def format_data_for_team_avg_evolution(year): df = get_league(year) result = None for team in df.HomeTeam.unique(): team_df = fc.get_team_matches(df, team) avgs = fc.get_team_avg_pts(df, team) points = fc.get_team_evolution(df, team) res = pd.DataFrame({\ "Club":[team for i in range(0,team_df.shape[0])], "Date":team_df.Date,\ "avg":avgs.values,\ "m_avg_5":fc.get_team_mobile_avg_pts(df,team,n=5).values, "n":[i for i in range(0,team_df.shape[0])],\ "pts":points.values}) if result is None: result = res else: result = result.append(res) return result
def get_features_for_all_matches(year): db = format_data_for_team_avg_evolution(year) matches = get_league(year)\ [fc.interesting_cols()] home_feats = merge_matches("HomeTeam", db, matches) home_feats = \ get_only_feats_columns_renamed(\ "home_",matches,home_feats) away_feats = merge_matches("AwayTeam", db, matches) away_feats = \ get_only_feats_columns_renamed(\ "away_",matches,away_feats) res = pd.concat([matches.reset_index(),\ home_feats.reset_index(),away_feats.reset_index()]\ ,axis=1) res["day"] = res["home_n"] res = res.drop(columns=["index","Date","HomeTeam","AwayTeam"\ ,"home_n","away_n"]) res["target"] = res.apply(lambda x: categorize(x), axis=1) return res.loc[res.day > 0]
def test(): db = format_data_for_team_avg_evolution(2014) matches = get_league(2014) return merge_matches("HomeTeam", db, matches)
def get_team_data_per_match(year): df = get_league(year)[-55:] db = format_data_for_team_avg_evolution(year)
def build_db(year): df = get_league(year)