Esempio n. 1
0
def divide_save(filename, savename, flag_pca=False, portion=0.8,
                permu_flag=True, usage_ratio=1, n_labels=12, n_seq=20):
    X_, y_ = csv_read(filename)
    if flag_pca:
        pca = PCA(n_components=8, whiten=True)
        X_ = pca.fit_transform(X_)

    X, y = csv_reformat(X_, y_, filename, permu_flag=permu_flag, n_labels=n_labels, n_seq=n_seq)
    print X.shape, y.shape

    n_samples, n_dimension = X.shape
    n_use_samples = int(ceil(n_samples * usage_ratio))
    train_part = int(ceil(n_use_samples * portion))

    X_train = X[:train_part]
    X_test = X[train_part:n_use_samples]
    y_train = y[:train_part]
    y_test = y[train_part:n_use_samples]

    train = np.concatenate((X_train, y_train), axis=1)
    test = np.concatenate((X_test, y_test), axis=1)

    train_name = path + 'train_' + savename + '.csv'
    test_name = path + 'test_' + savename + '.csv'

    print 'Saving divided data..'
    np.savetxt(train_name, train, delimiter=',')
    np.savetxt(test_name, test, delimiter=',')
Esempio n. 2
0
def divide_data(portion=0.8, permu_flag=True, usage_ratio=1, n_seq=20):
    X, y = csv_reformat(permu_flag=True, n_seq=n_seq)
    n_samples, n_dimension = X.shape
    n_use_samples = int(ceil(n_samples * usage_ratio))
    train_part = int(ceil(n_use_samples * portion))
    X_train = X[:train_part, :]
    X_test = X[train_part:n_use_samples, :]
    y_train = y[:train_part]
    y_test = y[train_part:n_use_samples]

    X_train = np.reshape(X_train, (-1, X_train.shape[1]/n_seq, n_seq))
    X_test = np.reshape(X_test, (-1, X_test.shape[1]/n_seq, n_seq))

    return X_train, y_train, X_test, y_test