Esempio n. 1
0
def test_crop():
    img = _image()
    augmentor = Crop(size=(100, 200), resize=(200, 200))

    result = augmentor(**{'image': img})
    image = result['image']

    _show_image(image)

    assert image.shape[0] == 100
    assert image.shape[1] == 200
    assert image.shape[2] == 3
Esempio n. 2
0
PRE_PROCESSOR = Sequence([Resize(size=IMAGE_SIZE), PerImageStandardization()])
POST_PROCESSOR = None

NETWORK = EasyDict()
NETWORK.OPTIMIZER_CLASS = tf.train.MomentumOptimizer
NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9}
NETWORK.LEARNING_RATE_FUNC = tf.train.piecewise_constant
NETWORK.LEARNING_RATE_KWARGS = {
    "values": [0.1, 0.01, 0.001, 0.0001],
    "boundaries": [40000, 60000, 80000],
}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.WEIGHT_DECAY_RATE = 0.0001
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2}
NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

# dataset
DATASET = EasyDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Pad(2),
    Crop(size=IMAGE_SIZE),
    FlipLeftRight(),
])
Esempio n. 3
0
NETWORK.LEARNING_RATE_FUNC = tf.train.polynomial_decay
# TODO(wakiska): It is same as original yolov2 paper (batch size = 128).
NETWORK.LEARNING_RATE_KWARGS = {"learning_rate": 1e-1, "decay_steps": 1600000, "power": 4.0, "end_learning_rate": 0.0}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.WEIGHT_DECAY_RATE = 0.0005
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {
    'bit': 2,
    'max_value': 2.0,
}
NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}
NETWORK.QUANTIZE_FIRST_CONVOLUTION = True
NETWORK.QUANTIZE_LAST_CONVOLUTION = False

# dataset
DATASET = EasyDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Crop(size=IMAGE_SIZE, resize=256),
    FlipLeftRight(),
    Brightness((0.75, 1.25)),
    Color((0.75, 1.25)),
    Contrast((0.75, 1.25)),
    Hue((-10, 10)),
])