn_args=(ts,edat,))
			optfit.prepare_fit()
			result=optfit.leastsq(xtol=self.FitTol,ftol=self.FitTol,maxfev=self.FitIters)

			if result.success:
				tt=[init[0] for init, final in zip(igdict.items(), (result.params.valuesdict()).items()) if init==final]
				if len(tt) > 0:
					self.flagEvent('wInitGuessUnchanged')

				self._recordevent(result)
			else:
				#print optfit.message, optfit.lmdif_message
				self.rejectEvent('eFitConvergence')
		except KeyboardInterrupt:
			self.rejectEvent('eFitUserStop')
			raise
		except InvalidEvent:
			self.rejectEvent('eInvalidEvent')
		except:
	 		self.rejectEvent('eFitFailure')
Esempio n. 13
0
    def __fit2D(self,minim_method="nelder",rotation=False):
        
        self.__fit_axis(0,minim_method)
        self.__fit_axis(1,minim_method)

        # we first take all the initial parameters from 1D fits
        bgr2D_est = self.axis0fitparams.valuesdict()["backgr"]/len(self.axis0pts)
        x2D_est = self.axis0fitparams.valuesdict()["r_zero"]
        omegaX2D_est = self.axis0fitparams.valuesdict()["omega_zero"]
        y2D_est = self.axis1fitparams.valuesdict()["r_zero"]
        omegaY2D_est = self.axis1fitparams.valuesdict()["omega_zero"]

        smoothened_image = gaussian_filter(self.image_array,50)
        peakheight2D_est = np.amax(smoothened_image)
        #now we need to programatically cut out the region of interest out of the
        #whole picture so that fitting takes way less time

        # NOTE! In this implementation, if the beam is small compared to picture size
        # and is very close to the edge, the fitting will fail, because the x and y
        # center position estimates will be off

        self.__format_picture(x2D_est,omegaX2D_est,y2D_est,omegaY2D_est)
        cropped_data = self.formatted_array
        xvals = np.linspace(1,cropped_data.shape[0],cropped_data.shape[0])
        yvals = np.linspace(1,cropped_data.shape[1],cropped_data.shape[1])
        x, y = np.meshgrid(yvals,xvals)
        # NOTE! there's apparently some weird convention, this has to do with
        # Cartesian vs. matrix indexing, which is explain in numpy.meshgrid manual

        estimates_2D = Parameters()
        estimates_2D.add("I_zero",value=peakheight2D_est,min=bgr2D_est)
        estimates_2D.add("x_zero",value=0.5*len(yvals),min=0,max=len(yvals)) # NOTE! weird indexing conventions
        estimates_2D.add("y_zero",value=0.5*len(xvals),min=0,max=len(xvals)) # NOTE! weird indexing conventions
        estimates_2D.add("omegaX_zero",value=omegaX2D_est)
        estimates_2D.add("omegaY_zero",value=omegaY2D_est)
        estimates_2D.add("theta_rot",value=0*np.pi,min = 0,max = np.pi) #just starting with 0
        estimates_2D.add("backgr",value=bgr2D_est)


        if rotation:
            fit2D = Minimizer(residual_G2D,estimates_2D,fcn_args=(x,y),fcn_kws={"data":cropped_data})
            print("Including rotation")
        else:
            fit2D = Minimizer(residual_G2D_norotation,estimates_2D,fcn_args=(x,y),fcn_kws={"data":cropped_data})
            print("Not including rotation")

        fit_res2D = fit2D.minimize(minim_method)

        self.x2Dgrid = x
        self.y2Dgrid = y
        self.fit2Dparams = fit_res2D.params
    def fit(self, image):
        """Fit a image of a hologram with the current attribute 
        parameters.

        Example:
        >>> p = {'x':0, 'y':0, 'z':100, 'a_p':0.5, 'n_p':1.5, 'n_m':1.337, 
        ...      'mpp':0.135, 'lamb':0.447}
        >>> mie_fit = Mie_Fitter(p)
        >>> mit_fit.result(image)
        """
        dim = image.shape
        minner = Minimizer(mie_loss, self.p, fcn_args=(image, dim))
        self.result = minner.minimize()
        return self.result
Esempio n. 15
0
 def __call__(self):
     #out = minimize(self.residual, 
     #               self.params,
     #               scale_covar = False
     #              #method = 'cg'
     #               )
     mini = Minimizer(self.residual, self.params)
     out = mini.emcee(burn = 10000, steps  = 60000, thin = 1, workers = 1, params = self.params)
     self.H0 = 10**(out.params['a_nu'].value + 5 + 
                    0.2 * (out.params['m04258'].value - 5*log10(out.params['mu_geometric'].value) - 25))
     #print  5*log10(out.params['mu_geometric'].value) + 25
     self.e_H0 = model.H0 * sqrt((out.params['a_nu'].stderr * log(10))**2 
                         + (log(10)/5 *out.params['m04258'].stderr )**2
                         + (out.params['mu_geometric'].stderr/out.params['mu_geometric'].value)**2)
     return out
Esempio n. 16
0
    def setUp(self):
        """
        test scale minimizers except newton-cg (needs jacobian) and
        anneal (doesn't work out of the box).
        """
        p_true = Parameters()
        p_true.add('amp', value=14.0)
        p_true.add('period', value=5.33)
        p_true.add('shift', value=0.123)
        p_true.add('decay', value=0.010)
        self.p_true = p_true

        n = 2500
        xmin = 0.
        xmax = 250.0
        noise = np.random.normal(scale=0.7215, size=n)
        self.x = np.linspace(xmin, xmax, n)
        self.data = self.residual(p_true, self.x) + noise

        fit_params = Parameters()
        fit_params.add('amp', value=11.0, min=5, max=20)
        fit_params.add('period', value=5., min=1., max=7)
        fit_params.add('shift', value=.10, min=0.0, max=0.2)
        fit_params.add('decay', value=6.e-3, min=0, max=0.1)
        self.fit_params = fit_params

        self.mini = Minimizer(self.residual, fit_params, [self.x, self.data])
Esempio n. 17
0
def test_bounds():
    if not HAS_LEAST_SQUARES:
        raise nose.SkipTest
    p_true = Parameters()
    p_true.add('amp', value=14.0)
    p_true.add('period', value=5.4321)
    p_true.add('shift', value=0.12345)
    p_true.add('decay', value=0.01000)

    def residual(pars, x, data=None):
        amp = pars['amp']
        per = pars['period']
        shift = pars['shift']
        decay = pars['decay']

        if abs(shift) > pi/2:
            shift = shift - sign(shift)*pi

        model = amp*sin(shift + x/per) * exp(-x*x*decay*decay)
        if data is None:
            return model
        return (model - data)

    n = 1500
    xmin = 0.
    xmax = 250.0
    random.seed(0)
    noise = random.normal(scale=2.80, size=n)
    x     = linspace(xmin, xmax, n)
    data  = residual(p_true, x) + noise

    fit_params = Parameters()
    fit_params.add('amp', value=13.0, max=20, min=0.0)
    fit_params.add('period', value=2, max=10)
    fit_params.add('shift', value=0.0, max=pi/2., min=-pi/2.)
    fit_params.add('decay', value=0.02, max=0.10, min=0.00)

    min = Minimizer(residual, fit_params, (x, data))
    out = min.least_squares()

    assert(out.nfev  > 10)
    assert(out.nfree > 50)
    assert(out.chisqr > 1.0)

    print(fit_report(out, show_correl=True, modelpars=p_true))
    assert_paramval(out.params['decay'], 0.01, tol=1.e-2)
    assert_paramval(out.params['shift'], 0.123, tol=1.e-2)
def test_scalar_minimize_has_no_uncertainties():
    # scalar_minimize doesn't calculate uncertainties.
    # when a scalar_minimize is run the stderr and correl for each parameter
    # should be None. (stderr and correl are set to None when a Parameter is
    # initialised).
    # This requires a reset after a leastsq fit has been done.
    # Only when scalar_minimize calculates stderr and correl can this test
    # be removed.

    np.random.seed(1)
    x = np.linspace(0, 15, 301)
    data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
            np.random.normal(size=len(x), scale=0.2) )

    # define objective function: returns the array to be minimized
    def fcn2min(params, x, data):
        """ model decaying sine wave, subtract data"""
        amp = params['amp'].value
        shift = params['shift'].value
        omega = params['omega'].value
        decay = params['decay'].value

        model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay)
        return model - data

    # create a set of Parameters
    params = Parameters()
    params.add('amp',   value= 10,  min=0)
    params.add('decay', value= 0.1)
    params.add('shift', value= 0.0, min=-pi / 2., max=pi / 2)
    params.add('omega', value= 3.0)

    mini = Minimizer(fcn2min, params, fcn_args=(x, data))
    out = mini.minimize()
    assert_(np.isfinite(out.params['amp'].stderr))
    print(out.errorbars)
    assert_(out.errorbars == True)
    out2 = mini.minimize(method='nelder-mead')
    assert_(out2.params['amp'].stderr is None)
    assert_(out2.params['decay'].stderr is None)
    assert_(out2.params['shift'].stderr is None)
    assert_(out2.params['omega'].stderr is None)
    assert_(out2.params['amp'].correl is None)
    assert_(out2.params['decay'].correl is None)
    assert_(out2.params['shift'].correl is None)
    assert_(out2.params['omega'].correl is None)
    assert_(out2.errorbars == False)
Esempio n. 19
0
 def fit(self, y, x=None, dy=None, **kws):
     fcn_kws={'y':y, 'x':x, 'dy':dy}
     fcn_kws.update(kws)
     self.minimizer = Minimizer(self.__objective, self.params,
                                fcn_kws=fcn_kws, scale_covar=True)
     self.minimizer.prepare_fit()
     self.init = self.model(self.params, x=x, **kws)
     self.minimizer.leastsq()
Esempio n. 20
0
    def time_confinterval(self):
        np.random.seed(0)
        x = np.linspace(0.3,10,100)
        y = 1/(0.1*x)+2+0.1*np.random.randn(x.size)

        p = Parameters()
        p.add_many(('a', 0.1), ('b', 1))

        def residual(p):
            a = p['a'].value
            b = p['b'].value

            return 1/(a*x)+b-y

        minimizer = Minimizer(residual, p)
        out = minimizer.leastsq()
        return conf_interval(minimizer, out)
Esempio n. 21
0
def test_scalar_minimize_neg_value():
    x0 = 3.14
    fmin = -1.1
    xtol = 0.001
    ftol = 2.0 * xtol

    def objective(pars):
        return (pars['x'] - x0) ** 2.0 + fmin

    params = Parameters()
    params.add('x', value=2*x0)

    minr = Minimizer(objective, params)
    result = minr.scalar_minimize(method='Nelder-Mead',
                                  options={'xatol': xtol, 'fatol': ftol})
    assert abs(result.params['x'].value - x0) < xtol
    assert abs(result.fun - fmin) < ftol
Esempio n. 22
0
	def __FitEvent(self):
		try:
			dt = 1000./self.Fs 	# time-step in ms.
			# edat=np.asarray( np.abs(self.eventData),  dtype='float64' )
			edat=self.dataPolarity*np.asarray( self.eventData,  dtype='float64' )

			# control numpy error reporting
			np.seterr(invalid='ignore', over='ignore', under='ignore')

			ts = np.array([ t*dt for t in range(0,len(edat)) ], dtype='float64')

			# estimate initial guess for events
			initguess=self._characterizeevent(edat, np.abs(util.avg(edat[:10])), self.baseSD, self.InitThreshold, 6.)
			self.nStates=len(initguess)-1

			# setup fit params
			params=Parameters()

			for i in range(1, len(initguess)):
				params.add('a'+str(i-1), value=initguess[i][0]-initguess[i-1][0]) 
				params.add('mu'+str(i-1), value=initguess[i][1]*dt) 
				params.add('tau'+str(i-1), value=dt*7.5)

			params.add('b', value=initguess[0][0])
			

			optfit=Minimizer(self.__objfunc, params, fcn_args=(ts,edat,))
			optfit.prepare_fit()

	
			optfit.leastsq(xtol=self.FitTol,ftol=self.FitTol,maxfev=self.FitIters)

			if optfit.success:
				self.__recordevent(optfit)
			else:
				#print optfit.message, optfit.lmdif_message
				self.rejectEvent('eFitConvergence')
		except KeyboardInterrupt:
			self.rejectEvent('eFitUserStop')
			raise
		except InvalidEvent:
			self.rejectEvent('eInvalidEvent')
		except:
	 		self.rejectEvent('eFitFailure')
	 		raise
Esempio n. 23
0
    def fit(self, params0):
        r"""Perform a fit with the provided parameters.

        Parameters
        ----------
        params0 : list
            Initial fitting parameters

        """
        self.params0 = params0
        p = Parameters()

        if self.parinfo is None:
            self.parinfo = [None] * len(self.params0)
        else:
            assert (len(self.params0) == len(self.parinfo))

        for i, (p0, parin) in enumerate(zip(self.params0, self.parinfo)):
            p.add(name='p{0}'.format(i), value=p0)

            if parin is not None:
                if 'limits' in parin:
                    p['p{0}'.format(i)].set(min=parin['limits'][0])
                    p['p{0}'.format(i)].set(max=parin['limits'][1])
                if 'fixed' in parin:
                    p['p{0}'.format(i)].set(vary=not parin['fixed'])

        if np.all([not value.vary for value in p.values()]):
            raise Exception('All parameters are fixed!')

        self.lmfit_minimizer = Minimizer(self.residuals, p, nan_policy=self.nan_policy, fcn_args=(self.data,))

        self.result.orignorm = np.sum(self.residuals(params0, self.data) ** 2)

        result = self.lmfit_minimizer.minimize(Dfun=self.deriv, method='leastsq', ftol=self.ftol,
                                               xtol=self.xtol, gtol=self.gtol, maxfev=self.maxfev, epsfcn=self.epsfcn,
                                               factor=self.stepfactor)

        self.result.bestnorm = result.chisqr
        self.result.redchi = result.redchi
        self._m = result.ndata
        self.result.nfree = result.nfree
        self.result.resid = result.residual
        self.result.status = result.ier
        self.result.covar = result.covar
        self.result.xerror = [result.params['p{0}'.format(i)].stderr for i in range(len(result.params))]

        self.result.params = [result.params['p{0}'.format(i)].value for i in range(len(result.params))]

        self.result.message = result.message

        self.lmfit_result = result

        if not result.errorbars or not result.success:
            warnings.warn(self.result.message)

        return result.success
Esempio n. 24
0
 def fit(self, y, x=None, dy=None, **kws):
     fcn_kws={'y':y, 'x':x, 'dy':dy}
     fcn_kws.update(kws)
     if not self.has_initial_guess:
         self.guess_starting_values(y, x=x, **kws)
     self.minimizer = Minimizer(self.__objective, self.params,
                                fcn_kws=fcn_kws, scale_covar=True)
     self.minimizer.prepare_fit()
     self.init = self.model(self.params, x=x, **kws)
     self.minimizer.leastsq()
def fit2D(image_nparray2D,fit_axis0=None,fit_axis1=None,minim_method="nelder"):
	if fit_axis0 is None:
		fit_axis0 = fit_axis(image_nparray2D,0,minim_method)
	if fit_axis1 is None:
		fit_axis1 = fit_axis(image_nparray2D,1,minim_method)
		
	# we first take all the initial parameters from 1D fits
	bgr2D_est = fit_axis0[2].params.valuesdict()["backgr"]/len(fit_axis1[0])
	x2D_est = fit_resultsA0[2].params.valuesdict()["r_zero"]
	omegaX2D_est = fit_axis0[2].params.valuesdict()["omega_zero"]
	y2D_est = fit_axis1[2].params.valuesdict()["r_zero"]
	omegaY2D_est = fit_axis1[2].params.valuesdict()["omega_zero"]

	smoothened_image = gaussian_filter(image_nparray2D,50)
	peakheight2D_est = np.amax(smoothened_image)
	#now we need to programatically cut out the region of interest out of the 
	#whole picture so that fitting takes way less time
		
	# NOTE! In this implementation, if the beam is small compared to picture size 
	# and is very close to the edge, the fitting will fail, because the x and y 
	# center position estimates will be off

	cropped_data = format_picture(image_nparray2D,x2D_est,omegaX2D_est,y2D_est,omegaY2D_est)
	xvals = np.linspace(1,cropped_data.shape[0],cropped_data.shape[0])
	yvals = np.linspace(1,cropped_data.shape[1],cropped_data.shape[1])
	x, y = np.meshgrid(yvals,xvals) 
	# NOTE! there's apparently some weird convention, this has to do with 
	# Cartesian vs. matrix indexing, which is explain in numpy.meshgrid manual 

	estimates_2D = Parameters()
	estimates_2D.add("I_zero",value=peakheight2D_est,min=bgr2D_est)
	estimates_2D.add("x_zero",value=0.5*len(yvals),min=0,max=len(xvals)) # NOTE! weird indexing conventions
	estimates_2D.add("y_zero",value=0.5*len(xvals),min=0,max=len(yvals)) # NOTE! weird indexing conventions
	estimates_2D.add("omegaX_zero",value=omegaX2D_est)
	estimates_2D.add("omegaY_zero",value=omegaY2D_est)
	estimates_2D.add("backgr",value=bgr2D_est)
		

	fit2D = Minimizer(residual_2D,estimates_2D,fcn_args=(x,y),fcn_kws={"data":cropped_data})
	fit_res2D = fit2D.minimize(minim_method)
	print(estimates_2D.valuesdict()["x_zero"])
	return (x,y,fit_res2D)
Esempio n. 26
0
def fit_axis(image_nparray2D,axis,minim_method="nelder"):
	"""
	This function fits one axis of a 2D array representing an image by doing 
	a summation along the other axis 

	fit_axis(image_nparray2D,axis,minim_method="nelder")
	"""


	axis_data = np.sum(image_nparray2D,axis = 1) if (axis == 0) else np.sum(image_nparray2D,axis = 0)
	axis_points = np.linspace(1,len(axis_data),len(axis_data))
	param_estimates = startparams_estimate(axis_data)
	params_for_fit = Parameters()
	params_for_fit.add('I_zero',value=param_estimates[0],min=0,max=np.amax(axis_data))
	params_for_fit.add('r_zero',value=param_estimates[1],min=1,max=len(axis_data))
	params_for_fit.add('omega_zero',value=param_estimates[2],min=1,max=len(axis_data))
	params_for_fit.add('backgr',value=param_estimates[3])
	fit = Minimizer(residual_G1D,params_for_fit,fcn_args=(axis_points,),\
		fcn_kws={"data":axis_data})
	fit_res = fit.minimize(minim_method)
	return (axis_points,axis_data,fit_res)
Esempio n. 27
0
def test_derive():
    def func(pars, x, data=None):
        model = pars['a'] * np.exp(-pars['b'] * x) + pars['c']
        if data is None:
            return model
        return model - data

    def dfunc(pars, x, data=None):
        v = np.exp(-pars['b']*x)
        return np.array([v, -pars['a']*x*v, np.ones(len(x))])

    def f(var, x):
        return var[0] * np.exp(-var[1] * x) + var[2]

    params1 = Parameters()
    params1.add('a', value=10)
    params1.add('b', value=10)
    params1.add('c', value=10)

    params2 = Parameters()
    params2.add('a', value=10)
    params2.add('b', value=10)
    params2.add('c', value=10)

    a, b, c = 2.5, 1.3, 0.8
    x = np.linspace(0, 4, 50)
    y = f([a, b, c], x)
    data = y + 0.15*np.random.normal(size=len(x))

    # fit without analytic derivative
    min1 = Minimizer(func, params1, fcn_args=(x,), fcn_kws={'data': data})
    out1 = min1.leastsq()

    # fit with analytic derivative
    min2 = Minimizer(func, params2, fcn_args=(x,), fcn_kws={'data': data})
    out2 = min2.leastsq(Dfun=dfunc, col_deriv=1)

    check_wo_stderr(out1.params['a'], out2.params['a'].value, 0.00005)
    check_wo_stderr(out1.params['b'], out2.params['b'].value, 0.00005)
    check_wo_stderr(out1.params['c'], out2.params['c'].value, 0.00005)
Esempio n. 28
0
def test_peakfit():
    def residual(pars, x, data=None):
        g1 = gaussian(x, pars['a1'], pars['c1'], pars['w1'])
        g2 = gaussian(x, pars['a2'], pars['c2'], pars['w2'])
        model = g1 + g2
        if data is None:
            return model
        return (model - data)

    n = 601
    xmin = 0.
    xmax = 15.0
    noise = np.random.normal(scale=.65, size=n)
    x = np.linspace(xmin, xmax, n)

    org_params = Parameters()
    org_params.add_many(('a1', 12.0, True, None, None, None),
                        ('c1', 5.3, True, None, None, None),
                        ('w1', 1.0, True, None, None, None),
                        ('a2', 9.1, True, None, None, None),
                        ('c2', 8.1, True, None, None, None),
                        ('w2', 2.5, True, None, None, None))

    data = residual(org_params, x) + noise

    fit_params = Parameters()
    fit_params.add_many(('a1', 8.0, True, None, 14., None),
                        ('c1', 5.0, True, None, None, None),
                        ('w1', 0.7, True, None, None, None),
                        ('a2', 3.1, True, None, None, None),
                        ('c2', 8.8, True, None, None, None))

    fit_params.add('w2', expr='2.5*w1')

    myfit = Minimizer(residual, fit_params, fcn_args=(x,),
                      fcn_kws={'data': data})

    myfit.prepare_fit()
    out = myfit.leastsq()
    check_paras(out.params, org_params)
Esempio n. 29
0
def test_ci_report():
    """test confidence interval report"""

    def residual(pars, x, data=None):
        argu = (x*pars['decay'])**2
        shift = pars['shift']
        if abs(shift) > np.pi/2:
            shift = shift - np.sign(shift)*np.pi
        model = pars['amp']*np.sin(shift + x/pars['period']) * np.exp(-argu)
        if data is None:
            return model
        return model - data

    p_true = Parameters()
    p_true.add('amp', value=14.0)
    p_true.add('period', value=5.33)
    p_true.add('shift', value=0.123)
    p_true.add('decay', value=0.010)

    n = 2500
    xmin = 0.
    xmax = 250.0
    x = np.linspace(xmin, xmax, n)
    data = residual(p_true, x) + np.random.normal(scale=0.7215, size=n)

    fit_params = Parameters()
    fit_params.add('amp', value=13.0)
    fit_params.add('period', value=2)
    fit_params.add('shift', value=0.0)
    fit_params.add('decay', value=0.02)

    mini = Minimizer(residual, fit_params, fcn_args=(x,),
                     fcn_kws={'data': data})
    out = mini.leastsq()
    report = fit_report(out)
    assert(len(report) > 500)

    ci, tr = conf_interval(mini, out, trace=True)
    report = ci_report(ci)
    assert(len(report) > 250)
Esempio n. 30
0
def minimize(fcn, paramgroup, method='leastsq', args=None, kws=None,
             scale_covar=True, iter_cb=None, reduce_fcn=None, nan_polcy='omit',
             _larch=None, **fit_kws):
    """
    wrapper around lmfit minimizer for Larch
    """
    fiteval = _larch.symtable._sys.fiteval
    if isinstance(paramgroup, ParameterGroup):
        params = paramgroup.__params__
    elif isgroup(paramgroup):
        params = group2params(paramgroup, _larch=_larch)
    elif isinstance(Parameters):
        params = paramgroup
    else:
        raise ValueError('minimize takes ParamterGroup or Group as first argument')

    if args is None:
        args = ()
    if kws is None:
        kws = {}

    def _residual(params):
        params2group(params, paramgroup)
        return fcn(paramgroup, *args,  **kws)

    fitter = Minimizer(_residual, params, iter_cb=iter_cb,
                       reduce_fcn=reduce_fcn, nan_policy='omit', **fit_kws)

    result = fitter.minimize(method=method)
    params2group(result.params, paramgroup)

    out = Group(name='minimize results', fitter=fitter, fit_details=result,
                chi_square=result.chisqr, chi_reduced=result.redchi)

    for attr in ('aic', 'bic', 'covar', 'params', 'nvarys',
                 'nfree', 'ndata', 'var_names', 'nfev', 'success',
                 'errorbars', 'message', 'lmdif_message', 'residual'):
        setattr(out, attr, getattr(result, attr, None))
    return out
Esempio n. 31
0
plt.grid()
plt.legend()
plt.tight_layout()
plt.show()

# %%
# Least-squares minimization with LMFIT
# -------------------------------------
# Use the :func:`~mrsimulator.utils.spectral_fitting.make_LMFIT_params` for a quick
# setup of the fitting parameters.
params = make_LMFIT_params(sim, processor)
print(params.pretty_print(columns=["value", "min", "max", "vary", "expr"]))

# %%
# **Solve the minimizer using LMFIT**
minner = Minimizer(LMFIT_min_function, params, fcn_args=(sim, processor))
result = minner.minimize()
report_fit(result)

# %%
# The best fit solution
# ---------------------
sim.run()
processed_data = processor.apply_operations(
    data=sim.methods[0].simulation).real

# Plot the spectrum
ax = plt.subplot(projection="csdm")
ax.plot(experiment, "k", alpha=0.5, linewidth=2, label="Experiment")
ax.plot(processed_data, "r--", label="Best Fit")
ax.set_xlim(50, -25)
pfit = [Parameter(name='amp_g',  value=10),
        Parameter(name='cen_g',  value=9),
        Parameter(name='wid_g',  value=1),

        Parameter(name='amp_tot',  value=20),
        Parameter(name='amp_l',  expr='amp_tot - amp_g'),
        Parameter(name='cen_l',  expr='1.5+cen_g'),
        Parameter(name='wid_l',  expr='2*wid_g'),

        Parameter(name='line_slope', value=0.0),
        Parameter(name='line_off', value=0.0)]

sigma = 0.021  # estimate of data error (for all data points)

myfit = Minimizer(residual, pfit,
                  fcn_args=(x,), fcn_kws={'sigma':sigma, 'data':data},
                  scale_covar=True)

myfit.prepare_fit()
init = residual(myfit.params, x)

if HASPYLAB:
    pylab.plot(x, init, 'b--')

myfit.leastsq()

print(' Nfev = ', myfit.nfev)
print( myfit.chisqr, myfit.redchi, myfit.nfree)

report_fit(myfit.params)
# -------------------------------------
# Use the :func:`~mrsimulator.utils.spectral_fitting.make_LMFIT_params` for a quick
# setup of the fitting parameters. Note, the first two arguments of this function is
# the simulator object and a list of SignalProcessor objects, ``processors``. The
# fitting parameters corresponding to the signal processor objects are generated using
# ``SP_i_operation_j_FunctionName_FunctionArg``, where *i* is the *ith* signal
# processor within the list, *j* is the operation index of the *ith* processor, and
# *FunctionName* and *FunctionArg* are the operation function name and function
# argument, respectively.
params = sf.make_LMFIT_params(sim, processors, include={"rotor_frequency"})
print(params.pretty_print(columns=["value", "min", "max", "vary", "expr"]))

# %%
# **Solve the minimizer using LMFIT**
minner = Minimizer(sf.LMFIT_min_function,
                   params,
                   fcn_args=(sim, processors, sigmas))
result = minner.minimize()
result

# %%
# The best fit solution
# ---------------------
all_best_fit = sf.bestfit(sim, processors)  # a list of best fit simulations
all_residuals = sf.residuals(sim, processors)  # a list of residuals

# Plot the spectrum
fig, ax = plt.subplots(1,
                       3,
                       figsize=(12, 3),
                       subplot_kw={"projection": "csdm"})
Esempio n. 34
0
def fit(x_tofit, y_tofit, func='Growth', daystofit=60, nfreq=7):

    y0 = y_tofit[0]
    y1 = y_tofit[-1]
    x1 = x_tofit[-1]
    pars = Parameters()
    pars.add('a', value=y1, min=y1)
    pars.add('b', value=0., min=0.)
    pars.add('c', value=y0, min=0.)

    if func == 'Growth':
        lfunc = lmfunc
        growf = growth
    elif func == 'Sigmoid':
        lfunc = lmsig
        growf = sigm
    mfit = Minimizer(lfunc,
                     pars,
                     fcn_args=(x_tofit, ),
                     fcn_kws={'y': y_tofit},
                     reduce_fcn='neglogcauchy')
    nfit = mfit.minimize(method='nedeler')
    #nfit = mfit.minimize(method='leastsq')
    #nfit = mfit.leastsq()
    dfit = mfit.minimize(method='leastsq', params=nfit.params)

    print(fit_report(dfit))

    a = dfit.params['a']
    b = dfit.params['b']
    c = dfit.params['c']

    ## to look ahead
    nstd = 3
    a_err = nstd * a.stderr
    b_err = nstd * b.stderr
    c_err = nstd * c.stderr

    xfit = np.arange(0, daystofit, 1.)
    yfit = lfunc(dfit.params, xfit)

    fig, ax = plt.subplots()

    #yfit1 = growf(a+a_err,b-b_err,c+c_err,xfit)
    #yfit2 = growf(a-a_err,b+b_err,c-c_err,xfit)
    yfit1 = growf(a + a_err, b, c, xfit)
    yfit2 = growf(a - a_err, b, c, xfit)
    #plt.fill_between(xfit, yfit2,yfit1, color="#ABABAB")
    plt.fill_between(xfit, yfit2, yfit1, color="#ABABAB", label='CI: 99.75%')

    ax.plot(xfit, yfit, 'r-', label="Best fit")
    ax.scatter(x_tofit,
               y_tofit,
               c='black',
               s=50,
               label="# Diagnosed in Mainland China")

    #xlabel = [date[s].date() for s in range(daystofit) if s%7==0]
    #print(date.astype(str)[0][5:])

    nfreq = 3
    date = pd.date_range('2020-01-16', periods=daystofit)
    datestr = date.astype(str)
    ypred = lfunc(dfit.params, x1 + 1)
    yerr = a.stderr / a
    ypred_1 = ypred * (1 + 1.732 * yerr)
    ypred_2 = ypred * (1 - 1.732 * yerr)
    print("Predicted diagnosed number on %s: %d (total: %d-%d, 95%% CI)" %
          (datestr[x1 + 1], ypred - y1, ypred_2, ypred_1))
    xticks = [xfit[s] for s in range(daystofit) if s % nfreq == 0]
    xlabel = [datestr[s][5:] for s in range(daystofit) if s % nfreq == 0]
    plt.xticks(xticks, xlabel, rotation=60)

    plt.legend()
    fig.tight_layout()
    plt.show()
    fig.savefig('FitbyGompertzGrowth.pdf')
    plt.close()
Esempio n. 35
0
def grid_fit(src_y, src_x, ncols, nrows, params, vary_theta=False, method='least_squares', bbox=None,
             normalized_shifts=None):
    """Optimize grid model parameters to match detected source centroids.

    Parameters
    ----------
    src_y : `numpy.ndarray`, (N,)
        An array of Y-axis centroid coordinates.
    src_x : `numpy.ndarray`, (N,)
        An array of X-axis centroid coordinates.
    ncols : `int`
        Number of grid columns.
    nrows : `int`
        Number of grid rows.
    params: `list` or `tuple`
        Sequence of initial guesses for the grid model parameters.
    vary_theta : `bool`, optional
        Allow the grid rotation angle parameter to vary during model fit if
        `True`.
    method : `str`, optional
        Name of the fitting method to use (the default is 'least_squares').
    bbox : `lsst.geom.Box2I`, optional
        An integer coordinate rectangle corresponding to detector geometry
        (the default is `None`, which implies no detector geometry information
        will be used).
    normalized_shifts : `tuple` [`numpy.ndarray`], optional
        A sequence of arrays of normalized shifts in Y-axis and X-axis (the
        default is `None`, which implies no normalized shifts to be included).
 
    Returns
    -------
    grid : `mixcoatl.sourcegrid.DistortedGrid`
        Optimized grid model.
    result : `lmfit.minimizer.MinimizerResult`
        The results of the grid model optimization.
    """
    ystep, xstep, theta, y0, x0 = params

    ## Define fit parameters
    params = Parameters()
    params.add('ystep', value=ystep, vary=False)
    params.add('xstep', value=xstep, vary=False)
    params.add('y0', value=y0, min=y0 - 3., max=y0 + 3., vary=True)
    params.add('x0', value=x0, min=x0 - 3., max=x0 + 3., vary=True)
    params.add('theta', value=theta, min=theta - 0.5*np.pi/180., max=theta + 0.5*np.pi/180., vary=False)
    
    minner = Minimizer(fit_error, params, fcn_args=(src_y, src_x, ncols, nrows),
                       fcn_kws={'normalized_shifts' : normalized_shifts, 'bbox' : bbox}, nan_policy='omit')
    result = minner.minimize(params=params, method=method, max_nfev=None)

    if vary_theta:
        result_params = result.params
        result_values = result_params.valuesdict()
        params['y0'].set(value=result_values['y0'], vary=False)
        params['x0'].set(value=result_values['x0'], vary=False)
        params['theta'].set(vary=True)
        theta_minner = Minimizer(fit_error, params, fcn_args=(src_y, src_x, ncols, nrows),
                                 fcn_kws={'normalized_shifts' : normalized_shifts, 'bbox' : bbox}, 
                                 nan_policy='omit')
        theta_result = theta_minner.minimize(params=params, method=method, max_nfev=None)
        result.params['theta'] = theta_result.params['theta']
        
    parvals = result.params.valuesdict()
    grid = DistortedGrid(parvals['ystep'], parvals['xstep'], parvals['theta'], parvals['y0'], parvals['x0'], 
                         ncols, nrows, normalized_shifts=normalized_shifts)
    
    return grid, result
Esempio n. 36
0
    def BIC_minimisation_region_full(ind1, uc, peak_regions, grouped_peaks, total_spectral_ydata, corr_distance, std):

        ################################################################################################################
        # initialise process
        ################################################################################################################

        # print("minimising region " + str(ind1) + " of " + str(len(peak_regions)))

        BIC_param = 15

        region = np.array(peak_regions[ind1])

        region_y = total_spectral_ydata[region]

        fit_y = np.zeros(len(region_y))

        copy_peaks = np.array(grouped_peaks[ind1])

        params = Parameters()

        fitted_peaks = []

        ttotal = 0

        ################################################################################################################
        # build initial model
        ################################################################################################################

        # params.add('vregion' + str(ind1), value=2.5, max=5, min=1)

        params.add('vregion' + str(ind1), value=0.5, max=1, min=0)

        distance = uc(0, "hz") - uc(5, "hz")

        std_upper = uc(0, "hz") - uc(1, "hz")
        av_std = uc(0, "hz") - uc(0.2, "hz")
        std_lower = uc(0, "hz") - uc(0.1, "hz")

        # build model

        while (len(copy_peaks) > 0):
            # pick peak that is furthest from fitted data:

            diff_array = region_y - fit_y

            ind2 = np.argmax(diff_array[copy_peaks - region[0]])

            maxpeak = copy_peaks[ind2]

            copy_peaks = np.delete(copy_peaks, ind2)

            # only allow params < distance away vary at a time

            # add new params

            fitted_peaks.append(maxpeak)

            fitted_peaks = sorted(fitted_peaks)

            params.add('A' + str(maxpeak), value=total_spectral_ydata[maxpeak], min=0, max=1, vary=True)

            # params.add('std' + str(maxpeak), value=av_std, vary=True, min = std_lower,
            #               max = std_upper)

            params.add('std' + str(maxpeak), value=av_std, vary=True)

            params.add('mu' + str(maxpeak), value=maxpeak, vary=True
                       , min=maxpeak - 4 * corr_distance, max=maxpeak + 4 * corr_distance)

            # adjust amplitudes and widths of the current model

        initial_y = p7sim(params, region, fitted_peaks, ind1)

        inty = np.sum(region_y[region_y > 0])

        intmodel = np.sum(initial_y)

        # check the region can be optimised this way

        # find peak with max amplitude

        maxamp = 0

        for peak in fitted_peaks:
            amp = params['A' + str(peak)]
            if amp > maxamp:
                maxamp = copy.copy(amp)

        maxintegral = maxamp * len(region)

        if maxintegral > inty:

            # set initial conditions

            while (intmodel / inty < 0.99) or (intmodel / inty > 1.01):

                for f in fitted_peaks:
                    params['std' + str(f)].set(value=params['std' + str(f)] * inty / intmodel)

                initial_y = p7sim(params, region, fitted_peaks, ind1)

                for f in fitted_peaks:
                    params['A' + str(f)].set(
                        value=params['A' + str(f)] * region_y[int(params['mu' + str(f)]) - region[0]] / (
                            initial_y[f - region[0]]))

                initial_y = p7sim(params, region, fitted_peaks, ind1)

                intmodel = np.sum(initial_y)

        # print('built model region ' + str(ind1))

        ################################################################################################################
        # now relax all params
        ################################################################################################################

        # allow all params to vary

        params['vregion' + str(ind1)].set(vary=True)

        for peak in fitted_peaks:
            params['A' + str(peak)].set(vary=False, min=max(0, params['A' + str(peak)] - 0.01),
                                        max=min(params['A' + str(peak)] + 0.01, 1))
            params['mu' + str(peak)].set(vary=False)
            params['std' + str(peak)].set(vary=False, min=min(std_lower, params['std' + str(peak)] - av_std),
                                          max=max(params['std' + str(peak)] + av_std, std_upper))

        out = Minimizer(p7residual, params,
                        fcn_args=(region, fitted_peaks, region_y, ind1, False))

        results = out.minimize()

        params = results.params

        # print('relaxed params region ' + str(ind1))

        ################################################################################################################
        # now remove peaks in turn
        ################################################################################################################

        trial_y = p7sim(params, region, fitted_peaks, ind1)

        trial_peaks = np.array(fitted_peaks)

        amps = []

        for peak in trial_peaks:
            amps.append(params['A' + str(peak)])

        r = trial_y - region_y

        chi2 = r ** 2

        N = len(chi2)

        BIC = N * np.log(np.sum(chi2) / N) + np.log(N) * (3 * len(fitted_peaks) + 2)

        while (len(trial_peaks) > 0):

            new_params = copy.copy(params)

            # find peak with smallest amp

            minpeak = trial_peaks[np.argmin(amps)]

            # remove this peak from the set left to try

            trial_peaks = np.delete(trial_peaks, np.argmin(amps))
            amps = np.delete(amps, np.argmin(amps))

            # remove this peak from the trial peaks list and the trial params

            new_params.__delitem__('A' + str(minpeak))
            new_params.__delitem__('mu' + str(minpeak))
            new_params.__delitem__('std' + str(minpeak))

            new_fitted_peaks = np.delete(fitted_peaks, np.where(fitted_peaks == minpeak))

            # simulate data with one fewer peak

            new_trial_y = p7sim(new_params, region, new_fitted_peaks, ind1)

            r = new_trial_y - region_y

            chi2 = np.sum(r ** 2)

            N = len(new_trial_y)

            new_BIC = N * np.log(chi2 / N) + np.log(N) * (3 * len(new_fitted_peaks) + 2)

            # if the fit is significantly better remove this peak

            if new_BIC < BIC - BIC_param:
                fitted_peaks = copy.copy(new_fitted_peaks)

                params = copy.copy(new_params)

                BIC = copy.copy(new_BIC)

        fitted_peaks = sorted(fitted_peaks)

        fit_y = p7sim(params, region, fitted_peaks, ind1)

        ################################################################################################################

        print("     done region " + str(ind1 + 1) + "of" + str(len(peak_regions)))

        return fitted_peaks, params, fit_y
Esempio n. 37
0
def ACMEWLRhybrid(y, corr_distance):

    def residual_function(params, im, real):

        # phase the region

        data = ps(params, im, real, 0)

        # make new baseline for this region

        r = np.linspace(data[0], data[-1], len(real))

        # find negative area

        data -= r

        ds1 = np.abs((data[1:] - data[:-1]))

        p1 = ds1 / np.sum(ds1)

        # Calculation of entropy
        p1[p1 == 0] = 1

        h1 = -p1 * np.log(p1)
        h1s = np.sum(h1)

        # Calculation of penalty
        pfun = 0.0

        as_ = data - np.abs(data)

        sumas = np.sum(as_)

        if sumas < 0:
            pfun = (as_[1:] / 2) ** 2

        p = np.sum(pfun)

        return h1s + 1000 * p

    # find regions

    classification, sigma = baseline_find_signal(y, corr_distance, True, 1)

    c1 = np.roll(classification, 1)

    diff = classification - c1

    s_start = np.where(diff == 1)[0]

    s_end = np.where(diff == -1)[0] - 1

    peak_regions = []

    for r in range(len(s_start)):
        peak_regions.append(np.arange(s_start[r], s_end[r]))

    # for region in peak_regions:
    #    plt.plot(region,y[region],color = 'C1')

    # phase each region independently

    phase_angles = []

    weights = []

    centres = []

    for region in peak_regions:
        params = Parameters()

        params.add('p0', value=0, min=-np.pi, max=np.pi)

        out = Minimizer(residual_function, params,
                        fcn_args=(np.imag(y[region]), np.real(y[region])))

        results = out.minimize('brute')

        p = results.params

        phase_angles.append(p['p0'] * 1)

        # find weight

        data = ps(p, np.imag(y[region]), np.real(y[region]), 0)

        # make new baseline for this region

        r = np.linspace(data[0], data[-1], len(data))

        # find negative area

        res = data - r

        weights.append(abs(np.sum(res[res > 0] / np.sum(y[y > 0]))))

        centres.append(np.median(region) / len(y))

    sw = sum(weights)

    weights = [w / sw for w in weights]

    # do weighted linear regression on the regions

    # do outlier analysis

    switch = 0

    centres = np.array(centres)

    weights = np.array(weights)

    sweights = np.argsort(weights)[::-1]

    phase_angles = np.array(phase_angles)

    ind1 = 0

    while switch == 0:

        intercept, gradient = np.polynomial.polynomial.polyfit(centres, phase_angles, deg=1, w=weights)

        predicted_angles = gradient * centres + intercept

        weighted_res = np.abs(predicted_angles - phase_angles) * weights

        # find where largest weighted residual is

        max_res = sweights[ind1]

        s = 0

        if phase_angles[max_res] > 0:

            s = -1

            phase_angles[max_res] -= 2 * np.pi

        else:

            s = +1

            phase_angles[max_res] += 2 * np.pi

        intercept1, gradient1 = np.polynomial.polynomial.polyfit(centres, phase_angles, deg=1, w=weights)

        new_predicted_angles = gradient1 * centres + intercept1

        new_weighted_res = np.abs(new_predicted_angles - phase_angles) * weights

        if np.sum(new_weighted_res)  > np.sum(weighted_res):

            switch = 1

            phase_angles[max_res] += -2*np.pi*s

        ind1 +=1

    # phase the data

    p_final = Parameters()

    p_final.add('p0', value=intercept)
    p_final.add('p1', value=gradient)

    # p_final.pretty_print()

    y = ps(p_final, np.imag(y), np.real(y), 1)


    classification, sigma = baseline_find_signal(y, corr_distance, True, 1)
    r = gen_baseline(np.real(y), classification, corr_distance)
    y -= r

    return np.real(y)
Esempio n. 38
0
def acme(y, corr_distance):
    params = Parameters()

    phase_order = 3

    for p in range(phase_order + 1):
        params.add('p' + str(p), value=0, min=-np.pi, max=np.pi)

    def acmescore(params, im, real, phase_order):

        """
        Phase correction using ACME algorithm by Chen Li et al.
        Journal of Magnetic Resonance 158 (2002) 164-168

        Parameters
        ----------
        pd : tuple
            Current p0 and p1 values
        data : ndarray
            Array of NMR data.

        Returns
        -------
        score : float
            Value of the objective function (phase score)

        """

        data = ps(params, im, real, phase_order)

        ##########

        # calculate entropy of non corrected data, calculate penalty for baseline corrected data
        #  - keep as vector to use the default lmfit method

        # Calculation of first derivatives of signal regions

        ds1 = np.abs((data[1:] - data[:-1]))

        p1 = ds1 / np.sum(ds1)

        # Calculation of entropy
        p1[p1 == 0] = 1

        h1 = -p1 * np.log(p1)
        # h1s = np.sum(h1)

        # Calculation of penalty
        pfun = 0.0
        as_ = data - np.abs(data)
        # as_ = databl - np.abs(databl)
        sumas = np.sum(as_)

        if sumas < 0:
            # pfun = pfun + np.sum((as_ / 2) ** 2)
            pfun = (as_[1:] / 2) ** 2

        p = 1000 * pfun

        return h1 + p

    out = Minimizer(acmescore, params,
                    fcn_args=(np.imag(y), np.real(y), phase_order))

    results = out.minimize()

    p = results.params

    p.pretty_print()

    y = ps(p, np.imag(y), np.real(y), phase_order)

    classification, sigma = baseline_find_signal(y, corr_distance, True, 1)
    r = gen_baseline(np.real(y), classification, corr_distance)
    y -= r

    return y
Esempio n. 39
0
class CommonMinimizerTest(unittest.TestCase):
    def setUp(self):
        """
        test scale minimizers except newton-cg (needs jacobian) and
        anneal (doesn't work out of the box).
        """
        p_true = Parameters()
        p_true.add('amp', value=14.0)
        p_true.add('period', value=5.33)
        p_true.add('shift', value=0.123)
        p_true.add('decay', value=0.010)
        self.p_true = p_true

        n = 2500
        xmin = 0.
        xmax = 250.0
        noise = np.random.normal(scale=0.7215, size=n)
        self.x = np.linspace(xmin, xmax, n)
        data = self.residual(p_true, self.x) + noise

        fit_params = Parameters()
        fit_params.add('amp', value=11.0, min=5, max=20)
        fit_params.add('period', value=5., min=1., max=7)
        fit_params.add('shift', value=.10, min=0.0, max=0.2)
        fit_params.add('decay', value=6.e-3, min=0, max=0.1)
        self.fit_params = fit_params

        init = self.residual(fit_params, self.x)
        self.mini = Minimizer(self.residual, fit_params, [self.x, data])

    def residual(self, pars, x, data=None):
        amp = pars['amp'].value
        per = pars['period'].value
        shift = pars['shift'].value
        decay = pars['decay'].value

        if abs(shift) > pi / 2:
            shift = shift - np.sign(shift) * pi
        model = amp * np.sin(shift + x / per) * np.exp(-x * x * decay * decay)
        if data is None:
            return model
        return (model - data)

    def test_diffev_bounds_check(self):
        # You need finite (min, max) for each parameter if you're using
        # differential_evolution.
        self.fit_params['decay'].min = None
        self.minimizer = 'differential_evolution'
        np.testing.assert_raises(ValueError, self.scalar_minimizer)

    def test_scalar_minimizers(self):
        # test all the scalar minimizers
        for method in SCALAR_METHODS:
            if method in ['newton', 'dogleg', 'trust-ncg']:
                continue
            self.minimizer = SCALAR_METHODS[method]
            if method == 'Nelder-Mead':
                sig = 0.2
            else:
                sig = 0.15
            self.scalar_minimizer(sig=sig)

    def scalar_minimizer(self, sig=0.15):
        try:
            from scipy.optimize import minimize as scipy_minimize
        except ImportError:
            raise SkipTest

        print(self.minimizer)
        self.mini.scalar_minimize(method=self.minimizer)

        fit = self.residual(self.fit_params, self.x)

        for name, par in self.fit_params.items():
            nout = "%s:%s" % (name, ' ' * (20 - len(name)))
            print("%s: %s (%s) " % (nout, par.value, self.p_true[name].value))

        for para, true_para in zip(self.fit_params.values(),
                                   self.p_true.values()):
            check_wo_stderr(para, true_para.value, sig=sig)
Esempio n. 40
0

n = 2500
xmin = 0.
xmax = 250.0
noise = random.normal(scale=0.7215, size=n)
x = linspace(xmin, xmax, n)
data = residual(p_true, x) + noise

fit_params = Parameters()
fit_params.add('amp', value=13.0)
fit_params.add('period', value=2)
fit_params.add('shift', value=0.0)
fit_params.add('decay', value=0.02)

mini = Minimizer(residual, fit_params, fcn_args=(x, ), fcn_kws={'data': data})
out = mini.leastsq()

fit = residual(out.params, x)
report_fit(out)

ci, tr = conf_interval(mini, out, trace=True)
report_ci(ci)

if HASPYLAB:
    names = out.params.keys()
    i = 0
    gs = plt.GridSpec(4, 4)
    sx = {}
    sy = {}
    for fixed in names:
Esempio n. 41
0
    def solve_general(self, nh, delfstar, overlayer, prop_guess={}):
        '''
        solve the property of a single test.
        nh: list of int
        delfstar: dict {harm(int): complex, ...}
        overlayer: dicr e.g.: {'drho': 0, 'grho_rh': 0, 'phi': 0}
        return drho, grho_rh, phi, dlam_rh, err
        '''
        # input variables - this is helpfulf for the error analysis
        # define sensibly names partial derivatives for further use
        deriv = {}
        err = {}
        err_names = ['drho', 'grho_rh', 'phi']

        # first pass at solution comes from rh and rd
        rd_exp = self.rdexp(nh, delfstar)  # nh[2]
        rh_exp = self.rhexp(nh, delfstar)  # nh[0], nh[1]
        logger.info('rd_exp', rd_exp)
        logger.info('rh_exp', rh_exp)

        n1 = nh[0]
        n2 = nh[1]
        n3 = nh[2]

        # solve the problem
        if ~np.isnan(rd_exp) or ~np.isnan(rh_exp):
            logger.info('rd_exp, rh_exp is not nan')
            # TODO change here for the model selection
            if prop_guess:  # value{'drho', 'grho_rh', 'phi'}
                dlam_rh, phi = self.guess_from_props(**prop_guess)
            elif rd_exp > 0.5:
                dlam_rh, phi = self.bulk_guess(delfstar)
            else:
                dlam_rh, phi = self.thinfilm_guess(delfstar)

            logger.info('dlam_rh', dlam_rh)
            logger.info('phi', phi)

            if fit_method == 'lmfit':
                params1 = Parameters()
                params1.add('dlam_rh',
                            value=dlam_rh,
                            min=dlam_rh_range[0],
                            max=dlam_rh_range[1])
                params1.add('phi',
                            value=phi,
                            min=phi_range[0],
                            max=phi_range[1])

                def residual1(params, rh_exp, rd_exp):
                    # dlam_rh = params['dlam_rh'].value
                    # phi = params['phi'].value
                    return [
                        self.rhcalc(nh, dlam_rh, phi) - rh_exp,
                        self.rdcalc(nh, dlam_rh, phi) - rd_exp
                    ]

                mini = Minimizer(
                    residual1,
                    params1,
                    fcn_args=(rh_exp, rd_exp),
                    # nan_policy='omit',
                )
                soln1 = mini.leastsq(
                    # xtol=1e-7,
                    # ftol=1e-7,
                )

                print(fit_report(soln1))  #testprint
                logger.info('success', soln1.success)
                logger.info('message', soln1.message)
                logger.info('lmdif_message', soln1.lmdif_message)

                dlam_rh = soln1.params.get('dlam_rh').value
                phi = soln1.params.get('phi').value
                drho = self.drho(n1, delfstar, dlam_rh, phi)
                grho_rh = self.grho_from_dlam(self.rh, drho, dlam_rh, phi)
            else:  # scipy
                lb = np.array([dlam_rh_range[0],
                               phi_range[0]])  # lower bounds on dlam3 and phi
                ub = np.array([dlam_rh_range[1],
                               phi_range[1]])  # upper bonds on dlam3 and phi

                def ftosolve(x):
                    return [
                        self.rhcalc(nh, x[0], x[1]) - rh_exp,
                        self.rdcalc(nh, x[0], x[1]) - rd_exp
                    ]

                x0 = np.array([dlam_rh, phi])
                logger.info(x0)
                soln1 = least_squares(ftosolve, x0, bounds=(lb, ub))
                logger.info(soln1['x'])
                dlam_rh = soln1['x'][0]
                phi = soln1['x'][1]
                drho = self.drho(n1, delfstar, dlam_rh, phi)
                grho_rh = self.grho_from_dlam(self.rh, drho, dlam_rh, phi)

            logger.info('solution of 1st solving:')
            logger.info('dlam_rh', dlam_rh)
            logger.info('phi', phi)
            logger.info('drho', phi)
            logger.info('grho_rh', grho_rh)

            # we solve it again to get the Jacobian with respect to our actual
            if drho_range[0] <= drho <= drho_range[1] and grho_rh_range[
                    0] <= grho_rh <= grho_rh_range[1] and phi_range[
                        0] <= phi <= phi_range[1]:

                logger.info('1st solution in range')
                if fit_method == 'lmfit':
                    params2 = Parameters()

                    params2.add('drho',
                                value=dlam_rh,
                                min=drho_range[0],
                                max=drho_range[1])
                    params2.add('grho_rh',
                                value=grho_rh,
                                min=grho_rh_range[0],
                                max=grho_rh_range[1])
                    params2.add('phi',
                                value=phi,
                                min=phi_range[0],
                                max=phi_range[1])

                    def residual2(params, delfstar, overlayer, n1, n2, n3):
                        drho = params['drho'].value
                        grho_rh = params['grho_rh'].value
                        phi = params['phi'].value
                        return ([
                            np.real(delfstar[n1]) - np.real(
                                self.delfstarcalc(n1, drho, grho_rh, phi,
                                                  overlayer)),
                            np.real(delfstar[n2]) - np.real(
                                self.delfstarcalc(n2, drho, grho_rh, phi,
                                                  overlayer)),
                            np.imag(delfstar[n3]) - np.imag(
                                self.delfstarcalc(n3, drho, grho_rh, phi,
                                                  overlayer))
                        ])

                    mini = Minimizer(
                        residual2,
                        params2,
                        fcn_args=(delfstar, overlayer, n1, n2, n3),
                        # nan_policy='omit',
                    )
                    soln2 = mini.least_squares(
                        # xtol=1e-7,
                        # ftol=1e-7,
                    )
                    logger.info(soln2.params.keys())
                    logger.info(soln2.params['drho'])
                    print(fit_report(soln2))
                    print('success', soln2.success)
                    print('message', soln2.message)
                    print('lmdif_message', soln1.lmdif_message)

                    # put the input uncertainties into a 3 element vector
                    delfstar_err = np.zeros(3)
                    delfstar_err[0] = np.real(self.fstar_err_calc(
                        delfstar[n1]))
                    delfstar_err[1] = np.real(self.fstar_err_calc(
                        delfstar[n2]))
                    delfstar_err[2] = np.imag(self.fstar_err_calc(
                        delfstar[n3]))

                    # initialize the uncertainties

                    # recalculate solution to give the uncertainty, if solution is viable
                    drho = soln2.params.get('drho').value
                    grho_rh = soln2.params.get('grho_rh').value
                    phi = soln2.params.get('phi').value
                    dlam_rh = self.d_lamcalc(self.rh, drho, grho_rh, phi)
                    jac = soln2.params.get('jac')  #TODO ???
                    logger.info('jac', jac)
                    jac_inv = np.linalg.inv(jac)

                    for i, k in enumerate(err_names):
                        deriv[k] = {
                            0: jac_inv[i, 0],
                            1: jac_inv[i, 1],
                            2: jac_inv[i, 2]
                        }
                        err[k] = ((jac_inv[i, 0] * delfstar_err[0])**2 +
                                  (jac_inv[i, 1] * delfstar_err[1])**2 +
                                  (jac_inv[i, 2] * delfstar_err[2])**2)**0.5
                else:  # scipy
                    x0 = np.array([drho, grho_rh, phi])

                    lb = np.array(
                        [drho_range[0], grho_rh_range[0],
                         phi_range[0]])  # lower bounds drho, grho3, phi
                    ub = np.array(
                        [drho_range[1], grho_rh_range[1],
                         phi_range[1]])  # upper bounds drho, grho3, phi

                    def ftosolve2(x):
                        return ([
                            np.real(delfstar[n1]) - np.real(
                                self.delfstarcalc(n1, x[0], x[1], x[2],
                                                  overlayer)),
                            np.real(delfstar[n2]) - np.real(
                                self.delfstarcalc(n2, x[0], x[1], x[2],
                                                  overlayer)),
                            np.imag(delfstar[n3]) - np.imag(
                                self.delfstarcalc(n3, x[0], x[1], x[2],
                                                  overlayer))
                        ])

                    # put the input uncertainties into a 3 element vector
                    delfstar_err = np.zeros(3)
                    delfstar_err[0] = np.real(self.fstar_err_calc(
                        delfstar[n1]))
                    delfstar_err[1] = np.real(self.fstar_err_calc(
                        delfstar[n2]))
                    delfstar_err[2] = np.imag(self.fstar_err_calc(
                        delfstar[n3]))

                    # recalculate solution to give the uncertainty, if solution is viable
                    soln2 = least_squares(ftosolve2, x0, bounds=(lb, ub))
                    drho = soln2['x'][0]
                    grho_rh = soln2['x'][1]
                    phi = soln2['x'][2]
                    dlam_rh = self.d_lamcalc(self.rh, drho, grho_rh, phi)
                    jac = soln2['jac']
                    logger.info('jac', jac)
                    jac_inv = np.linalg.inv(jac)
                    logger.info('jac_inv', jac_inv)

                    for i, k in enumerate(err_names):
                        deriv[k] = {
                            0: jac_inv[i, 0],
                            1: jac_inv[i, 1],
                            2: jac_inv[i, 2]
                        }
                        err[k] = ((jac_inv[i, 0] * delfstar_err[0])**2 +
                                  (jac_inv[i, 1] * delfstar_err[1])**2 +
                                  (jac_inv[i, 2] * delfstar_err[2])**2)**0.5

        if np.isnan(rd_exp) or np.isnan(
                rh_exp) or not deriv or not err:  # failed to solve the problem
            print('2nd solving failed')
            # assign the default value first
            drho = np.nan
            grho_rh = np.nan
            phi = np.nan
            dlam_rh = np.nan
            for k in err_names:
                err[k] = np.nan

        logger.info('drho', drho)
        logger.info('grho_rh', grho_rh)
        logger.info('phi', phi)
        logger.info('dlam_rh', phi)
        logger.info('err', err)

        return drho, grho_rh, phi, dlam_rh, err
Esempio n. 42
0
OutputFormatter.printConfig(configJson)

# close config file
configFile.close()

config = Config(configJson)

# retrieve params from config
params = config.getParams()
data = config.getData()
soly = config.getSoly()

OutputFormatter.printExperimentaldata(data, soly)

minimizer = Minimizer(ExcessSaltSolubilityModel.residual,
                      params,
                      fcn_args=(data, soly))
out = minimizer.leastsq()

# show output
#lmfit.printfuncs.report_fit(out.params)

print(lmfit.fit_report(out))

# confidence
# ci = lmfit.conf_interval(minimizer, out)

# show output
# lmfit.printfuncs.report_ci(ci)

# print results
Esempio n. 43
0
def f(params):
    return f1(params) + f2(params) + f3(params)


###############################################################################
# Just as in the documentation we will do a grid search between ``-4`` and
# ``4`` and use a stepsize of ``0.25``. The bounds can be set as usual with
# the ``min`` and ``max`` attributes, and the stepsize is set using
# ``brute_step``.
params['x'].set(min=-4, max=4, brute_step=0.25)
params['y'].set(min=-4, max=4, brute_step=0.25)

###############################################################################
# Performing the actual grid search is done with:
fitter = Minimizer(f, params)
result = fitter.minimize(method='brute')

###############################################################################
# , which will increment ``x`` and ``y`` between ``-4`` in increments of
# ``0.25`` until ``4`` (not inclusive).
grid_x, grid_y = (np.unique(par.ravel()) for par in result.brute_grid)
print(grid_x)

###############################################################################
# The objective function is evaluated on this grid, and the raw output from
# ``scipy.optimize.brute`` is stored in the MinimizerResult as
# ``brute_<parname>`` attributes. These attributes are:
#
# ``result.brute_x0`` -- A 1-D array containing the coordinates of a point at
# which the objective function had its minimum value.
Esempio n. 44
0
    """Calculate cubic growth and subtract data"""

    #Get an ordered dictionary of parameter values
    v = params.valuesdict()

    #Cubic model
    model = v['a'] * t**3 + v['b'] * t**2 + v['c'] * t + v['d']

    return model - data  #Return residuals


# In[7]:

#Create a Minimizer object
minner = Minimizer(residuals_linear,
                   params_linear,
                   fcn_args=(t, np.log(N_rand)))

#Perform the minimization
fit_linear_NLLS = minner.minimize()

# The variable `fit_linear` belongs to a class called [`MinimizerResult`](https://lmfit.github.io/lmfit-py/fitting.html#lmfit.minimizer.MinimizerResult), which include data such as status and error messages, fit statistics, and the updated (i.e., best-fit) parameters themselves in the params attribute.
#
# Now get the summary of the fit:

# In[8]:

report_fit(fit_linear_NLLS)

# ### Using OLS
#
Esempio n. 45
0
def fit_multigaussian(spec,
                      vcent=None,
                      err=None,
                      max_comp=10,
                      amp_const=None,
                      cent_const=None,
                      sigma_const=None,
                      sigma_init=10.,
                      verbose=True,
                      plot_fit=True,
                      min_delta_BIC=5.,
                      min_sigma_intensity=5,
                      return_model=False,
                      discrete_fitter=False,
                      discrete_oversamp=2):
    '''
    Increase the number of fitted Gaussians to find a minimum
    in AIC or BIC.
    '''

    spec = spec.with_spectral_unit(u.km / u.s)
    vels = spec.spectral_axis

    # Set parameter limits:
    if amp_const is None:
        amp_min = 0.
        amp_max = 1.1 * np.nanmax(spec.filled_data[:].value)
    else:
        amp_min = amp_const[0]
        amp_max = amp_const[1]

    if cent_const is None:
        cent_min = vels.value.min() - 0.1 * np.ptp(vels.value)
        cent_max = vels.value.max() + 0.1 * np.ptp(vels.value)
    else:
        cent_min = cent_const[0]
        cent_max = cent_const[1]

    if sigma_const is None:
        sig_min = np.abs(np.diff(vels.value)[0])
        sig_max = 0.3 * np.ptp(vels.value)
    else:
        sig_min = sigma_const[0]
        sig_max = sigma_const[1]

    if vcent is None:
        vcent = np.mean(vels.value)
    else:
        vcent = vcent.to(u.km / u.s).value

    # Currently assuming all spectra have some signal in them.
    aics = []
    bics = []
    fit_outputs = []

    pfit = Parameters()

    valid_data = np.isfinite(spec.filled_data[:])
    yfit = spec.filled_data[:].value[valid_data]
    xfit = spec.spectral_axis.value[valid_data]

    # Upsample for computing over discrete bins
    chan_width = np.abs(np.diff(vels.value)[0])

    order_sign = 1. if vels[-1] > vels[0] else -1.

    # You really need to rewrite this to be faster.
    assert discrete_oversamp > 1.
    xfit_upsamp = np.linspace(vels.value[0] - order_sign * 0.5 * chan_width,
                              vels.value[-1] + order_sign * 0.5 * chan_width,
                              vels.size * discrete_oversamp)

    for nc in range(1, max_comp + 1):

        if verbose:
            print(f"Now fitting with {nc} components.")

        # Place the centre at the largest positive residual within the bounds.
        if nc > 1:
            tpeak = 20
            vel_peakresid = spec.spectral_axis.value[np.argmax(fit_residual)]
            if vel_peakresid >= cent_min and vel_peakresid <= cent_max:
                v_guess = vel_peakresid
                tpeak = fit_residual[np.argmax(fit_residual)]
            else:
                v_guess = vcent

            if tpeak < amp_min:
                tpeak = 20.

            pfit.add(name=f'amp{nc}', value=tpeak,
                     min=amp_min, max=amp_max)
            pfit.add(name=f'cent{nc}', value=v_guess,
                     min=cent_min, max=cent_max)
        else:
            tpeak = 20.
            pfit.add(name=f'amp{nc}', value=tpeak,
                     min=amp_min, max=amp_max)
            pfit.add(name=f'cent{nc}', value=vcent,
                     min=cent_min, max=cent_max)

        # Setup a minimum relation between the amp. and line width.
        # pfit.add(name=f'integral{nc}',
        #          value=sigma_init * tpeak,
        #          min=err.value * sig_min * min_sigma_intensity,
        #          max=amp_max * sig_max)
        #          # expr=f'amp{nc} * sigma{nc}')

        pfit.add(name=f'sigma{nc}',
                 value=np.random.uniform(sigma_init - 2, sigma_init + 2),
                 # expr=f'integral{nc} / amp{nc}',
                 min=sig_min, max=sig_max,)

        mini = Minimizer(residual_multigauss, pfit,
                         fcn_args=(xfit, xfit_upsamp, yfit,
                                   err if err is not None else 1.,
                                   discrete_fitter),
                         max_nfev=vels.size * 1000)

        out = mini.leastsq()
        # out = mini.minimize(method='differential_evolution')

        if not out.success:
            raise ValueError("Fit failed.")

        if verbose:
            report_fit(out)

        model = multigaussian(vels.value, out.params)

        if plot_fit:

            plt.plot(vels.value, spec.filled_data[:], drawstyle='steps-mid')

            plt.plot(vels.value, model)
            for n in range(1, nc + 1):
                plt.plot(vels.value, gaussian(vels.value,
                                              out.params[f"amp{n}"],
                                              out.params[f"cent{n}"],
                                              out.params[f"sigma{n}"]))
            plt.plot(vels.value, spec.filled_data[:].value - model, '--',
                     zorder=-10)
            plt.draw()
            input(f"{nc}?")
            plt.clf()

        if nc > 1:
            if verbose:
                print(f"BIC1: {out.bic}; BIC0: {bics[-1]}")

            if bics[-1] - out.bic < min_delta_BIC:
                if verbose:
                    print(f"Final model with {nc - 1} components.")
                break

        else:
            # n=1 cases tests against a noise model.

            err_norm = err.value if err is not None else 1.

            no_model_rss = np.nansum((yfit / err_norm)**2)
            no_model_bic = yfit.size * np.log(no_model_rss / yfit.size)

            no_fit_model = False

            if verbose:
                print(f"BIC1: {out.bic}; BIC0: {no_model_bic}")

            if no_model_bic - out.bic < min_delta_BIC:
                if verbose:
                    print("No components preferred. Consistent with noise.")
                no_fit_model = True

                bics.append(no_model_bic)

                pfit = Parameters()
                pfit.add('amp1', value=0.)
                pfit.add('cent1', value=0.)
                # pfit.add('integral1', value=0.)
                pfit.add('sigma1', value=0.)

                fit_outputs.append(pfit)

                break

        # Smooth the residual to ensure the peak chosen for
        # the next component
        # is not a single large noise value
        # fit_residual = np.abs(convolve_fft(yfit - model,
        #                             Gaussian1DKernel(3)))
        fit_residual = yfit - model

        aics.append(out.aic)
        bics.append(out.bic)
        fit_outputs.append(out)

        # Exit if max residual is small
        # if fit_residual.max() < 3 * err.value:
        #     if verbose:
        #         print("Max residual below 3-sigma.")
        #     break

        fit_residual = convolve_fft(fit_residual,
                                    Gaussian1DKernel(3))

        # Update parameters for next fit
        # With too few components, we often get bright, extremely wide
        # components
        # To avoid their influence, we will update the component amp and
        # cent, only.
        for ncc in range(1, nc + 1):
            pfit[f'amp{ncc}'].value = out.params[f'amp{ncc}'].value
            pfit[f'cent{ncc}'].value = out.params[f'cent{ncc}'].value

            # if out.params[f'sigma{ncc}'].value > sigma_init:
            #     pfit[f'integral{ncc}'].value = sigma_init * out.params[f'amp{ncc}'].value

            # else:
            #     pfit[f'integral{ncc}'].value = out.params[f'integral{ncc}'].value

            # pfit[f'sigma{ncc}'].value = min(out.params[f'sigma{ncc}'].value,
            #                                 sigma_init)

            # new_sigma = out.params[f'sigma{ncc}'].value

            # if new_sigma < sig_min:

            new_sigma = np.random.uniform(sigma_init - 2, sigma_init + 2)

            pfit[f'sigma{ncc}'].value = max(new_sigma, 2 * sig_min)

        # pfit = out.params.copy()

    if return_model:
        if no_fit_model:
            return fit_outputs[0], vels.value, np.zeros_like(vels.value)

        model = multigaussian(vels.value, fit_outputs[-1].params)
        return fit_outputs[-1], vels.value, model

    if no_fit_model:
        return fit_outputs[0]

    return fit_outputs[-1]
Esempio n. 46
0
params.add('satco1', value=5e-06, max=1e-04, min=1e-07)  # , vary=False)
params.add('poros1', value=0.450, max=0.5, min=0.3)  # , vary=False)

params.add('bee26', value=7.12, max=15.0, min=2.0)
params.add('phsat26', value=-0.2, max=-0.01, min=-0.5)
params.add('satco26', value=5e-06, max=1e-04, min=1e-07)

params.add('poros2', value=0.450, max=0.5, min=0.3)
params.add('poros3', value=0.450, max=0.5, min=0.3)
params.add('poros4', value=0.450, max=0.5, min=0.3)
params.add('poros5', value=0.450, max=0.5, min=0.3)
params.add('poros6', value=0.450, max=0.5, min=0.3)

otimiza = Minimizer(residualSiB2,
                    params,
                    reduce_fcn=None,
                    calc_covar=True,
                    fcn_args=(www1_o, swc_o, posval, nlinha))

# out_leastsq = otimiza.leastsq()
out_leastsq = otimiza.minimize(method='leastsq')  # Levenberg-Marquardt

# report_fit(out_leastsq.params)
# report_fit(out_leastsq)

print('###################################################')
print('Modulo: Umidade do solo')
print('---Parametros---')
params.pretty_print()
print('---Otimizacao---')
report_fit(out_leastsq)
Esempio n. 47
0
def fit_gaussian(spec,
                 vels=None,
                 vcent=None,
                 err=None,
                 amp_const=None,
                 cent_const=None,
                 sigma_const=None,
                 verbose=True,
                 plot_fit=True,
                 use_emcee=False,
                 emcee_kwargs={}):
    '''
    '''

    if vels is None:
        spec = spec.with_spectral_unit(u.km / u.s)
        vels = spec.spectral_axis

    # Set parameter limits:
    if amp_const is None:
        amp_min = 0.
        amp_max = 1.1 * np.nanmax(spec.value)
    else:
        amp_min = amp_const[0]
        amp_max = amp_const[1]

    if cent_const is None:
        cent_min = vels.value.min() - 0.1 * np.ptp(vels.value)
        cent_max = vels.value.max() + 0.1 * np.ptp(vels.value)
    else:
        cent_min = cent_const[0]
        cent_max = cent_const[1]

    if sigma_const is None:
        sig_min = np.abs(np.diff(vels.value)[0])
        sig_max = 0.3 * np.ptp(vels.value)
    else:
        sig_min = sigma_const[0]
        sig_max = sigma_const[1]

    if vcent is None:
        vcent = np.mean(vels.value)
    else:
        vcent = vcent.to(u.km / u.s).value

    pfit = Parameters()

    pfit.add(name='amp', value=20.,
             min=amp_min, max=amp_max)
    pfit.add(name='cent', value=vcent,
             min=cent_min, max=cent_max)
    pfit.add(name='sigma', value=10.,
             min=sig_min, max=sig_max)

    # valid_data = np.isfinite(spec.filled_data[:])
    # yfit = spec.filled_data[:].value[valid_data]
    # xfit = spec.spectral_axis.value[valid_data]

    yfit = spec.value
    xfit = vels.value

    mini = Minimizer(residual_single, pfit,
                     fcn_args=(xfit, yfit,
                               err if err is not None else 1.))

    out = mini.leastsq()

    if use_emcee:
        mini = Minimizer(residual_single, out.params,
                         fcn_args=(xfit, yfit,
                                   err if err is not None else 1.))
        out = mini.emcee(**emcee_kwargs)

    if plot_fit:

        plt.plot(vels.value, spec.value, drawstyle='steps-mid')

        model = gaussian(vels.value,
                         out.params["amp"],
                         out.params["cent"],
                         out.params["sigma"])
        plt.plot(vels.value, model)
        plt.plot(vels.value, spec.value - model, '--',
                 zorder=-10)
        plt.draw()

    return out
Esempio n. 48
0
def main(raft_id, directory):

    sensor_names = [
        'S00', 'S01', 'S02', 'S10', 'S11', 'S12', 'S20', 'S21', 'S22'
    ]

    for sensor_name in sensor_names:
        sensor_id = '{0}_{1}'.format(raft_id, sensor_name)
        print("Starting sensor {0}".format(sensor_id))

        try:

            ####
            ##
            ## Fit Local Electronic Offset Effect
            ##
            ####

            ## Config variables
            start = 3
            stop = 13
            max_signal = 150000.
            error = 7.0 / np.sqrt(2000.)

            ## Get existing overscan analysis results
            hdulist = fits.open(
                join(directory, raft_id, sensor_name,
                     '{0}_overscan_results.fits'.format(sensor_id)))

            cti_results = {i: 0.0 for i in range(1, 17)}
            drift_scales = {i: 0.0 for i in range(1, 17)}
            decay_times = {i: 0.0 for i in range(1, 17)}

            ## CCD geometry info
            ncols = ITL_AMP_GEOM.nx + ITL_AMP_GEOM.prescan_width

            for amp in range(1, 17):

                ## Signals
                all_signals = hdulist[amp].data['FLATFIELD_SIGNAL']
                signals = all_signals[all_signals < max_signal]

                ## Data
                data = hdulist[amp].data['COLUMN_MEAN'][
                    all_signals < max_signal, start:stop + 1]

                params = Parameters()
                params.add('ctiexp', value=-6, min=-7, max=-5, vary=False)
                params.add('trapsize', value=0.0, min=0., max=10., vary=False)
                params.add('scaling', value=0.08, min=0, max=1.0, vary=False)
                params.add('emissiontime',
                           value=0.4,
                           min=0.1,
                           max=1.0,
                           vary=False)
                params.add('driftscale', value=0.00022, min=0., max=0.001)
                params.add('decaytime', value=2.4, min=0.1, max=4.0)

                model = SimpleModel()

                minner = Minimizer(model.difference,
                                   params,
                                   fcn_args=(signals, data, error, ncols),
                                   fcn_kws={
                                       'start': start,
                                       'stop': stop
                                   })
                result = minner.minimize()

                if result.success:

                    cti = 10**result.params['ctiexp']
                    drift_scale = result.params['driftscale']
                    decay_time = result.params['decaytime']
                    cti_results[amp] = cti
                    drift_scales[amp] = drift_scale.value
                    decay_times[amp] = decay_time.value

                else:
                    print("Electronics fitting failure: Amp{0}".format(amp))
                    cti = 10**result.params['ctiexp']
                    cti_results[amp] = cti
                    drift_scales[amp] = 0.0
                    decay_times[amp] = 2.4

            param_results = OverscanParameterResults(sensor_id, cti_results,
                                                     drift_scales, decay_times)

            ####
            ##
            ## Fit Global CTI
            ##
            ####

            start = 1
            stop = 2
            max_signal = 10000.
            error = 7.0 / np.sqrt(2000.)
            num_transfers = ITL_AMP_GEOM.nx + ITL_AMP_GEOM.prescan_width

            cti_results = {amp: 0.0 for amp in range(1, 17)}
            drift_scales = param_results.drift_scales
            decay_times = param_results.decay_times

            ncols = ITL_AMP_GEOM.nx + ITL_AMP_GEOM.prescan_width

            for amp in range(1, 17):

                ## Signals
                all_signals = hdulist[amp].data['FLATFIELD_SIGNAL']
                signals = all_signals[all_signals < max_signal]

                ## Data
                data = hdulist[amp].data['COLUMN_MEAN'][
                    all_signals < max_signal, start:stop + 1]

                ## CTI test
                lastpixel = signals
                overscan1 = data[:, 0]
                overscan2 = data[:, 1]
                test = (overscan1 + overscan2) / (ncols * lastpixel)

                if np.median(test) > 5.E-6:

                    params = Parameters()
                    params.add('ctiexp', value=-6, min=-7, max=-5, vary=True)
                    params.add('trapsize',
                               value=5.0,
                               min=0.,
                               max=30.,
                               vary=True)
                    params.add('scaling',
                               value=0.08,
                               min=0,
                               max=1.0,
                               vary=True)
                    params.add('emissiontime',
                               value=0.35,
                               min=0.1,
                               max=1.0,
                               vary=True)
                    params.add('driftscale',
                               value=drift_scales[amp],
                               min=0.,
                               max=0.001,
                               vary=False)
                    params.add('decaytime',
                               value=decay_times[amp],
                               min=0.1,
                               max=4.0,
                               vary=False)

                    model = SimulatedModel()
                    minner = Minimizer(model.difference,
                                       params,
                                       fcn_args=(signals, data, error,
                                                 num_transfers, ITL_AMP_GEOM),
                                       fcn_kws={
                                           'start': start,
                                           'stop': stop,
                                           'trap_type': 'linear'
                                       })
                    result = minner.minimize()

                else:

                    params = Parameters()
                    params.add('ctiexp', value=-6, min=-7, max=-5, vary=True)
                    params.add('trapsize',
                               value=0.0,
                               min=0.,
                               max=10.,
                               vary=False)
                    params.add('scaling',
                               value=0.08,
                               min=0,
                               max=1.0,
                               vary=False)
                    params.add('emissiontime',
                               value=0.35,
                               min=0.1,
                               max=1.0,
                               vary=False)
                    params.add('driftscale',
                               value=drift_scales[amp],
                               min=0.,
                               max=0.001,
                               vary=False)
                    params.add('decaytime',
                               value=decay_times[amp],
                               min=0.1,
                               max=4.0,
                               vary=False)

                    model = SimulatedModel()
                    minner = Minimizer(model.difference,
                                       params,
                                       fcn_args=(signals, data, error,
                                                 num_transfers, ITL_AMP_GEOM),
                                       fcn_kws={
                                           'start': start,
                                           'stop': stop,
                                           'trap_type': 'linear'
                                       })
                    result = minner.minimize()

                cti_results[amp] = 10**result.params['ctiexp'].value

            param_results.cti_results = cti_results
            outfile = join(directory, raft_id, sensor_name,
                           '{0}_parameter_results.fits'.format(sensor_id))
            param_results.write_fits(outfile, overwrite=True)

            ####
            ##
            ## Determine Localized Trapping
            ##
            ####

            start = 1
            stop = 20
            max_signal = 150000.

            for amp in range(1, 17):

                ## Signals
                all_signals = hdulist[amp].data['FLATFIELD_SIGNAL']
                signals = all_signals[all_signals < max_signal]

                ## Data
                data = hdulist[amp].data['COLUMN_MEAN'][
                    all_signals < max_signal, start:stop + 1]

                ## Second model: model with electronics
                params = Parameters()
                params.add('ctiexp',
                           value=np.log10(param_results.cti_results[amp]),
                           min=-7,
                           max=-4,
                           vary=False)
                params.add('trapsize', value=0.0, min=0., max=10., vary=False)
                params.add('scaling', value=0.08, min=0, max=1.0, vary=False)
                params.add('emissiontime',
                           value=0.35,
                           min=0.1,
                           max=1.0,
                           vary=False)
                params.add('driftscale',
                           value=param_results.drift_scales[amp],
                           min=0.,
                           max=0.001,
                           vary=False)
                params.add('decaytime',
                           value=param_results.decay_times[amp],
                           min=0.1,
                           max=4.0,
                           vary=False)
                model = SimpleModel.model_results(params,
                                                  signals,
                                                  num_transfers,
                                                  start=start,
                                                  stop=stop)

                res = np.sum((data - model)[:, :3], axis=1)
                new_signals = hdulist[amp].data['COLUMN_MEAN'][
                    all_signals < max_signal, 0]
                rescale = param_results.drift_scales[amp] * new_signals
                new_signals = np.asarray(new_signals - rescale,
                                         dtype=np.float64)
                x = new_signals
                y = np.maximum(0, res)

                # Pad left with ramp
                y = np.pad(y, (10, 0), 'linear_ramp', end_values=(0, 0))
                x = np.pad(x, (10, 0), 'linear_ramp', end_values=(0, 0))

                # Pad right with constant
                y = np.pad(y, (1, 1), 'constant', constant_values=(0, y[-1]))
                x = np.pad(x, (1, 1),
                           'constant',
                           constant_values=(-1, 200000.))

                f = interp.interp1d(x, y)
                spltrap = SplineTrap(f, 0.4, 1)
                pickle.dump(
                    spltrap,
                    open(
                        join(directory, raft_id, sensor_name,
                             '{0}_amp{1}_trap.pkl'.format(sensor_id, amp)),
                        'wb'))

            hdulist.close()

        except Exception as e:
            print("Error occurred for {0}!".format(sensor_id))
            print(e)
            continue
Esempio n. 49
0
def pre_edge(energy,
             mu=None,
             group=None,
             e0=None,
             step=None,
             nnorm=3,
             nvict=0,
             pre1=None,
             pre2=-50,
             norm1=100,
             norm2=None,
             make_flat=True,
             _larch=None):
    """pre edge subtraction, normalization for XAFS

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line of polymonial to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolae the two curves to E0 to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV, or group (see note)
    mu:      array of mu(E)
    group:   output group
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=3 (quadratic), max=5
    make_flat: boolean (Default True) to calculate flattened output.


    Returns
    -------
      None

    The following attributes will be written to the output group:
        e0          energy origin
        edge_step   edge step
        norm        normalized mu(E)
        flat        flattened, normalized mu(E)
        pre_edge    determined pre-edge curve
        post_edge   determined post-edge, normalization curve
        dmude       derivative of mu(E)

    (if the output group is None, _sys.xafsGroup will be written to)

    Notes
    -----
     1 nvict gives an exponent to the energy term for the fits to the pre-edge
       and the post-edge region.  For the pre-edge, a line (m * energy + b) is
       fit to mu(energy)*energy**nvict over the pre-edge region,
       energy=[e0+pre1, e0+pre2].  For the post-edge, a polynomial of order
       nnorm will be fit to mu(energy)*energy**nvict of the post-edge region
       energy=[e0+norm1, e0+norm2].

     2 If the first argument is a Group, it must contain 'energy' and 'mu'.
       If it exists, group.e0 will be used as e0.
       See First Argrument Group in Documentation
    """

    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'mu'),
                                         defaults=(mu, ),
                                         group=group,
                                         fcn_name='pre_edge')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    pre_dat = preedge(energy,
                      mu,
                      e0=e0,
                      step=step,
                      nnorm=nnorm,
                      nvict=nvict,
                      pre1=pre1,
                      pre2=pre2,
                      norm1=norm1,
                      norm2=norm2)

    group = set_xafsGroup(group, _larch=_larch)

    e0 = pre_dat['e0']
    norm = pre_dat['norm']
    norm1 = pre_dat['norm1']
    norm2 = pre_dat['norm2']
    # generate flattened spectra, by fitting a quadratic to .norm
    # and removing that.
    flat = norm
    ie0 = index_nearest(energy, e0)
    p1 = index_of(energy, norm1 + e0)
    p2 = index_nearest(energy, norm2 + e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)

    if make_flat and p2 - p1 > 4:
        enx, mux = remove_nans2(energy[p1:p2], norm[p1:p2])
        # enx, mux = (energy[p1:p2], norm[p1:p2])
        fpars = Parameters()
        fpars.add('c0', value=0, vary=True)
        fpars.add('c1', value=0, vary=True)
        fpars.add('c2', value=0, vary=True)
        fit = Minimizer(flat_resid, fpars, fcn_args=(enx, mux))
        result = fit.leastsq(xtol=1.e-6, ftol=1.e-6)

        fc0 = result.params['c0'].value
        fc1 = result.params['c1'].value
        fc2 = result.params['c2'].value

        flat_diff = fc0 + energy * (fc1 + energy * fc2)
        flat = norm - flat_diff + flat_diff[ie0]
        flat[:ie0] = norm[:ie0]

    group.e0 = e0
    group.norm = norm
    group.flat = flat
    group.dmude = np.gradient(mu) / np.gradient(energy)
    group.edge_step = pre_dat['edge_step']
    group.pre_edge = pre_dat['pre_edge']
    group.post_edge = pre_dat['post_edge']

    group.pre_edge_details = Group()
    group.pre_edge_details.pre1 = pre_dat['pre1']
    group.pre_edge_details.pre2 = pre_dat['pre2']
    group.pre_edge_details.nnorm = pre_dat['nnorm']
    group.pre_edge_details.norm1 = pre_dat['norm1']
    group.pre_edge_details.norm2 = pre_dat['norm2']
    group.pre_edge_details.pre_slope = pre_dat['precoefs'][0]
    group.pre_edge_details.pre_offset = pre_dat['precoefs'][1]

    for i in range(MAX_NNORM):
        if hasattr(group, 'norm_c%i' % i):
            delattr(group, 'norm_c%i' % i)
    for i, c in enumerate(pre_dat['norm_coefs']):
        setattr(group.pre_edge_details, 'norm_c%i' % i, c)
    return
Esempio n. 50
0
def test_constraints(with_plot=True):
    with_plot = with_plot and WITHPLOT

    def residual(pars, x, sigma=None, data=None):
        yg = gaussian(x, pars['amp_g'].value,
                   pars['cen_g'].value, pars['wid_g'].value)
        yl = lorentzian(x, pars['amp_l'].value,
                   pars['cen_l'].value, pars['wid_l'].value)

        slope = pars['line_slope'].value
        offset = pars['line_off'].value
        model =  yg +  yl + offset + x * slope
        if data is None:
            return model
        if sigma is None:
            return (model - data)
        return (model - data) / sigma


    n = 201
    xmin = 0.
    xmax = 20.0
    x = linspace(xmin, xmax, n)

    data = (gaussian(x, 21, 8.1, 1.2) +
            lorentzian(x, 10, 9.6, 2.4) +
            random.normal(scale=0.23,  size=n) +
            x*0.5)

    if with_plot:
        pylab.plot(x, data, 'r+')

    pfit = Parameters()
    pfit.add(name='amp_g',  value=10)
    pfit.add(name='cen_g',  value=9)
    pfit.add(name='wid_g',  value=1)
    
    pfit.add(name='amp_tot',  value=20)
    pfit.add(name='amp_l',  expr='amp_tot - amp_g')
    pfit.add(name='cen_l',  expr='1.5+cen_g')
    pfit.add(name='wid_l',  expr='2*wid_g')
    
    pfit.add(name='line_slope', value=0.0)
    pfit.add(name='line_off', value=0.0)

    sigma = 0.021  # estimate of data error (for all data points)

    myfit = Minimizer(residual, pfit,
                      fcn_args=(x,), fcn_kws={'sigma':sigma, 'data':data},
                      scale_covar=True)

    myfit.prepare_fit()
    init = residual(myfit.params, x)

    result = myfit.leastsq()

    print(' Nfev = ', result.nfev)
    print( result.chisqr, result.redchi, result.nfree)

    report_fit(result.params, min_correl=0.3)

    fit = residual(result.params, x)
    if with_plot:
        pylab.plot(x, fit, 'b-')
    assert(result.params['cen_l'].value == 1.5 + result.params['cen_g'].value)
    assert(result.params['amp_l'].value == result.params['amp_tot'].value - result.params['amp_g'].value)
    assert(result.params['wid_l'].value == 2 * result.params['wid_g'].value)

    # now, change fit slightly and re-run
    myfit.params['wid_l'].expr = '1.25*wid_g'
    result = myfit.leastsq()
    report_fit(result.params, min_correl=0.4)
    fit2 = residual(result.params, x)
    if with_plot:
        pylab.plot(x, fit2, 'k')
        pylab.show()

    assert(result.params['cen_l'].value == 1.5 + result.params['cen_g'].value)
    assert(result.params['amp_l'].value == result.params['amp_tot'].value - result.params['amp_g'].value)
    assert(result.params['wid_l'].value == 1.25 * result.params['wid_g'].value)
Esempio n. 51
0
    m2 = parvals['poly']
    b = parvals['intercept']
    a = parvals['amp']
    newe = m1 * channel + m2 * channel * channel + b
    newe[0] = 0.0001
    model = np.interp(energy, newe, counts)
    return model * a - simcount


params = Parameters()
params.add('slope', value=0)
params.add('intercept', value=0)
params.add('poly', value=0)
params.add('amp', value=100, min=0)

minner = Minimizer(residual,
                   params,
                   fcn_args=(channel, simcount, counts),
                   iter_cb=1000,
                   nan_policy='propagate')
result = minner.minimize()
final = simcount + result.residual
"""
report_fit(result)


plt.semilogy(energy, simcount, 'r')
plt.semilogy(channel, counts, 'b')
plt.show()
"""
print(len(simcount))
Esempio n. 52
0
def refit_multigaussian(spec, init_params,
                        vels=None,
                        vcent=None,
                        err=None,
                        amp_const=None,
                        cent_const=None,
                        sigma_const=None,
                        component_sigma=5.,
                        nchan_component_sigma=3.,
                        discrete_fitter=False):
    '''
    Given full set of initial parameters, refit the spectrum.
    '''

    # if len(init_params) < 3:
    #     raise ValueError("Less than 3 initial parameters given.")

    if vels is None:
        spec = spec.with_spectral_unit(u.m / u.s)
        vels = spec.spectral_axis

    chan_width = np.abs(np.diff(vels)[:1]).value

    if err is None:
        # Can't remove components if we don't know what the error is
        def comp_sig(amp, sigma):
            return True

    else:

        def comp_sig(amp, sigma):
            return (amp * sigma) / \
                (err * chan_width * nchan_component_sigma)

    # Set parameter limits:
    if amp_const is None:
        amp_min = 0.
        amp_max = 1.1 * np.nanmax(spec.value)
    else:
        amp_min = amp_const[0]
        amp_max = amp_const[1]

    if cent_const is None:
        cent_min = vels.value.min() - 0.1 * np.ptp(vels.value)
        cent_max = vels.value.max() + 0.1 * np.ptp(vels.value)
    else:
        cent_min = cent_const[0]
        cent_max = cent_const[1]

    if sigma_const is None:
        sig_min = np.abs(np.diff(vels.value)[0])
        sig_max = 0.5 * np.ptp(vels.value) / 2.35
    else:
        sig_min = sigma_const[0]
        sig_max = sigma_const[1]

    # Create the fit parameter
    pars = Parameters()

    for i in range(len(init_params) // 3):
        pars.add(name=f'amp{i + 1}', value=init_params[3 * i],
                 min=amp_min, max=amp_max)
        pars.add(name=f'cent{i + 1}', value=init_params[3 * i + 1],
                 min=cent_min, max=cent_max)
        pars.add(name=f'sigma{i + 1}', value=init_params[3 * i + 2],
                 min=sig_min, max=sig_max)

    valid_data = np.isfinite(spec.filled_data[:])
    yfit = spec.filled_data[:].value[valid_data]
    xfit = vels.value[valid_data]

    if discrete_fitter:
        vels = xfit.copy()

        # Upsample for computing over discrete bins
        chan_width = np.abs(np.diff(vels.value)[0])

        order_sign = 1. if vels[-1] > vels[0] else -1.

        # You really need to rewrite this to be faster.
        discrete_oversamp = 4
        assert discrete_oversamp > 1.
        xfit_upsamp = np.linspace(vels.value[0] - order_sign * 0.5 * chan_width,
                                  vels.value[-1] + order_sign * 0.5 * chan_width,
                                  vels.size * discrete_oversamp)
    else:
        xfit_upsamp = None

    comp_deletes = []

    while True:

        mini = Minimizer(residual_multigauss, pars,
                         fcn_args=(xfit, xfit_upsamp, yfit,
                                   err if err is not None else 1.,
                                   discrete_fitter),
                         max_nfev=vels.size * 1000)

        out = mini.leastsq()

        # Testing null model. Nothing to check
        if len(pars) == 0:
            break

        params_fit = [value.value for value in out.params.values()]
        params_fit = np.array(params_fit)

        # Make sure all components are significant
        component_signif = comp_sig(params_fit[::3],
                                    params_fit[2::3])

        if np.all(component_signif >= component_sigma):
            break

        comp_del = np.argmin(component_signif)
        comp_deletes.append(comp_del)

        remain_comps = np.arange(len(init_params) // 3)

        for dcomp in comp_deletes:
            remain_comps = np.delete(remain_comps, dcomp)

        pars = Parameters()

        for i, comp in enumerate(remain_comps):

            pars.add(name=f'amp{i + 1}', value=init_params[3 * i],
                     min=amp_min, max=amp_max)
            pars.add(name=f'cent{i + 1}', value=init_params[3 * i + 1],
                     min=cent_min, max=cent_max)
            pars.add(name=f'sigma{i + 1}', value=init_params[3 * i + 2],
                     min=sig_min, max=sig_max)

    return out
Esempio n. 53
0
    shift = params['shift']
    omega = params['omega']
    decay = params['decay']
    model = amp * np.sin(x * omega + shift) * np.exp(-x * x * decay)
    return model - data


# create a set of Parameters
params = Parameters()
params.add('amp', value=10, min=0)
params.add('decay', value=0.1)
params.add('shift', value=0.0, min=-np.pi / 2., max=np.pi / 2)
params.add('omega', value=3.0)

# do fit, here with leastsq model
minner = Minimizer(fcn2min, params, fcn_args=(x, data))
result = minner.minimize()

# calculate final result
final = data + result.residual

# write error report
report_fit(result)

# try to plot results
try:
    import matplotlib.pyplot as plt
    plt.plot(x, data, 'k+')
    plt.plot(x, final, 'r')
    plt.show()
except ImportError:
Esempio n. 54
0
data  = residual(fit_params, x) + noise

if HASPYLAB:
    pylab.plot(x, data, 'r+')

fit_params = Parameters()
fit_params.add_many(('a1',  8.0, True, None, 14., None),
                    ('c1',  5.0, True, None, None, None),
                    ('w1',  0.7, True, None, None, None),
                    ('a2',  3.1, True, None, None, None),
                    ('c2',  8.8, True, None, None, None))

fit_params.add('w2', expr='2.5*w1')

myfit = Minimizer(residual, fit_params,
                  fcn_args=(x,), fcn_kws={'data':data})

myfit.prepare_fit()

init = residual(fit_params, x)

if HASPYLAB:
    pylab.plot(x, init, 'b--')

myfit.leastsq()

print ' N fev = ', myfit.nfev
print myfit.chisqr, myfit.redchi, myfit.nfree

report_errors(fit_params)
Esempio n. 55
0
    def fret_fit(self, ax, vary):
        dis_peak_n = len(self.x_ini)
        params = Parameters()

        if dis_peak_n == 1:
            params.add('h', value=self.y_ini[0])  # height
            params.add('c', value=self.x_ini[0])  # center
            params.add('w', value=.05)  # width
            #params.add('o', value = 0)             # offset
            minner = Minimizer(one_gau,
                               params,
                               fcn_args=(self.xhist, self.yhist))

        if dis_peak_n == 2:
            params.add('h1', value=self.y_ini[0])
            params.add('h2', value=self.y_ini[1])
            params.add('c1', value=self.x_ini[0])
            params.add('c2', value=self.x_ini[1], vary=vary)
            params.add('w1', value=.05)
            params.add('w2', value=.05)
            params.add('o', value=0)
            minner = Minimizer(two_gau,
                               params,
                               fcn_args=(self.xhist, self.yhist))

        if dis_peak_n == 3:
            params.add('h1', value=self.y_ini[0])
            params.add('h2', value=self.y_ini[1])
            params.add('h3', value=self.y_ini[2])
            params.add('c1', value=self.x_ini[0])
            params.add('c2', value=self.x_ini[1], vary=vary)
            params.add('c3', value=self.x_ini[2])
            params.add('w1', value=.05)
            params.add('w2', value=.05)
            params.add('w3', value=.05)
            params.add('o', value=0)
            minner = Minimizer(three_gau,
                               params,
                               fcn_args=(self.xhist, self.yhist))

        self.fret_fit_result = minner.minimize()

        self.yhist_fit = self.yhist + self.fret_fit_result.residual
        ax.plot(self.xhist, self.yhist_fit, 'black')
        ax.set_ylabel('Frequency')

        if dis_peak_n == 1:
            params1 = Parameters()
            params1.add('h', value=self.fret_fit_result.params['h'].value)
            params1.add('c', value=self.fret_fit_result.params['c'].value)
            params1.add('w', value=self.fret_fit_result.params['w'].value)
            #params1.add('o', value = self.fret_fit_result.params['o'].value)

            params1.add('h_std', value=self.fret_fit_result.params['h'].stderr)
            params1.add('c_std', value=self.fret_fit_result.params['c'].stderr)
            params1.add('w_std', value=self.fret_fit_result.params['w'].stderr)
            #params1.add('o_std', value = self.fret_fit_result.params['o'].stderr)

            self.fit_notes = '\npeak 1:\n' \
                             +'center: '+str(round(params1['c'].value, 2))+'+/-'+str(round(params1['c_std'].value, 2))+' ('+str(round(params1['c_std'].value/params1['c'].value, 2)*100)+'%)\n' \
                             +'height: '+str(round(params1['h'].value, 2))+'+/-'+str(round(params1['h_std'].value, 2))+' ('+str(round(params1['h_std'].value/params1['h'].value, 2)*100)+'%)\n' \
                             +'sigma: '+str(round(params1['w'].value, 2))+'+/-'+str(round(params1['w_std'].value, 2))+' ('+str(round(params1['w_std'].value/params1['w'].value, 2)*100)+'%)\n' \
                             +'area: '+str(round(params1['h'].value*params1['w'].value/0.3989, 2))+'\n\n' \
                             +'reduced chisqr: '+str(self.fret_fit_result.redchi)
            #+'offset: '+str(round(params1['o'].value, 2))+'+/-'+str(round(params1['o_std'].value, 2))+' ('+str(round(params1['o_std'].value/params1['o'].value, 2)*100)+'%)\n' \

        if dis_peak_n == 2:
            params1 = Parameters()
            params2 = Parameters()

            params1.add('h', value=self.fret_fit_result.params['h1'].value)
            params1.add('c', value=self.fret_fit_result.params['c1'].value)
            params1.add('w', value=self.fret_fit_result.params['w1'].value)

            params1.add('h_std',
                        value=self.fret_fit_result.params['h1'].stderr)
            params1.add('c_std',
                        value=self.fret_fit_result.params['c1'].stderr)
            params1.add('w_std',
                        value=self.fret_fit_result.params['w1'].stderr)

            params2.add('h', value=self.fret_fit_result.params['h2'].value)
            params2.add('c', value=self.fret_fit_result.params['c2'].value)
            params2.add('w', value=self.fret_fit_result.params['w2'].value)

            params2.add('h_std',
                        value=self.fret_fit_result.params['h2'].stderr)
            params2.add('c_std',
                        value=self.fret_fit_result.params['c2'].stderr)
            params2.add('w_std',
                        value=self.fret_fit_result.params['w2'].stderr)

            params1.add('o', value=self.fret_fit_result.params['o'].value)
            params2.add('o', value=self.fret_fit_result.params['o'].value)
            params1.add('o_std', value=self.fret_fit_result.params['o'].stderr)
            params2.add('o_std', value=self.fret_fit_result.params['o'].stderr)

            self.fit_notes = '\npeak 1:\n' \
                             +'center: '+str(round(params1['c'].value, 2))+'+/-'+str(round(params1['c_std'].value, 2))+' ('+str(round(params1['c_std'].value/params1['c'].value, 2)*100)+'%)\n' \
                             +'height: '+str(round(params1['h'].value, 2))+'+/-'+str(round(params1['h_std'].value, 2))+' ('+str(round(params1['h_std'].value/params1['h'].value, 2)*100)+'%)\n' \
                             +'sigma: '+str(round(params1['w'].value, 2))+'+/-'+str(round(params1['w_std'].value, 2))+' ('+str(round(params1['w_std'].value/params1['w'].value, 2)*100)+'%)\n' \
                             +'area: '+str(round(params1['h'].value*params1['w'].value/0.3989, 2)) \
                             +'\n\npeak 2:\n' \
                             +'center: '+str(round(params2['c'].value, 2))+'+/-'+str(round(params2['c_std'].value, 2))+' ('+str(round(params2['c_std'].value/params2['c'].value, 2)*100)+'%)\n' \
                             +'height: '+str(round(params2['h'].value, 2))+'+/-'+str(round(params2['h_std'].value, 2))+' ('+str(round(params2['h_std'].value/params2['h'].value, 2)*100)+'%)\n' \
                             +'sigma: '+str(round(params2['w'].value, 2))+'+/-'+str(round(params2['w_std'].value, 2))+' ('+str(round(params2['w_std'].value/params2['w'].value, 2)*100)+'%)\n' \
                             +'area: '+str(round(params2['h'].value*params2['w'].value/0.3989, 2))+'\n\n' \
                             +'reduced chisqr: '+str(self.fret_fit_result.redchi) +'\n\n' \
                             +'offset: '+str(round(params1['o'].value, 2))+'+/-'+str(round(params1['o_std'].value, 2))+' ('+str(round(params1['o_std'].value/params1['o'].value, 2)*100)+'%)\n' \

            mask1 = (self.xhist > params1['c'] - params1['w'] * 3) & (
                self.xhist < params1['c'] + params1['w'] * 3)
            mask2 = (self.xhist > params2['c'] - params2['w'] * 3) & (
                self.xhist < params2['c'] + params2['w'] * 3)

            ax.plot(self.xhist[mask1],
                    one_gau(params1, self.xhist[mask1], self.yhist[mask1]) +
                    self.yhist[mask1],
                    color='blue')
            ax.plot(self.xhist[mask2],
                    one_gau(params2, self.xhist[mask2], self.yhist[mask2]) +
                    self.yhist[mask2],
                    color='blue')

        if dis_peak_n == 3:
            params1 = Parameters()
            params2 = Parameters()
            params3 = Parameters()

            params1.add('h', value=self.fret_fit_result.params['h1'].value)
            params1.add('c', value=self.fret_fit_result.params['c1'].value)
            params1.add('w', value=self.fret_fit_result.params['w1'].value)

            params1.add('h_std',
                        value=self.fret_fit_result.params['h1'].stderr)
            params1.add('c_std',
                        value=self.fret_fit_result.params['c1'].stderr)
            params1.add('w_std',
                        value=self.fret_fit_result.params['w1'].stderr)

            params2.add('h', value=self.fret_fit_result.params['h2'].value)
            params2.add('c', value=self.fret_fit_result.params['c2'].value)
            params2.add('w', value=self.fret_fit_result.params['w2'].value)

            params2.add('h_std',
                        value=self.fret_fit_result.params['h2'].stderr)
            params2.add('c_std',
                        value=self.fret_fit_result.params['c2'].stderr)
            params2.add('w_std',
                        value=self.fret_fit_result.params['w2'].stderr)

            params3.add('h', value=self.fret_fit_result.params['h3'].value)
            params3.add('c', value=self.fret_fit_result.params['c3'].value)
            params3.add('w', value=self.fret_fit_result.params['w3'].value)

            params3.add('h_std',
                        value=self.fret_fit_result.params['h3'].stderr)
            params3.add('c_std',
                        value=self.fret_fit_result.params['c3'].stderr)
            params3.add('w_std',
                        value=self.fret_fit_result.params['w3'].stderr)

            params1.add('o', value=self.fret_fit_result.params['o'].value)
            params2.add('o', value=self.fret_fit_result.params['o'].value)
            params3.add('o', value=self.fret_fit_result.params['o'].value)
            params1.add('o_std', value=self.fret_fit_result.params['o'].stderr)
            params2.add('o_std', value=self.fret_fit_result.params['o'].stderr)
            params3.add('o_std', value=self.fret_fit_result.params['o'].stderr)

            self.fit_notes = '\npeak 1:\n' \
                             +'center: '+str(round(params1['c'].value, 2))+'+/-'+str(round(params1['c_std'].value, 2))+' ('+str(round(params1['c_std'].value/params1['c'].value, 2)*100)+'%)\n' \
                             +'height: '+str(round(params1['h'].value, 2))+'+/-'+str(round(params1['h_std'].value, 2))+' ('+str(round(params1['h_std'].value/params1['h'].value, 2)*100)+'%)\n' \
                             +'sigma: '+str(round(params1['w'].value, 2))+'+/-'+str(round(params1['w_std'].value, 2))+' ('+str(round(params1['w_std'].value/params1['w'].value, 2)*100)+'%)\n' \
                             +'area: '+str(round(params1['h'].value*params1['w'].value/0.3989, 2)) \
                             +'\n\npeak 2:\n' \
                             +'center: '+str(round(params2['c'].value, 2))+'+/-'+str(round(params2['c_std'].value, 2))+' ('+str(round(params2['c_std'].value/params2['c'].value, 2)*100)+'%)\n' \
                             +'height: '+str(round(params2['h'].value, 2))+'+/-'+str(round(params2['h_std'].value, 2))+' ('+str(round(params2['h_std'].value/params2['h'].value, 2)*100)+'%)\n' \
                             +'sigma: '+str(round(params2['w'].value, 2))+'+/-'+str(round(params2['w_std'].value, 2))+' ('+str(round(params2['w_std'].value/params2['w'].value, 2)*100)+'%)\n' \
                             +'area: '+str(round(params2['h'].value*params2['w'].value/0.3989, 2)) \
                             +'\n\npeak 3:\n' \
                             +'center: '+str(round(params3['c'].value, 2))+'+/-'+str(round(params3['c_std'].value, 2))+' ('+str(round(params3['c_std'].value/params3['c'].value, 2)*100)+'%)\n' \
                             +'height: '+str(round(params3['h'].value, 2))+'+/-'+str(round(params3['h_std'].value, 2))+' ('+str(round(params3['h_std'].value/params3['h'].value, 2)*100)+'%)\n' \
                             +'sigma: '+str(round(params3['w'].value, 2))+'+/-'+str(round(params3['w_std'].value, 2))+' ('+str(round(params3['w_std'].value/params3['w'].value, 2)*100)+'%)\n' \
                             +'area: '+str(round(params3['h'].value*params3['w'].value/0.3989, 2))+'\n\n' \
                             +'reduced chisqr: '+str(self.fret_fit_result.redchi)+'\n\n' \
                             +'offset: '+str(round(params1['o'].value, 2))+'+/-'+str(round(params1['o_std'].value, 2))+' ('+str(round(params1['o_std'].value/params1['o'].value, 2)*100)+'%)\n' \

            mask1 = (self.xhist > params1['c'] - params1['w'] * 3) & (
                self.xhist < params1['c'] + params1['w'] * 3)
            mask2 = (self.xhist > params2['c'] - params2['w'] * 3) & (
                self.xhist < params2['c'] + params2['w'] * 3)
            mask3 = (self.xhist > params3['c'] - params3['w'] * 3) & (
                self.xhist < params3['c'] + params3['w'] * 3)

            ax.plot(self.xhist[mask1],
                    one_gau(params1, self.xhist[mask1], self.yhist[mask1]) +
                    self.yhist[mask1],
                    color='blue')
            ax.plot(self.xhist[mask2],
                    one_gau(params2, self.xhist[mask2], self.yhist[mask2]) +
                    self.yhist[mask2],
                    color='blue')
            ax.plot(self.xhist[mask3],
                    one_gau(params3, self.xhist[mask3], self.yhist[mask3]) +
                    self.yhist[mask3],
                    color='blue')
Esempio n. 56
0
def optimize(function: Callable,
             cte: settings.Settings,
             average: bool = False,
             material_text: str = '',
             N_samples: int = None,
             full_path: str = None) -> OptimSolution:
    ''' Minimize the error between experimental data and simulation for the settings in cte
        average = True -> optimize average rate equations instead of microscopic ones.
        function returns the error vector and accepts: parameters, sim, and average.
    '''
    logger = logging.getLogger(__name__)

    optim_progress = []  # type: List[str]

    def callback_fun(params: Parameters,
                     iter_num: int,
                     resid: np.array,
                     sim: simulations.Simulations,
                     average: bool = False,
                     N_samples: int = None) -> None:
        ''' This function is called after every minimization step
            It prints the current parameters and error from the cache
        '''
        optim_progbar.update(1)
        if not cte['no_console']:
            val_list = ', '.join('{:.3e}'.format(par.value)
                                 for par in params.values())
            error = np.sqrt((resid * resid).sum())
            msg = '{}, \t\t{}, \t{:.4e},\t[{}]'.format(
                iter_num,
                datetime.datetime.now().strftime('%H:%M:%S'), error, val_list)
            tqdm.tqdm.write(msg)
            logger.info(msg)
            optim_progress.append(msg)

    start_time = datetime.datetime.now()

    logger.info('Decay curves optimization of ' + material_text)

    cte['no_plot'] = True
    sim = simulations.Simulations(cte, full_path=full_path)

    method, parameters, options_dict = setup_optim(cte)

    optim_progbar = tqdm.tqdm(desc='Optimizing',
                              unit='points',
                              disable=cte['no_console'])
    param_names = ', '.join(name for name in parameters.keys())
    header = 'Iter num\tTime\t\tRMSD\t\tParameters ({})'.format(param_names)
    optim_progress.append(header)
    tqdm.tqdm.write(header)
    minimizer = Minimizer(function,
                          parameters,
                          fcn_args=(sim, average, N_samples),
                          iter_cb=callback_fun)
    # minimize logging only warnings or worse to console.
    with disable_loggers([
            'simetuc.simulations', 'simetuc.precalculate', 'simetuc.lattice',
            'simetuc.simulations.conc_dep'
    ]):
        with disable_console_handler(__name__):
            result = minimizer.minimize(method=method, **options_dict)

    optim_progbar.update(1)
    optim_progbar.close()

    # fit results
    report_fit(result.params)
    logger.info(fit_report(result))

    best_x = np.array([par.value for par in result.params.values()])
    if 'brute' in method:
        min_f = np.sqrt(result.candidates[0].score)
    else:
        min_f = np.sqrt((result.residual**2).sum())

    total_time = datetime.datetime.now() - start_time
    hours, remainder = divmod(total_time.total_seconds(), 3600)
    minutes, seconds = divmod(remainder, 60)
    tqdm.tqdm.write('')
    formatted_time = '{:.0f}h {:02.0f}m {:02.0f}s'.format(
        hours, minutes, seconds)
    logger.info('Minimum reached! Total time: %s.', formatted_time)
    logger.info('Optimized RMS error: %.3e.', min_f)
    logger.info('Parameters name and value:')
    for name, best_val in zip(parameters.keys(), best_x.T):
        logger.info('%s: %.3e.', name, best_val)

    optim_solution = OptimSolution(result, cte, optim_progress,
                                   total_time.total_seconds())

    return optim_solution
Esempio n. 57
0
def fit_temp_sta(temporal_sta,
                 time,
                 fit_time,
                 tau1=None,
                 tau2=None,
                 amp1=None,
                 amp2=None,
                 min_time=None,
                 max_time=None,
                 min_amp=-1,
                 max_amp=1,
                 max_n=20):
    """Fit the temporal integration of the sta.

    Use the difference of two cascades of low-pass filters to fit
    the raw temporal integration of STA. It uses the time before
    of the spike to compute the fitting.

    Parameters
    ----------
    temporal_sta: ndarray
        array with the raw temporal integration of the sta.
    time: ndarray
        array with the time of the raw temporal integration.
    fit_time: ndarray
        array with the time of fitting curve.
    tau1: float default:None
        estimated time for positive peak of temporal integration
    tau2: float default:None
        estimated time for negative peak of temporal integration
    amp1: float default:None
        estimated amplitude for positive peak of temporal integration
    amp2: float default:None
        estimated amplitude for negative peak of temporal integration
    min_time: float default:None
        minimum time to fit tau1 or tau2
    max_time: float default:None
        maximum time to fit tau1 or tau2
    min_amp: float default:-1
        minimum amplitude to fit amp1 or amp2
    max_amp: float default:1
        minimum amplitude to fit amp1 or amp2
    max_n=: float default:20
        maximum order of a model to fit

    Returns
    -------
    fit_parameters: lmfit.Params.params
        parameters of the fitting for two_cascades model
    fit_temp: ndarray
        array with the values of the fitting using fit_time

    """
    tau1 = tau1 if tau1 else time[temporal_sta.argmax()]
    tau2 = tau2 if tau2 else time[temporal_sta.argmin()]
    amp1 = amp1 if amp1 else np.abs(temporal_sta.max())
    amp2 = amp2 if amp2 else np.abs(temporal_sta.min())
    min_time = min_time if min_time else time[1]
    max_time = max_time if max_time else time[-2]

    params_fit = Parameters()
    params_fit.add('amp1', value=amp1, min=min_amp, max=max_amp)
    params_fit.add('amp2', value=amp2, min=min_amp, max=max_amp)
    params_fit.add('tau1', value=tau1, min=min_time, max=max_time)
    params_fit.add('tau2', value=tau2, min=min_time, max=max_time)
    params_fit.add('n', value=3, max=max_n)

    minner = Minimizer(two_cascades_min,
                       params_fit,
                       fcn_args=(time, temporal_sta))
    try:
        result = minner.minimize(method='Nelder')
        fit_parameters = result.params
        fit_temp = two_cascades(fit_parameters, fit_time)
    except ValueError:
        try:
            result = minner.minimize()
            fit_parameters = result.params
            fit_temp = two_cascades(fit_parameters, fit_time)
        except ValueError:
            for key in params_fit:
                params_fit[key].set(value=0)
            fit_parameters = params_fit
            fit_temp = np.full_like(fit_time, np.nan)

    return fit_parameters, fit_temp
Esempio n. 58
0
        np.random.normal(scale=0.1, size=x.size))

###############################################################################
# Create the fitting parameters and set an inequality constraint for ``cen_l``.
# First, we add a new fitting  parameter ``peak_split``, which can take values
# between 0 and 5. Afterwards, we constrain the value for ``cen_l`` using the
# expression to be ``'peak_split+cen_g'``:
pfit = Parameters()
pfit.add(name='amp_g', value=10)
pfit.add(name='amp_l', value=10)
pfit.add(name='cen_g', value=5)
pfit.add(name='peak_split', value=2.5, min=0, max=5, vary=True)
pfit.add(name='cen_l', expr='peak_split+cen_g')
pfit.add(name='wid_g', value=1)
pfit.add(name='wid_l', expr='wid_g')

mini = Minimizer(residual, pfit, fcn_args=(x, data))
out = mini.leastsq()
best_fit = data + out.residual

###############################################################################
# Performing a fit, here using the ``leastsq`` algorithm, gives the following
# fitting results:
report_fit(out.params)

###############################################################################
# and figure:
plt.plot(x, data, 'o')
plt.plot(x, best_fit, '--', label='best fit')
plt.legend()
Esempio n. 59
0
def test_derive():
    def func(pars, x, data=None):
        a = pars['a'].value
        b = pars['b'].value
        c = pars['c'].value

        model = a * np.exp(-b * x) + c
        if data is None:
            return model
        return (model - data)

    def dfunc(pars, x, data=None):
        a = pars['a'].value
        b = pars['b'].value
        c = pars['c'].value
        v = np.exp(-b * x)
        return [v, -a * x * v, np.ones(len(x))]

    def f(var, x):
        return var[0] * np.exp(-var[1] * x) + var[2]

    params1 = Parameters()
    params1.add('a', value=10)
    params1.add('b', value=10)
    params1.add('c', value=10)

    params2 = Parameters()
    params2.add('a', value=10)
    params2.add('b', value=10)
    params2.add('c', value=10)

    a, b, c = 2.5, 1.3, 0.8
    x = np.linspace(0, 4, 50)
    y = f([a, b, c], x)
    data = y + 0.15 * np.random.normal(size=len(x))

    # fit without analytic derivative
    min1 = Minimizer(func, params1, fcn_args=(x, ), fcn_kws={'data': data})
    min1.leastsq()
    fit1 = func(params1, x)

    # fit with analytic derivative
    min2 = Minimizer(func, params2, fcn_args=(x, ), fcn_kws={'data': data})
    min2.leastsq(Dfun=dfunc, col_deriv=1)
    fit2 = func(params2, x)

    print('''Comparison of fit to exponential decay
    with and without analytic derivatives, to
       model = a*exp(-b*x) + c
    for a = %.2f, b = %.2f, c = %.2f
    ==============================================
    Statistic/Parameter|   Without   | With      |
    ----------------------------------------------
    N Function Calls   |   %3i       |   %3i     |
    Chi-square         |   %.4f    |   %.4f  |
       a               |   %.4f    |   %.4f  |
       b               |   %.4f    |   %.4f  |
       c               |   %.4f    |   %.4f  |
    ----------------------------------------------
    ''' % (a, b, c, min1.nfev, min2.nfev, min1.chisqr, min2.chisqr,
           params1['a'].value, params2['a'].value, params1['b'].value,
           params2['b'].value, params1['c'].value, params2['c'].value))

    check_wo_stderr(min1.params['a'], min2.params['a'].value, 0.00005)
    check_wo_stderr(min1.params['b'], min2.params['b'].value, 0.00005)
    check_wo_stderr(min1.params['c'], min2.params['c'].value, 0.00005)
Esempio n. 60
0
    def _fit(self):
        import numpy as np

        x0, x1 = self.lr.getRegion()

        start_idx = fi(self.spectrum.data[:, 0], x0)
        end_idx = fi(self.spectrum.data[:, 0], x1) + 1

        x_data = self.spectrum.data[start_idx:end_idx, 0]
        y_data = self.spectrum.data[start_idx:end_idx, 1]

        tab_idx = self.tabWidget.currentIndex()

        if tab_idx == 0:
            self._setup_model()

        # fill the parameters from fields
        for i, p in enumerate((self.current_model.params if tab_idx == 0 else
                               self.general_model_params).values()):
            p.value = float(self.value_list[i][tab_idx].text())
            p.min = float(self.lower_bound_list[i][tab_idx].text())
            p.max = float(self.upper_bound_list[i][tab_idx].text())
            p.vary = not self.fixed_list[i][tab_idx].isChecked()

        def y_fit(params):
            if tab_idx == 0:
                y = self.current_model.wrapper_func(x_data, params)
            else:
                init, coefs, rates, y0 = self.get_values_from_params(params)
                sol = self._simul_custom_model(init, rates, x_data)
                y = (coefs * sol).sum(axis=1, keepdims=False) + y0
            return y

        def residuals(params):
            y = y_fit(params)
            e = y - y_data
            if self.cbPropWeighting.isChecked():
                e /= y * y

            return e

        minimizer = Minimizer(
            residuals, self.current_model.params
            if tab_idx == 0 else self.general_model_params)

        method = self.methods[self.cbMethod.currentIndex()]['abbr']
        result = minimizer.minimize(method=method)  # fit

        if tab_idx == 0:
            self.current_model.params = result.params
        else:
            self.general_model_params = result.params

        # fill fields
        values_errors = np.zeros((len(result.params), 2), dtype=np.float64)
        for i, p in enumerate(result.params.values()):
            values_errors[i, 0] = p.value
            values_errors[i, 1] = p.stderr if p.stderr is not None else 0

            self.value_list[i][tab_idx].setText(f"{p.value:.4g}")
            self.error_list[i][tab_idx].setText(
                f"{p.stderr:.4g}" if p.stderr else '')

        y_fit_data = y_fit(result.params)
        y_residuals = y_data - y_fit_data

        # self.remove_last_fit()
        self.clear_plot()

        self.plot_fit = self.plot_widget.plotItem.plot(
            x_data,
            y_fit_data,
            pen=pg.mkPen(color=QColor(0, 0, 0, 200), width=2.5),
            name="Fit of {}".format(self.spectrum.name))

        self.plot_residuals = self.plot_widget.plotItem.plot(
            x_data,
            y_residuals,
            pen=pg.mkPen(color=QColor(255, 0, 0, 150), width=1),
            name="Residuals of {}".format(self.spectrum.name))

        self.fitted_spectrum = SpectrumItem.from_xy_values(
            x_data,
            y_fit_data,
            name="Fit of {}".format(self.spectrum.name),
            color='black',
            line_width=2.5,
            line_type=Qt.SolidLine)

        self.residual_spectrum = SpectrumItem.from_xy_values(
            x_data,
            y_residuals,
            name="Residuals of {}".format(self.spectrum.name),
            color='red',
            line_width=1,
            line_type=Qt.SolidLine)

        self.fit_result = FitResult(result,
                                    minimizer,
                                    values_errors,
                                    (self.current_model if tab_idx == 0 else
                                     self.current_general_model),
                                    data_item=self.spectrum,
                                    fit_item=self.fitted_spectrum,
                                    residuals_item=self.residual_spectrum)