Esempio n. 1
0
import sys
sys.path.append("/home/app/code/")

from pyspark.sql import SparkSession
from pyspark.sql import SQLContext
from extract import Extract
from transform import Transformer
from load import Load
if __name__ == '__main__':


    spark = SparkSession \
       .builder \
       .appName("Covid App") \
       .config("spark.some.config.option", "some-value") \
       .getOrCreate()

    sqlContext = SQLContext(spark)

    df = Extract(spark)
    df = df.extract_covid_data()

    transformer = Transformer(df, sqlContext)
    transformer.data_types_transformations()
    transformed_df = transformer.dimensions_transfomations()
    transformed_df = transformer.fill_na(transformed_df)

    loader = Load(transformed_df)
    loader.load_data()
Esempio n. 2
0
ap.add_argument("-t",
                "--train-model",
                type=int,
                default=-1,
                help="(Optional) Whether to train a previous model.")
ap.add_argument("-w",
                "--weights",
                type=str,
                help="(Optional) Path of weights file")
args = vars(ap.parse_args())

gWeightsPath = "output/" + args["weights"] + ".gener" + ".hdf5"
dWeightsPath = "output/" + args["weights"] + ".discrim" + ".hdf5"

# Load data
_X = Load.load_data()

# Convert to np arrays
X = np.array(_X)

# Scale data to [-1, 1] range
X = (X.astype("float32") - 127.5) / 127.5

# Initialize optimizer and model
print("Loading model...")
loadPath = args["load_model"] > 0 or args["train_model"] > 0
opt = SGD(lr=0.001, momentum=0.5, nesterov=True)
modelG = Models.buildGenerator(vectSize=100,
                               weightsPath=gWeightsPath if loadPath else None)
modelD = Models.buildDiscriminator(
    numChannels=3,
Esempio n. 3
0
    def back_menu(self):
        """ I display the back-office menu. """
        self.clear()
        self.views.header_admin()
        option = self.views.admin_choice()

        if option == "0":
            self.main_menu()
        elif option == "1":
            self.clear()
            self.views.header_admin()
            self.db.db_create()
            self.views.pause()
            self.back_menu()
        elif option == "2":
            self.clear()
            self.views.header_admin()
            self.db.tables_create()
            self.views.pause()
            self.back_menu()
        elif option == "3":
            self.clear()
            self.views.header_admin()
            self.db.tables_delete()
            self.views.pause()
            self.back_menu()
        elif option == "4":
            self.clear()
            self.views.header_admin()
            extraction = Extract()
            extraction.extract()
            self.views.pause()
            self.back_menu()
        elif option == "5":
            self.clear()
            self.views.header_admin()
            transform = Transform()
            transform.transform_basic()
            self.views.pause()
            self.back_menu()
        elif option == "6":
            self.clear()
            self.views.header_admin()
            load = Load()
            load.load_data()
            self.views.pause()
            self.back_menu()
        elif option == "7":
            self.clear()
            self.views.header_admin()
            extraction = Extract()
            transform = Transform()
            load = Load()
            extraction.extract()
            transform.transform_basic()
            load.load_data()
            self.views.pause()
            self.back_menu()
        elif option == "Q" or option == "q":
            sys.exit
        else:
            print("""
            Vous devez taper A ou Q
            Merci de réessayer.""")
            time.sleep(2)
            self.back_menu()