Esempio n. 1
0
def lsm(n_inputs, n_classes, n_steps, epoches, x_train, x_test, y_train,
        y_test, classifier, data_set):
    dim1 = [5, 5, 4]
    dim2 = [5, 5, 6]
    dim3 = [5, 5, 8]
    layers = []
    r1 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r2 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r3 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r4 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r5 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r6 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r7 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    r8 = reservoir.ReservoirLayer(int(n_inputs / 8),
                                  100,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)

    r9 = reservoir.ReservoirLayer(200,
                                  150,
                                  n_steps,
                                  dim2,
                                  is_input=False,
                                  homeostasis=True)
    r10 = reservoir.ReservoirLayer(200,
                                   150,
                                   n_steps,
                                   dim2,
                                   is_input=False,
                                   homeostasis=True)
    r11 = reservoir.ReservoirLayer(200,
                                   150,
                                   n_steps,
                                   dim2,
                                   is_input=False,
                                   homeostasis=True)
    r12 = reservoir.ReservoirLayer(200,
                                   150,
                                   n_steps,
                                   dim2,
                                   is_input=False,
                                   homeostasis=True)

    r13 = reservoir.ReservoirLayer(300,
                                   150,
                                   n_steps,
                                   dim2,
                                   is_input=False,
                                   homeostasis=True)
    r14 = reservoir.ReservoirLayer(300,
                                   150,
                                   n_steps,
                                   dim2,
                                   is_input=False,
                                   homeostasis=True)

    r15 = reservoir.ReservoirLayer(300,
                                   200,
                                   n_steps,
                                   dim3,
                                   is_input=False,
                                   homeostasis=True)
    s1 = feedforward.SpikingLayer(200, n_classes, n_steps)

    layers.append(r1)
    layers.append(r2)
    layers.append(r3)
    layers.append(r4)
    layers.append(r5)
    layers.append(r6)
    layers.append(r7)
    layers.append(r8)
    layers.append(r9)
    layers.append(r10)
    layers.append(r11)
    layers.append(r12)
    layers.append(r13)
    layers.append(r14)
    layers.append(r15)
    layers.append(s1)

    accuracy = 0
    best_acc_e = 0

    if classifier == "calcium_supervised":
        for e in range(epoches):
            record = np.zeros(n_classes)
            for i in tqdm(range(len(x_train))):  # train phase
                reset(layers)
                if data_set == "TI46":
                    x = np.asarray(x_train[i].todense())
                elif data_set == "MNIST" and record[y_train[i]] < 80:
                    x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
                    record[y_train[i]] += 1
                else:
                    continue
                o_r1 = r1.forward(x[:,
                                    int(0 * n_inputs / 8):int(1 * n_inputs /
                                                              8)])
                o_r2 = r2.forward(x[:,
                                    int(1 * n_inputs / 8):int(2 * n_inputs /
                                                              8)])
                o_r3 = r3.forward(x[:,
                                    int(2 * n_inputs / 8):int(3 * n_inputs /
                                                              8)])
                o_r4 = r4.forward(x[:,
                                    int(3 * n_inputs / 8):int(4 * n_inputs /
                                                              8)])
                o_r5 = r5.forward(x[:,
                                    int(4 * n_inputs / 8):int(5 * n_inputs /
                                                              8)])
                o_r6 = r6.forward(x[:,
                                    int(5 * n_inputs / 8):int(6 * n_inputs /
                                                              8)])
                o_r7 = r7.forward(x[:,
                                    int(6 * n_inputs / 8):int(7 * n_inputs /
                                                              8)])
                o_r8 = r8.forward(x[:,
                                    int(7 * n_inputs / 8):int(8 * n_inputs /
                                                              8)])

                o_r9 = r9.forward(np.concatenate((o_r1, o_r2), 1))
                o_r10 = r10.forward(np.concatenate((o_r3, o_r4), 1))
                o_r11 = r11.forward(np.concatenate((o_r5, o_r6), 1))
                o_r12 = r12.forward(np.concatenate((o_r7, o_r8), 1))

                o_r13 = r13.forward(np.concatenate((o_r9, o_r10), 1))
                o_r14 = r14.forward(np.concatenate((o_r11, o_r12), 1))

                o_r15 = r15.forward(np.concatenate((o_r13, o_r14), 1))

                s1.forward(o_r15, e, y_train[i])

            correct = 0
            for i in tqdm(range(len(x_test))):  # test phase
                reset(layers)
                if data_set == "TI46":
                    x = np.asarray(x_test[i].todense())
                elif data_set == "MNIST" and record[y_test[i]] < 100:
                    x = loadDataset.genrate_poisson_spikes(x_test[i], n_steps)
                    record[y_test[i]] += 1
                else:
                    continue
                o_r1 = r1.forward(x[:,
                                    int(0 * n_inputs / 8):int(1 * n_inputs /
                                                              8)])
                o_r2 = r2.forward(x[:,
                                    int(1 * n_inputs / 8):int(2 * n_inputs /
                                                              8)])
                o_r3 = r3.forward(x[:,
                                    int(2 * n_inputs / 8):int(3 * n_inputs /
                                                              8)])
                o_r4 = r4.forward(x[:,
                                    int(3 * n_inputs / 8):int(4 * n_inputs /
                                                              8)])
                o_r5 = r5.forward(x[:,
                                    int(4 * n_inputs / 8):int(5 * n_inputs /
                                                              8)])
                o_r6 = r6.forward(x[:,
                                    int(5 * n_inputs / 8):int(6 * n_inputs /
                                                              8)])
                o_r7 = r7.forward(x[:,
                                    int(6 * n_inputs / 8):int(7 * n_inputs /
                                                              8)])
                o_r8 = r8.forward(x[:,
                                    int(7 * n_inputs / 8):int(8 * n_inputs /
                                                              8)])

                o_r9 = r9.forward(np.concatenate((o_r1, o_r2), 1))
                o_r10 = r10.forward(np.concatenate((o_r3, o_r4), 1))
                o_r11 = r11.forward(np.concatenate((o_r5, o_r6), 1))
                o_r12 = r12.forward(np.concatenate((o_r7, o_r8), 1))

                o_r13 = r13.forward(np.concatenate((o_r9, o_r10), 1))
                o_r14 = r14.forward(np.concatenate((o_r11, o_r12), 1))

                o_r15 = r15.forward(np.concatenate((o_r13, o_r14), 1))

                o_s1 = s1.forward(o_r15)

                fire_count = np.sum(o_s1, axis=0)
                # print(fire_count)
                index = np.argmax(fire_count)
                if index == y_test[i]:
                    correct = correct + 1
            acc = correct / len(x_test)
            print("test accuracy at epoch %d is %0.2f%%" % (e, acc * 100))
            if accuracy < acc:
                accuracy = acc
                best_acc_e = e

    elif classifier == "svmcv":
        samples = []
        label = []
        record = np.zeros(n_classes)
        for i in tqdm(range(len(x_train))):  # train phase
            reset(layers)
            if data_set == "TI46":
                x = np.asarray(x_train[i].todense())
            elif data_set == "MNIST" and record[y_train[i]] < 100:
                x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
                record[y_train[i]] += 1
            else:
                continue
            o_r1 = r1.forward(x[:,
                                int(0 * n_inputs / 8):int(1 * n_inputs / 8)])
            o_r2 = r2.forward(x[:,
                                int(1 * n_inputs / 8):int(2 * n_inputs / 8)])
            o_r3 = r3.forward(x[:,
                                int(2 * n_inputs / 8):int(3 * n_inputs / 8)])
            o_r4 = r4.forward(x[:,
                                int(3 * n_inputs / 8):int(4 * n_inputs / 8)])
            o_r5 = r5.forward(x[:,
                                int(4 * n_inputs / 8):int(5 * n_inputs / 8)])
            o_r6 = r6.forward(x[:,
                                int(5 * n_inputs / 8):int(6 * n_inputs / 8)])
            o_r7 = r7.forward(x[:,
                                int(6 * n_inputs / 8):int(7 * n_inputs / 8)])
            o_r8 = r8.forward(x[:,
                                int(7 * n_inputs / 8):int(8 * n_inputs / 8)])

            o_r9 = r9.forward(np.concatenate((o_r1, o_r2), 1))
            o_r10 = r10.forward(np.concatenate((o_r3, o_r4), 1))
            o_r11 = r11.forward(np.concatenate((o_r5, o_r6), 1))
            o_r12 = r12.forward(np.concatenate((o_r7, o_r8), 1))

            o_r13 = r13.forward(np.concatenate((o_r9, o_r10), 1))
            o_r14 = r14.forward(np.concatenate((o_r11, o_r12), 1))

            o_r15 = r15.forward(np.concatenate((o_r13, o_r14), 1))
            fire_count = np.sum(o_r15, axis=0)
            samples.append(fire_count)
            label.append(y_train[i])

        accuracy = svm.cvSVM(samples, label, 5)
        best_acc_e = 0
    else:
        print('Given classifier {} not found'.format(classifier))
        sys.exit(-1)
    return accuracy, best_acc_e
Esempio n. 2
0
def lsm(n_inputs, n_classes, n_steps, epoches, x_train, x_test, y_train,
        y_test, classifier, data_set):
    stdp = False  # stdp enabled
    dim1 = [3, 3, 15]
    r1 = reservoir.ReservoirLayer(n_inputs,
                                  135,
                                  n_steps,
                                  dim1,
                                  is_input=True,
                                  homeostasis=True)
    s1 = feedforward.SpikingLayer(135, n_classes, n_steps, homeostasis=True)
    accuracy = 0
    best_acc_e = 0

    # train stdp
    if stdp:
        # r1.stdp_i = True
        r1.stdp_r = True
        # s1.stdp_i = True
        print("start stdp")
        for e_stdp in range(5):
            for i in tqdm(range(len(x_train))):
                r1.reset()
                s1.reset()
                x = np.asarray(x_train[i].todense())
                o_r1 = r1.forward(x)
                s1.forward(o_r1)
        print("finish stdp")
        r1.stdp_i = False
        r1.stdp_r = False
        s1.stdp_i = False

    if classifier == "calcium_supervised":
        for e in range(epoches):
            for i in tqdm(range(len(x_train))):  # train phase
                r1.reset()
                s1.reset()
                if data_set == "TI46":
                    x = np.asarray(x_train[i].todense())
                elif data_set == "MNIST":
                    x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
                else:
                    continue
                o_r1 = r1.forward(x)
                s1.forward(o_r1, e, y_train[i])

            correct = 0
            for i in tqdm(range(len(x_test))):  # test phase
                r1.reset()
                s1.reset()
                if data_set == "TI46":
                    x = np.asarray(x_test[i].todense())
                elif data_set == "MNIST":
                    x = loadDataset.genrate_poisson_spikes(x_test[i], n_steps)
                else:
                    continue
                o_r1 = r1.forward(x)
                o_s1 = s1.forward(o_r1)

                fire_count = np.sum(o_s1, axis=0)
                index = np.argmax(fire_count)
                if index == y_test[i]:
                    correct = correct + 1
            acc = correct / len(x_test)
            print("test accuracy at epoch %d is %0.2f%%" % (e, acc * 100))
            if accuracy < acc:
                accuracy = acc
                best_acc_e = e
    elif classifier == "svm":
        train_samples = []
        test_samples = []
        for i in tqdm(range(len(x_train))):  # train phase
            r1.reset()
            if data_set == "TI46":
                x = np.asarray(x_train[i].todense())
            elif data_set == "MNIST":
                x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
            else:
                continue
            o_r1 = r1.forward(x)
            fire_count = np.sum(o_r1, axis=0)
            train_samples.append(fire_count)

        for i in tqdm(range(len(x_test))):
            r1.reset()
            if data_set == "TI46":
                x = np.asarray(x_test[i].todense())
            elif data_set == "MNIST":
                x = loadDataset.genrate_poisson_spikes(x_test[i], n_steps)
            else:
                continue
            o_r1 = r1.forward(x)
            fire_count = np.sum(o_r1, axis=0)
            test_samples.append(fire_count)

        accuracy = svm.traintestSVM(train_samples, y_train, test_samples,
                                    y_test)
        best_acc_e = 0
    elif classifier == "svmcv":
        samples = []
        label = []
        for i in tqdm(range(len(x_train))):
            r1.reset()
            if data_set == "TI46":
                x = np.asarray(x_train[i].todense())
            elif data_set == "MNIST":
                x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
            else:
                continue
            o_r1 = r1.forward(x)
            fire_count = np.sum(o_r1, axis=0)
            samples.append(fire_count)
            label.append(y_train[i])

        accuracy = svm.cvSVM(samples, label, 5)
        best_acc_e = 0
    else:
        print('Given classifier {} not found'.format(classifier))
        sys.exit(-1)
    return accuracy, best_acc_e
Esempio n. 3
0
def lsm(n_inputs, n_classes, n_steps, epoches, x_train, x_test, y_train, y_test, classifier, data_set):
    dim1 = [10, 10, 20]
    r1 = reservoir.ReservoirLayer(n_inputs, 2000, n_steps, dim1, is_input=True, homeostasis=True)
    s1 = feedforward.SpikingLayer(2000, n_classes, n_steps)
    accuracy = 0
    best_acc_e = 0

    if classifier == "calcium_supervised":
        for e in range(epoches):
            record = np.zeros(n_classes)
            for i in tqdm(range(len(x_train))):  # train phase
                r1.reset()
                s1.reset()
                if data_set == "TI46":
                    x = np.asarray(x_train[i].todense())
                elif data_set == "MNIST" and record[y_train[i]] < 80:
                    x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
                    record[y_train[i]] += 1
                else:
                    continue
                o_r1 = r1.forward(x)
                s1.forward(o_r1, e, y_train[i])

            correct = 0
            num_test = 0
            for i in tqdm(range(len(x_test))):  # test phase
                r1.reset()
                s1.reset()
                if data_set == "TI46":
                    x = np.asarray(x_test[i].todense())
                elif data_set == "MNIST" and record[y_test[i]] < 100:
                    x = loadDataset.genrate_poisson_spikes(x_test[i], n_steps)
                    record[y_test[i]] += 1
                else:
                    continue
                o_r1 = r1.forward(x)
                o_s1 = s1.forward(o_r1)

                fire_count = np.sum(o_s1, axis=0)
                # print(fire_count)
                index = np.argmax(fire_count)
                if index == y_test[i]:
                    correct = correct + 1
                num_test += 1
            acc = correct / num_test
            print("test accuracy at epoch %d is %0.2f%%" % (e, acc * 100))
            if accuracy < acc:
                accuracy = acc
                best_acc_e = e
    elif classifier == "svmcv":
        samples = []
        label = []
        record = np.zeros(n_classes)
        for i in tqdm(range(len(x_train))):  # train phase
            r1.reset()
            s1.reset()
            if data_set == "TI46":
                x = np.asarray(x_train[i].todense())
            elif data_set == "MNIST" and record[y_train[i]] < 100:
                x = loadDataset.genrate_poisson_spikes(x_train[i], n_steps)
                record[y_train[i]] += 1
            else:
                continue
            o_r1 = r1.forward(x)
            fire_count = np.sum(o_r1, axis=0)
            samples.append(fire_count)
            label.append(y_train[i])

        accuracy = svm.cvSVM(samples, label, 5)
        best_acc_e = 0
    else:
        print('Given classifier {} not found'.format(classifier))
        sys.exit(-1)
    return accuracy, best_acc_e