def plot_manifolds(self):
        color_palette_green = sns.dark_palette('green', n_colors=self.numberOfOrbitsPerManifold)
        color_palette_red = sns.dark_palette('red', n_colors=self.numberOfOrbitsPerManifold)

        fig = plt.figure()
        ax = fig.gca()
        for i in range(self.numberOfOrbitsPerManifold):
            plt.plot(self.WS.xs(i)['x'], self.WS.xs(i)['y'], color=color_palette_green[i])
            plt.plot(self.WU.xs(i)['x'], self.WU.xs(i)['y'], color=color_palette_red[i])

        C = 3.15
        x_range = np.arange(0.7, 1.3, 0.001)
        y_range = np.arange(-0.3, 0.3, 0.001)
        X, Y = np.meshgrid(x_range, y_range)
        Z = cr3bp_velocity(X, Y, C)

        if Z.min() < 0:
            plt.contourf(X, Y, Z, [Z.min(), 0], colors='black', alpha=0.2)

        if self.U_section == (2 or 3):
            ax.axvline(1 - self.massParameter, color='black')

            bodies_df = load_bodies_location()
            u = np.linspace(0, 2 * np.pi, 100)
            v = np.linspace(0, np.pi, 100)
            x = bodies_df['Moon']['r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
            y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            plt.scatter(x, y, color='black')
        pass
    def __init__(self, config, orbit_type):
        self.orbit = []
        self.config = config
        self.orbitType = orbit_type
        self.massParameter = 0.0121505810173
        self.figSize = (20, 20)
        self.titleSize = 20
        self.suptitleSize = 30

        orbit_ids = []
        for orbit_id in list(self.config[self.orbitType].keys()):
            ls = orbit_id.split('_')
            if orbit_type == 'near_vertical':
                orbit_ids.append(int(ls[2]))
            if orbit_type == 'halo':
                orbit_ids.append(int(ls[1]))
        orbit_ids = [
            self.orbitType + '_' + str(idx) for idx in sorted(orbit_ids)
        ]

        for orbit_id in orbit_ids:
            self.orbit.append(
                load_orbit('../data/raw/' + orbit_id + '_final_orbit.txt'))

        self.lagrangePoints = load_lagrange_points_location()
        self.bodies = load_bodies_location()

        sns.set_style("whitegrid")
        pass
Esempio n. 3
0
    def plot_2d_shooting_conditions(self):
        fig = plt.figure(figsize=self.figSize)
        ax = fig.gca()

        orbit_types = ['horizontal', 'vertical', 'halo']
        lagrange_point_nrs = [1, 2]

        x = []
        z = []
        ydot = []
        c = []
        for idx, orbit_type in enumerate(orbit_types):
            for lagrange_point_nr in lagrange_point_nrs:
                initial_conditions_file_path = '../../data/raw/orbits/L' + str(
                    lagrange_point_nr) + '_' + orbit_type + '_initial_conditions.txt'
                initial_conditions_incl_m_df = load_initial_conditions_incl_M(initial_conditions_file_path)

                plot_label = orbit_type.capitalize()
                if plot_label == 'Horizontal' or plot_label == 'Vertical':
                    plot_label += ' Lyapunov'

                x.extend(list(initial_conditions_incl_m_df[2].values))
                z.extend(list(initial_conditions_incl_m_df[4].values))
                c.extend(list(initial_conditions_incl_m_df[0].values))

        sc = ax.scatter(x, z, c=c, cmap='viridis', s=20)
        cb = plt.colorbar(sc)
        cb.set_label('$C \enskip [-]$')

        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        # Lagrange points and bodies
        for lagrange_point_nr in lagrange_point_nrs:
            ax.scatter(lagrange_points_df[lagrange_point_nr]['x'], lagrange_points_df[lagrange_point_nr]['z'], color='black', marker='x')

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax.contourf(x, z, y, colors='black')

        ax.legend(frameon=True, loc='upper right')
        ax.set_xlabel('x [-]')
        ax.set_ylabel('z [-]')
        ax.grid(True, which='both', ls=':')
        fig.tight_layout()
        fig.subplots_adjust(top=0.9)
        plt.suptitle('$L_1, L_2$ - Shooting conditions for H-L, halo, and V-L', size=self.suptitleSize)
        if self.lowDPI:
            fig.savefig('../../data/figures/orbits/orbit_shooting_conditions_2d.png', transparent=True, dpi=self.dpi)
        else:
            fig.savefig('../../data/figures/orbits/orbit_shooting_conditions_2d.pdf', transparent=True)
        pass
Esempio n. 4
0
    def plot_3d_shooting_conditions(self):
        fig = plt.figure(figsize=self.figSize)
        ax = fig.gca(projection='3d')

        orbit_types = ['horizontal', 'vertical', 'halo']
        lagrange_point_nrs = [1, 2]

        lines = []
        linewidth = 2
        for lagrange_point_nr in lagrange_point_nrs:
            for idx, orbit_type in enumerate(orbit_types):
                initial_conditions_file_path = '../../data/raw/orbits/L' + str(
                    lagrange_point_nr) + '_' + orbit_type + '_initial_conditions.txt'
                initial_conditions_incl_m_df = load_initial_conditions_incl_M(initial_conditions_file_path)

                plot_label = orbit_type.capitalize()
                if plot_label == 'Horizontal' or plot_label == 'Vertical':
                    plot_label += ' Lyapunov'

                line, = ax.plot(initial_conditions_incl_m_df[2].values, initial_conditions_incl_m_df[6].values,
                                initial_conditions_incl_m_df[4].values, label=plot_label, linewidth=linewidth,
                                color=self.plottingColors['tripleLine'][idx])
                lines.append(line)

        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        # Lagrange points and bodies
        for lagrange_point_nr in lagrange_point_nrs:
            ax.scatter(lagrange_points_df[lagrange_point_nr]['x'], lagrange_points_df[lagrange_point_nr]['z'],
                       color='black', marker='x')

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax.plot_surface(x, y, z, color='black')


        # print(ax.elev)
        # print(ax.azim)
        # ax.view_init(20, -75)
        plt.plot(ax.get_xlim(), [0, 0], 'black', linewidth=0.5)
        ax.legend(frameon=True, loc='upper right', handles=lines[:3])
        ax.set_xlabel('x [-]')
        ax.set_ylabel('$\dot{y}$ [-]')
        ax.set_zlabel('z [-]')
        ax.grid(True, which='both', ls=':')
        fig.tight_layout()
        fig.subplots_adjust(top=0.9)
        plt.suptitle('$L_1, L_2$ - Shooting conditions', size=self.suptitleSize)
        fig.savefig('../../data/figures/orbits/orbit_shooting_conditions_3d.pdf', transparent=True)
        pass
    def plot_manifolds(self):
        # Plot: subplots
        fig = plt.figure(figsize=self.figSize)
        ax = fig.gca()

        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']

        # Lagrange points and bodies
        for lagrange_point_nr in lagrange_point_nrs:
            ax.scatter(lagrange_points_df[lagrange_point_nr]['x'], lagrange_points_df[lagrange_point_nr]['y'], color='black', marker='x')

        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))

            ax.contourf(x, y, z, colors='black')

        # Determine color for plot
        plot_alpha = 1
        line_width = 1
        for manifold_orbit_number in range(self.numberOfOrbitsPerManifold):
            ax.plot(self.W_S_plus.xs(manifold_orbit_number)['x'], self.W_S_plus.xs(manifold_orbit_number)['y'], color=self.colorPaletteStable[manifold_orbit_number], alpha=plot_alpha, linewidth=line_width)
            ax.plot(self.W_S_min.xs(manifold_orbit_number)['x'], self.W_S_min.xs(manifold_orbit_number)['y'], color=self.colorPaletteStable[manifold_orbit_number], alpha=plot_alpha, linewidth=line_width)
            ax.plot(self.W_U_plus.xs(manifold_orbit_number)['x'], self.W_U_plus.xs(manifold_orbit_number)['y'], color=self.colorPaletteUnstable[manifold_orbit_number], alpha=plot_alpha, linewidth=line_width)
            ax.plot(self.W_U_min.xs(manifold_orbit_number)['x'], self.W_U_min.xs(manifold_orbit_number)['y'], color=self.colorPaletteUnstable[manifold_orbit_number], alpha=plot_alpha, linewidth=line_width)

        ax.set_xlabel('x [-]')
        ax.set_ylabel('y [-]')

        ax.grid(True, which='both', ls=':')

        fig.tight_layout()
        fig.subplots_adjust(top=0.9)

        plt.suptitle('$L_' + str(self.lagrangePointNr) + '$ ' + self.orbitTypeForTitle + ' $\{ \mathcal{W}^{S \pm}, \mathcal{W}^{U \pm} \}$ - Spatial overview', size=self.suptitleSize)
        plt.savefig('../../data/figures/manifolds/refined_for_c/L' + str(self.lagrangePointNr) + '_' + self.orbitType + '_' + str(self.orbitId) + '_manifold.pdf',
                    transparent=True)
        plt.close()
        pass
    def plot_manifolds(self):
        # Plot: subplots
        if self.orbitType == 'horizontal':
            figsize = (self.figSize[0], self.figSize[1] / 2)
            fig = plt.figure(figsize=figsize)
            ax00 = fig.add_subplot(2, 3, 1, projection='3d')
            ax01 = fig.add_subplot(2, 3, 2, projection='3d')
            ax02 = fig.add_subplot(2, 3, 3, projection='3d')
            ax10 = fig.add_subplot(2, 3, 4)
            ax11 = fig.add_subplot(2, 3, 5)
            ax12 = fig.add_subplot(2, 3, 6)
        else:
            figsize = self.figSize
            fig = plt.figure(figsize=figsize)
            ax00 = fig.add_subplot(4, 3, 1, projection='3d')
            ax01 = fig.add_subplot(4, 3, 2, projection='3d')
            ax02 = fig.add_subplot(4, 3, 3, projection='3d')
            ax10 = fig.add_subplot(4, 3, 4)
            ax11 = fig.add_subplot(4, 3, 5)
            ax12 = fig.add_subplot(4, 3, 6)
            ax20 = fig.add_subplot(4, 3, 7)
            ax21 = fig.add_subplot(4, 3, 8)
            ax22 = fig.add_subplot(4, 3, 9)
            ax30 = fig.add_subplot(4, 3, 10)
            ax31 = fig.add_subplot(4, 3, 11)
            ax32 = fig.add_subplot(4, 3, 12)

        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        # Lagrange points and bodies
        for lagrange_point_nr in lagrange_point_nrs:
            ax00.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         lagrange_points_df[lagrange_point_nr]['z'],
                         color='black',
                         marker='x')
            ax01.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         lagrange_points_df[lagrange_point_nr]['z'],
                         color='black',
                         marker='x')
            ax02.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         lagrange_points_df[lagrange_point_nr]['z'],
                         color='black',
                         marker='x')

            ax10.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         color='black',
                         marker='x')
            ax11.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         color='black',
                         marker='x')
            ax12.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         color='black',
                         marker='x')
            if self.orbitType != 'horizontal':
                ax20.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                             lagrange_points_df[lagrange_point_nr]['z'],
                             color='black',
                             marker='x')
                ax21.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                             lagrange_points_df[lagrange_point_nr]['z'],
                             color='black',
                             marker='x')
                ax22.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                             lagrange_points_df[lagrange_point_nr]['z'],
                             color='black',
                             marker='x')

                ax30.scatter(lagrange_points_df[lagrange_point_nr]['y'],
                             lagrange_points_df[lagrange_point_nr]['z'],
                             color='black',
                             marker='x')
                ax31.scatter(lagrange_points_df[lagrange_point_nr]['y'],
                             lagrange_points_df[lagrange_point_nr]['z'],
                             color='black',
                             marker='x')
                ax32.scatter(lagrange_points_df[lagrange_point_nr]['y'],
                             lagrange_points_df[lagrange_point_nr]['z'],
                             color='black',
                             marker='x')

        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))

            ax00.plot_surface(x, y, z, color='black')
            ax01.plot_surface(x, y, z, color='black')
            ax02.plot_surface(x, y, z, color='black')
            ax10.contourf(x, y, z, colors='black')
            ax11.contourf(x, y, z, colors='black')
            ax12.contourf(x, y, z, colors='black')
            if self.orbitType != 'horizontal':
                ax20.contourf(x, z, y, colors='black')
                ax21.contourf(x, z, y, colors='black')
                ax22.contourf(x, z, y, colors='black')
                ax30.contourf(y, z, x, colors='black')
                ax31.contourf(y, z, x, colors='black')
                ax32.contourf(y, z, x, colors='black')

        # Determine color for plot
        plot_alpha = 1
        line_width = 0.5
        for manifold_orbit_number in range(self.numberOfOrbitsPerManifold):
            ax00.plot(self.W_S_plus[0].xs(manifold_orbit_number)['x'],
                      self.W_S_plus[0].xs(manifold_orbit_number)['y'],
                      self.W_S_plus[0].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax01.plot(self.W_S_plus[1].xs(manifold_orbit_number)['x'],
                      self.W_S_plus[1].xs(manifold_orbit_number)['y'],
                      self.W_S_plus[1].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax02.plot(self.W_S_plus[2].xs(manifold_orbit_number)['x'],
                      self.W_S_plus[2].xs(manifold_orbit_number)['y'],
                      self.W_S_plus[2].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)

            ax10.plot(self.W_S_plus[0].xs(manifold_orbit_number)['x'],
                      self.W_S_plus[0].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax11.plot(self.W_S_plus[1].xs(manifold_orbit_number)['x'],
                      self.W_S_plus[1].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax12.plot(self.W_S_plus[2].xs(manifold_orbit_number)['x'],
                      self.W_S_plus[2].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)

            if self.orbitType != 'horizontal':
                ax20.plot(self.W_S_plus[0].xs(manifold_orbit_number)['x'],
                          self.W_S_plus[0].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax21.plot(self.W_S_plus[1].xs(manifold_orbit_number)['x'],
                          self.W_S_plus[1].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax22.plot(self.W_S_plus[2].xs(manifold_orbit_number)['x'],
                          self.W_S_plus[2].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)

                ax30.plot(self.W_S_plus[0].xs(manifold_orbit_number)['y'],
                          self.W_S_plus[0].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax31.plot(self.W_S_plus[1].xs(manifold_orbit_number)['y'],
                          self.W_S_plus[1].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax32.plot(self.W_S_plus[2].xs(manifold_orbit_number)['y'],
                          self.W_S_plus[2].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)

            ax00.plot(self.W_S_min[0].xs(manifold_orbit_number)['x'],
                      self.W_S_min[0].xs(manifold_orbit_number)['y'],
                      self.W_S_min[0].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax01.plot(self.W_S_min[1].xs(manifold_orbit_number)['x'],
                      self.W_S_min[1].xs(manifold_orbit_number)['y'],
                      self.W_S_min[1].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax02.plot(self.W_S_min[2].xs(manifold_orbit_number)['x'],
                      self.W_S_min[2].xs(manifold_orbit_number)['y'],
                      self.W_S_min[2].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)

            ax10.plot(self.W_S_min[0].xs(manifold_orbit_number)['x'],
                      self.W_S_min[0].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax11.plot(self.W_S_min[1].xs(manifold_orbit_number)['x'],
                      self.W_S_min[1].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax12.plot(self.W_S_min[2].xs(manifold_orbit_number)['x'],
                      self.W_S_min[2].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteStable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            if self.orbitType != 'horizontal':
                ax20.plot(self.W_S_min[0].xs(manifold_orbit_number)['x'],
                          self.W_S_min[0].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax21.plot(self.W_S_min[1].xs(manifold_orbit_number)['x'],
                          self.W_S_min[1].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax22.plot(self.W_S_min[2].xs(manifold_orbit_number)['x'],
                          self.W_S_min[2].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)

                ax30.plot(self.W_S_min[0].xs(manifold_orbit_number)['y'],
                          self.W_S_min[0].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax31.plot(self.W_S_min[1].xs(manifold_orbit_number)['y'],
                          self.W_S_min[1].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)
                ax32.plot(self.W_S_min[2].xs(manifold_orbit_number)['y'],
                          self.W_S_min[2].xs(manifold_orbit_number)['z'],
                          color=self.colorPaletteStable[manifold_orbit_number],
                          alpha=plot_alpha,
                          linewidth=line_width)

            ax00.plot(self.W_U_plus[0].xs(manifold_orbit_number)['x'],
                      self.W_U_plus[0].xs(manifold_orbit_number)['y'],
                      self.W_U_plus[0].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax01.plot(self.W_U_plus[1].xs(manifold_orbit_number)['x'],
                      self.W_U_plus[1].xs(manifold_orbit_number)['y'],
                      self.W_U_plus[1].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax02.plot(self.W_U_plus[2].xs(manifold_orbit_number)['x'],
                      self.W_U_plus[2].xs(manifold_orbit_number)['y'],
                      self.W_U_plus[2].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)

            ax10.plot(self.W_U_plus[0].xs(manifold_orbit_number)['x'],
                      self.W_U_plus[0].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax11.plot(self.W_U_plus[1].xs(manifold_orbit_number)['x'],
                      self.W_U_plus[1].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax12.plot(self.W_U_plus[2].xs(manifold_orbit_number)['x'],
                      self.W_U_plus[2].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            if self.orbitType != 'horizontal':
                ax20.plot(
                    self.W_U_plus[0].xs(manifold_orbit_number)['x'],
                    self.W_U_plus[0].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax21.plot(
                    self.W_U_plus[1].xs(manifold_orbit_number)['x'],
                    self.W_U_plus[1].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax22.plot(
                    self.W_U_plus[2].xs(manifold_orbit_number)['x'],
                    self.W_U_plus[2].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)

                ax30.plot(
                    self.W_U_plus[0].xs(manifold_orbit_number)['y'],
                    self.W_U_plus[0].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax31.plot(
                    self.W_U_plus[1].xs(manifold_orbit_number)['y'],
                    self.W_U_plus[1].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax32.plot(
                    self.W_U_plus[2].xs(manifold_orbit_number)['y'],
                    self.W_U_plus[2].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)

            ax00.plot(self.W_U_min[0].xs(manifold_orbit_number)['x'],
                      self.W_U_min[0].xs(manifold_orbit_number)['y'],
                      self.W_U_min[0].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax01.plot(self.W_U_min[1].xs(manifold_orbit_number)['x'],
                      self.W_U_min[1].xs(manifold_orbit_number)['y'],
                      self.W_U_min[1].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax02.plot(self.W_U_min[2].xs(manifold_orbit_number)['x'],
                      self.W_U_min[2].xs(manifold_orbit_number)['y'],
                      self.W_U_min[2].xs(manifold_orbit_number)['z'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)

            ax10.plot(self.W_U_min[0].xs(manifold_orbit_number)['x'],
                      self.W_U_min[0].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax11.plot(self.W_U_min[1].xs(manifold_orbit_number)['x'],
                      self.W_U_min[1].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax12.plot(self.W_U_min[2].xs(manifold_orbit_number)['x'],
                      self.W_U_min[2].xs(manifold_orbit_number)['y'],
                      color=self.colorPaletteUnstable[manifold_orbit_number],
                      alpha=plot_alpha,
                      linewidth=line_width)

            if self.orbitType != 'horizontal':
                ax20.plot(
                    self.W_U_min[0].xs(manifold_orbit_number)['x'],
                    self.W_U_min[0].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax21.plot(
                    self.W_U_min[1].xs(manifold_orbit_number)['x'],
                    self.W_U_min[1].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax22.plot(
                    self.W_U_min[2].xs(manifold_orbit_number)['x'],
                    self.W_U_min[2].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)

                ax30.plot(
                    self.W_U_min[0].xs(manifold_orbit_number)['y'],
                    self.W_U_min[0].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax31.plot(
                    self.W_U_min[1].xs(manifold_orbit_number)['y'],
                    self.W_U_min[1].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)
                ax32.plot(
                    self.W_U_min[2].xs(manifold_orbit_number)['y'],
                    self.W_U_min[2].xs(manifold_orbit_number)['z'],
                    color=self.colorPaletteUnstable[manifold_orbit_number],
                    alpha=plot_alpha,
                    linewidth=line_width)

        plot_alpha = 1
        line_width = 2

        ax00.plot(self.orbitDf[0]['x'],
                  self.orbitDf[0]['y'],
                  self.orbitDf[0]['z'],
                  color=self.plottingColors['orbit'],
                  alpha=plot_alpha,
                  linewidth=line_width)
        ax01.plot(self.orbitDf[1]['x'],
                  self.orbitDf[1]['y'],
                  self.orbitDf[1]['z'],
                  color=self.plottingColors['orbit'],
                  alpha=plot_alpha,
                  linewidth=line_width)
        ax02.plot(self.orbitDf[2]['x'],
                  self.orbitDf[2]['y'],
                  self.orbitDf[2]['z'],
                  color=self.plottingColors['orbit'],
                  alpha=plot_alpha,
                  linewidth=line_width)

        ax10.plot(self.orbitDf[0]['x'],
                  self.orbitDf[0]['y'],
                  color=self.plottingColors['orbit'],
                  alpha=plot_alpha,
                  linewidth=line_width)
        ax11.plot(self.orbitDf[1]['x'],
                  self.orbitDf[1]['y'],
                  color=self.plottingColors['orbit'],
                  alpha=plot_alpha,
                  linewidth=line_width)
        ax12.plot(self.orbitDf[2]['x'],
                  self.orbitDf[2]['y'],
                  color=self.plottingColors['orbit'],
                  alpha=plot_alpha,
                  linewidth=line_width)
        if self.orbitType != 'horizontal':
            ax20.plot(self.orbitDf[0]['x'],
                      self.orbitDf[0]['z'],
                      color=self.plottingColors['orbit'],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax21.plot(self.orbitDf[1]['x'],
                      self.orbitDf[1]['z'],
                      color=self.plottingColors['orbit'],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax22.plot(self.orbitDf[2]['x'],
                      self.orbitDf[2]['z'],
                      color=self.plottingColors['orbit'],
                      alpha=plot_alpha,
                      linewidth=line_width)

            ax30.plot(self.orbitDf[0]['y'],
                      self.orbitDf[0]['z'],
                      color=self.plottingColors['orbit'],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax31.plot(self.orbitDf[1]['y'],
                      self.orbitDf[1]['z'],
                      color=self.plottingColors['orbit'],
                      alpha=plot_alpha,
                      linewidth=line_width)
            ax32.plot(self.orbitDf[2]['y'],
                      self.orbitDf[2]['z'],
                      color=self.plottingColors['orbit'],
                      alpha=plot_alpha,
                      linewidth=line_width)

        ax00.set_xlabel('x [-]')
        ax00.set_ylabel('y [-]')
        ax00.set_zlabel('z [-]')
        ax00.grid(True, which='both', ls=':')
        ax00.view_init(30, -120)
        ax00.set_title('C = ' + str(self.C[0]))
        ax01.set_xlabel('x [-]')
        ax01.set_ylabel('y [-]')
        ax01.set_zlabel('z [-]')
        ax01.grid(True, which='both', ls=':')
        ax01.view_init(30, -120)
        ax01.set_title('C = ' + str(self.C[1]))
        ax02.set_xlabel('x [-]')
        ax02.set_ylabel('y [-]')
        ax02.set_zlabel('z [-]')
        if self.orbitType == 'horizontal':
            ax00.set_zlim([-0.4, 0.4])
            ax01.set_zlim([-0.4, 0.4])
            ax02.set_zlim([-0.4, 0.4])
        ax02.grid(True, which='both', ls=':')
        ax02.view_init(30, -120)
        ax02.set_title('C = ' + str(self.C[2]))

        xlim = [
            min(ax00.get_xlim()[0],
                ax01.get_xlim()[0],
                ax02.get_xlim()[0]),
            max(ax00.get_xlim()[1],
                ax01.get_xlim()[1],
                ax02.get_xlim()[1])
        ]
        ylim = [
            min(ax00.get_ylim()[0],
                ax01.get_ylim()[0],
                ax02.get_ylim()[0]),
            max(ax00.get_ylim()[1],
                ax01.get_ylim()[1],
                ax02.get_ylim()[1])
        ]
        zlim = [
            min(ax00.get_zlim()[0],
                ax01.get_zlim()[0],
                ax02.get_zlim()[0]),
            max(ax00.get_zlim()[1],
                ax01.get_zlim()[1],
                ax02.get_zlim()[1])
        ]
        ax00.set_xlim(xlim)
        ax01.set_xlim(xlim)
        ax02.set_xlim(xlim)
        ax00.set_ylim(ylim)
        ax01.set_ylim(ylim)
        ax02.set_ylim(ylim)
        ax00.set_zlim(zlim)
        ax01.set_zlim(zlim)
        ax02.set_zlim(zlim)

        ax10.set_xlabel('x [-]')
        ax11.set_xlabel('x [-]')
        ax12.set_xlabel('x [-]')
        ax10.set_ylabel('y [-]')
        xlim = [
            min(ax10.get_xlim()[0],
                ax11.get_xlim()[0],
                ax12.get_xlim()[0]),
            max(ax10.get_xlim()[1],
                ax11.get_xlim()[1],
                ax12.get_xlim()[1])
        ]
        ylim = [
            min(ax10.get_ylim()[0],
                ax11.get_ylim()[0],
                ax12.get_ylim()[0]),
            max(ax10.get_ylim()[1],
                ax11.get_ylim()[1],
                ax12.get_ylim()[1])
        ]
        ax10.set_xlim(xlim)
        ax11.set_xlim(xlim)
        ax12.set_xlim(xlim)
        ax10.set_ylim(ylim)
        ax11.set_ylim(ylim)
        ax12.set_ylim(ylim)
        ax10.grid(True, which='both', ls=':')
        ax11.grid(True, which='both', ls=':')
        ax12.grid(True, which='both', ls=':')

        # Plot zero velocity surface
        x_range = np.arange(-6.0, 4.0, 0.001)
        y_range = np.arange(-3.0, 3.0, 0.001)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh0 = cr3bp_velocity(x_mesh, y_mesh, 3.15)
        z_mesh1 = cr3bp_velocity(x_mesh, y_mesh, 3.1)
        z_mesh2 = cr3bp_velocity(x_mesh, y_mesh, 3.05)
        if z_mesh0.min() < 0:
            ax10.contourf(x_mesh,
                          y_mesh,
                          z_mesh0,
                          list(np.linspace(z_mesh0.min(), 0, 10)),
                          cmap='gist_gray_r',
                          alpha=0.5)
        if z_mesh1.min() < 0:
            ax11.contourf(x_mesh,
                          y_mesh,
                          z_mesh1,
                          list(np.linspace(z_mesh1.min(), 0, 10)),
                          cmap='gist_gray_r',
                          alpha=0.5)
        if z_mesh2.min() < 0:
            ax12.contourf(x_mesh,
                          y_mesh,
                          z_mesh2,
                          list(np.linspace(z_mesh2.min(), 0, 10)),
                          cmap='gist_gray_r',
                          alpha=0.5)

        if self.orbitType != 'horizontal':
            ax20.set_xlabel('x [-]')
            ax21.set_xlabel('x [-]')
            ax22.set_xlabel('x [-]')
            ax20.set_ylabel('z [-]')
            xlim = [
                min(ax20.get_xlim()[0],
                    ax21.get_xlim()[0],
                    ax22.get_xlim()[0]),
                max(ax20.get_xlim()[1],
                    ax21.get_xlim()[1],
                    ax22.get_xlim()[1])
            ]
            ylim = [
                min(ax20.get_ylim()[0],
                    ax21.get_ylim()[0],
                    ax22.get_ylim()[0]),
                max(ax20.get_ylim()[1],
                    ax21.get_ylim()[1],
                    ax22.get_ylim()[1])
            ]
            ax20.set_xlim(xlim)
            ax21.set_xlim(xlim)
            ax22.set_xlim(xlim)
            ax20.set_ylim(ylim)
            ax21.set_ylim(ylim)
            ax22.set_ylim(ylim)
            ax20.grid(True, which='both', ls=':')
            ax21.grid(True, which='both', ls=':')
            ax22.grid(True, which='both', ls=':')

            ax30.set_xlabel('y [-]')
            ax31.set_xlabel('y [-]')
            ax32.set_xlabel('y [-]')
            ax30.set_ylabel('z [-]')
            xlim = [
                min(ax30.get_xlim()[0],
                    ax31.get_xlim()[0],
                    ax32.get_xlim()[0]),
                max(ax30.get_xlim()[1],
                    ax31.get_xlim()[1],
                    ax32.get_xlim()[1])
            ]
            ylim = [
                min(ax30.get_ylim()[0],
                    ax31.get_ylim()[0],
                    ax32.get_ylim()[0]),
                max(ax30.get_ylim()[1],
                    ax31.get_ylim()[1],
                    ax32.get_ylim()[1])
            ]
            ax30.set_xlim(xlim)
            ax31.set_xlim(xlim)
            ax32.set_xlim(xlim)
            ax30.set_ylim(ylim)
            ax31.set_ylim(ylim)
            ax32.set_ylim(ylim)
            ax30.grid(True, which='both', ls=':')
            ax31.grid(True, which='both', ls=':')
            ax32.grid(True, which='both', ls=':')

        fig.tight_layout()
        if self.orbitType == 'horizontal':
            fig.subplots_adjust(top=0.9)
        else:
            fig.subplots_adjust(top=0.95)

        plt.suptitle(
            '$L_' + str(self.lagrangePointNr) + '$ ' + self.orbitTypeForTitle +
            ' $\{ \mathcal{W}^{S \pm}, \mathcal{W}^{U \pm} \}$ - Spatial comparison',
            size=self.suptitleSize)

        fig.savefig('../../data/figures/manifolds/refined_for_c/L' +
                    str(self.lagrangePointNr) + '_' + self.orbitType +
                    '_manifold_comparison.pdf',
                    transparent=True)
        # fig.savefig('/Users/koen/Documents/Courses/AE5810 Thesis Space/Meetings/0901/L' + str(self.lagrangePointNr) + '_' + self.orbitType + '_' + str(self.orbitId) + '_manifold_subplots.png')
        plt.close()
        pass
    def animate(self):
        fig = plt.figure()
        self.ax = fig.gca()
        self.lines = [
            plt.plot([], [],
                     color=self.orbitColor,
                     alpha=self.orbitAlpha,
                     marker='o',
                     markevery=[-1])[0] for idx in range(6)
        ]

        # Text object to display absolute normalized time of trajectories within the manifolds
        self.timeText = self.ax.text2D(0.05,
                                       0.95,
                                       s='$\|t\| \\approx 0$',
                                       transform=self.ax.transAxes,
                                       size=self.timeTextSize)

        # Plot zero velocity surface
        x_range = np.arange(-5, 5, 0.001)
        y_range = np.arange(-5, 5, 0.001)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh = cr3bp_velocity(x_mesh, y_mesh, self.cLevel)
        # self.ax.plot_surface(x_mesh, y_mesh, -z_mesh, alpha=0.1, linewidth=0,
        #                      cmap=matplotlib.colors.ListedColormap(sns.color_palette("Blues", n_colors=100)),
        #                      vmin=self.zLim[0], vmax=-z_mesh.min(), rstride=50, cstride=50)
        self.ax.plot_surface(x_mesh,
                             y_mesh,
                             -z_mesh,
                             alpha=0.2,
                             linewidth=0,
                             color='black')
        self.ax.plot_wireframe(x_mesh,
                               y_mesh,
                               -z_mesh,
                               alpha=1,
                               linewidth=0.5,
                               color='black',
                               rstride=50,
                               cstride=50)

        # Plot both primaries
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = self.orbitalBodiesEnlargementFactor * bodies_df[body][
                'r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = self.orbitalBodiesEnlargementFactor * bodies_df[body][
                'r'] * np.outer(np.sin(u), np.sin(v))
            z = self.orbitalBodiesEnlargementFactor * bodies_df[body][
                'r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            self.ax.plot_surface(x, y, z, color='black', zorder=3)

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            self.ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'],
                              lagrange_points_df[lagrange_point_nr]['y'],
                              lagrange_points_df[lagrange_point_nr]['z'],
                              color='black',
                              marker='x',
                              s=self.lagrangePointMarkerSize,
                              zorder=1)

        title = 'Rotating reference frame - Spatial overview at C = ' + str(
            self.cLevel)

        self.ax.set_xlim3d(self.xLim)
        self.ax.set_ylim3d(self.yLim)
        self.ax.set_zlim3d(self.zLim)

        fig.tight_layout()
        fig.subplots_adjust(top=0.9)
        plt.suptitle(title, size=self.suptitleSize)

        # self.ax.elev = 60
        self.initialElevation = self.ax.elev
        self.initialAzimuth = self.ax.azim
        self.ax.set_aspect('equal')
        # plt.show()
        plt.axis('off')

        # Determine the maximum value of t
        t_max = 1
        print('Maximum value for t = ' + str(t_max) + ', animation t: = ')

        # Introduce a new time-vector for linearly spaced time throughout the animation
        # self.t = np.linspace(0, t_max, np.round(t_max / 0.05) + 1)
        self.t = np.linspace(0, t_max, np.round(t_max / 0.005) + 1)

        animation_function = animation.FuncAnimation(
            fig,
            self.update_lines,
            init_func=self.initiate_lines,
            frames=len(self.t),
            interval=1,
            blit=True)

        empty_writer_object = animation.writers['ffmpeg']
        animation_writer = empty_writer_object(
            fps=30, metadata=dict(artist='Koen Langemeijer'))
        file_name = '../../../data/animations/reference_frame/spatial_rotating_reference_frame_' + str(
            self.cLevel) + '.mp4'
        animation_function.save(file_name, writer=animation_writer)
Esempio n. 8
0
    def animate(self):
        print(
            '\nProducing a HorizontalLyapunovBifurcationToAxialAnimation at L'
            + str(self.librationPointNr) + '\n')

        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        self.lines = [
            plt.plot([], [], color=self.orbitColor, alpha=self.orbitAlpha)[0]
        ]

        # Text object to display absolute normalized time of trajectories within the manifolds
        self.jacobiEnergyText = ax.text2D(
            0.05,
            0.05,
            s='Horizontal Lyapunov family \n $C \\approx$ {:.4f}'.format(
                round(self.jacobiEnergyHorizontalLyapunov[0], 4)),
            transform=ax.transAxes,
            size=self.timeTextSize)

        # Plot the first orbit
        orbit_df = load_orbit('../../../data/raw/orbits/L' +
                              str(self.librationPointNr) + '_horizontal_' +
                              str(0) + '.txt')
        plt.plot(orbit_df['x'],
                 orbit_df['y'],
                 orbit_df['z'],
                 color='orange',
                 alpha=self.orbitAlpha,
                 linewidth=self.orbitLinewidth)

        # Plot the Moon
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        x = bodies_df['Moon']['r'] * np.outer(
            np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
        y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
        z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
        ax.plot_surface(x, y, z, color='black')

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         lagrange_points_df[lagrange_point_nr]['z'],
                         color='black',
                         marker='x',
                         s=self.lagrangePointMarkerSize)

        title = 'Bifurcation from horizontal Lyapunov to axial and vertical Lyapunov families at $L_' + str(
            self.librationPointNr) + '$'

        ax.set_xlim3d(self.xLim)
        ax.set_ylim3d(self.yLim)
        ax.set_zlim3d(self.zLim)
        ax.set_xlabel('x [-]')
        ax.set_ylabel('y [-]')
        ax.set_zlabel('z [-]')
        plt.show()
        ax.grid(True, which='both', ls=':')
        fig.tight_layout()
        fig.subplots_adjust(top=0.9)
        plt.suptitle(title, size=self.suptitleSize)

        # Fix overlap between labels and ticks
        ax.xaxis._axinfo['label']['space_factor'] = 2.0
        ax.yaxis._axinfo['label']['space_factor'] = 2.0
        ax.zaxis._axinfo['label']['space_factor'] = 2.0
        # ax.elev = 10
        # ax.azim = -80

        # Determine number of frames
        number_of_frames = int(
            self.orbitIdBifurcationsFromHorizontalLyapunov[1] + 1 +
            self.numberOfAxialOrbits + len(self.verticalLyapunovIndices))
        print('Number of frames equals ' + str(number_of_frames))

        animation_function = animation.FuncAnimation(
            fig,
            self.update_lines,
            init_func=self.initiate_lines,
            frames=number_of_frames,
            interval=1,
            blit=True)

        empty_writer_object = animation.writers['ffmpeg']
        animation_writer = empty_writer_object(
            fps=30, metadata=dict(artist='Koen Langemeijer'))
        file_name = '../../../data/animations/bifurcations/L' + str(
            self.librationPointNr
        ) + '_horizontal_lyapunov_bifurcation_to_axial_family.mp4'
        animation_function.save(file_name, writer=animation_writer)
Esempio n. 9
0
    def plot_saddle(self):
        fig = plt.figure(figsize=self.figSize)
        ax = fig.add_subplot(111, projection='3d')
        # azim=150
        # elev=25
        # print(ax.azim)
        # ax.view_init(elev=elev, azim=azim)
        ax.view_init(elev=25, azim=17)

        # Plot zero velocity surface
        # x_range = np.arange(self.xlim[0], self.xlim[1], 0.01)
        # y_range = np.arange(self.ylim[0], self.ylim[1], 0.01)
        x_range = np.arange(self.crange[0], self.crange[1], 0.01)
        y_range = np.arange(self.crange[0], self.crange[1], 0.01)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh = cr3bp_velocity(x_mesh, y_mesh, self.cLevel)
        self.zlim = [-0.5, -min([min(i) for i in z_mesh])]
        print(z_mesh)
        threshold_z = 0.3
        for idx1, row in enumerate(z_mesh):
            for idx2, item in enumerate(row):
                if item > threshold_z:
                    z_mesh[idx1][idx2] = threshold_z
        # print(max([max(i) for i in z_mesh]))
        # print(min([min(i) for i in z_mesh]))

        if z_mesh.min() < 0:
            # plt.contour(x_mesh, y_mesh, z_mesh, [z_mesh.min(), 0], colors='black', alpha=0.3)
            # ax.contour(x_mesh, y_mesh, z_mesh, list(np.linspace(z_mesh.min(), 0, 10)), cmap='gist_gray_r',
            #                 alpha=0.5)
            ax.plot_surface(x_mesh,
                            y_mesh,
                            -z_mesh,
                            alpha=1,
                            linewidth=0,
                            cmap='viridis',
                            zorder=-1,
                            vmin=self.zlim[0],
                            vmax=self.zlim[1],
                            rstride=1,
                            cstride=1)
            # ax.plot_wireframe(x_mesh, y_mesh, -z_mesh, alpha=1, linewidth=0.05, color='black', rstride=1, cstride=1)
            pass

        # Lagrange points and bodies
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for idx, lagrange_point_nr in enumerate(lagrange_point_nrs):
            ax.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                       lagrange_points_df[lagrange_point_nr]['y'],
                       lagrange_points_df[lagrange_point_nr]['z'],
                       color='black',
                       marker='x',
                       zorder=idx)

        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for idx, body in enumerate(bodies_df):
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax.plot_surface(x, y, z, color='black', zorder=2 + idx)

        ax.plot([-self.massParameter, 1 - self.massParameter], [0, 0],
                color='black')

        ax.set_xlim(self.xlim)
        ax.set_ylim(self.ylim)
        ax.set_zlim(self.zlim)

        # ax.set_title(str(azim))

        plt.axis('off')
        plt.show()
        pass
    def plot(self):
        colors = sns.color_palette("Blues", n_colors=6)

        # Plot: 3d overview
        fig = plt.figure(figsize=(7 * (1 + np.sqrt(5)) / 2, 7))
        ax = fig.gca(projection='3d')

        # Plot both primaries
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax.plot_surface(x, y, z, color='black')

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'],
                         lagrange_points_df[lagrange_point_nr]['y'],
                         lagrange_points_df[lagrange_point_nr]['z'],
                         color='black',
                         marker='x',
                         s=50)

        # ax.annotate('Moon', xy=(-0.002,0.004),
        #             xytext=(-0.002, 0.04), fontsize=20, ha = 'center', va = 'top',
        #             arrowprops=dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),
        #             )
        # ax.annotate('$L_1$', xy=(-0.023, 0.012),
        #             xytext=(-0.023, 0.04), fontsize=20, ha='center', va='top',
        #             arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'),
        #             )
        # ax.annotate('$L_2$', xy=(0.023, -0.004),
        #             xytext=(0.023, 0.04), fontsize=20, ha='center', va='top',
        #             arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'),
        #             )
        # params = {'legend.fontsize': 16}
        # plt.rcParams.update(params)

        C = 3.1
        # x_range = np.arange(0.7, 1.3, 0.001)
        # y_range = np.arange(-0.3, 0.3, 0.001)
        x_range = np.arange(0.8, 1.2, 0.001)
        y_range = np.arange(-0.2, 0.2, 0.001)
        X, Y = np.meshgrid(x_range, y_range)
        Z = cr3bp_velocity(X, Y, C)

        if Z.min() < 0:
            plt.contourf(X, Y, Z, 0, colors='black', alpha=0.05, zorder=1000)

        linewidth = 2
        df = load_orbit('../../data/raw_equal_energy/horizontal_L1_577.txt')
        ax.plot(df['x'],
                df['y'],
                df['z'],
                color=sns.color_palette("viridis", 3)[0],
                alpha=0.75,
                linestyle='-',
                label='Horizontal Lyapunov',
                linewidth=linewidth)

        df = load_orbit('../../data/raw_equal_energy/halo_L1_799.txt')
        ax.plot(df['x'],
                df['y'],
                df['z'],
                color=sns.color_palette("viridis", 3)[2],
                alpha=0.75,
                linestyle='-',
                label='Halo',
                linewidth=linewidth)

        df = load_orbit('../../data/raw_equal_energy/vertical_L1_1163.txt')
        ax.plot(df['x'],
                df['y'],
                df['z'],
                color=sns.color_palette("viridis", 3)[1],
                alpha=0.75,
                linestyle='-',
                label='Vertical Lyapunov',
                linewidth=linewidth)

        ax.legend(frameon=True, loc='lower right')

        df = load_orbit('../../data/raw_equal_energy/horizontal_L2_760.txt')
        ax.plot(df['x'],
                df['y'],
                df['z'],
                color=sns.color_palette("viridis", 3)[0],
                alpha=0.75,
                linestyle='-',
                linewidth=linewidth)
        df = load_orbit('../../data/raw_equal_energy/vertical_L2_1299.txt')
        ax.plot(df['x'],
                df['y'],
                df['z'],
                color=sns.color_palette("viridis", 3)[1],
                alpha=0.75,
                linestyle='-',
                linewidth=linewidth)
        df = load_orbit('../../data/raw_equal_energy/halo_L2_651.txt')
        ax.plot(df['x'],
                df['y'],
                df['z'],
                color=sns.color_palette("viridis", 3)[2],
                alpha=0.75,
                linestyle='-',
                linewidth=linewidth)

        ax.set_xlabel('x [-]')
        ax.set_ylabel('y [-]')
        ax.set_zlabel('z [-]')
        ax.grid(True, which='both', ls=':')
        # ax.view_init(25, -60)
        ax.view_init(20, -60)
        # ax.set_xlim([0.7, 1.3])
        # ax.set_ylim([-0.3, 0.3])
        # ax.set_zlim([-0.3, 0.3])
        ax.set_xlim([0.8, 1.2])
        ax.set_ylim([-0.2, 0.2])
        ax.set_zlim([-0.2, 0.2])
        plt.tight_layout()

        # plt.show()
        # fig.savefig('../../../data/figures/family_of_equal_energy.png')
        if self.lowDPI:
            fig.savefig('../../data/figures/new_family_of_equal_energy.png',
                        transparent=True,
                        dpi=self.dpi)
        else:
            fig.savefig('../../data/figures/new_family_of_equal_energy.pdf',
                        transparent=True)
        # tikz_save('../../../data/figures/family_of_equal_energy.tex')
        plt.close()
        pass
Esempio n. 11
0
    def plot_image_trajectories_with_angle(self, theta):
        line_width_near_heteroclinic = 2

        print('Theta:')
        # for theta in self.thetaRangeList:
        print(theta)

        df_s = load_manifold_refactored('../../data/raw/poincare_sections/' +
                                        str(self.numberOfOrbitsPerManifold) +
                                        '/L2_' + self.orbitType +
                                        '_W_S_min_3.1_' + str(int(theta)) +
                                        '_full.txt')
        df_u = load_manifold_refactored('../../data/raw/poincare_sections/' +
                                        str(self.numberOfOrbitsPerManifold) +
                                        '/L1_' + self.orbitType +
                                        '_W_U_plus_3.1_' + str(int(theta)) +
                                        '_full.txt')

        fig = plt.figure(figsize=self.figSize)
        ax0 = fig.add_subplot(111, projection='3d')

        plot_alpha = 1

        # Plot near-heteroclinic connection
        index_near_heteroclinic_s = int(
            self.minimumImpulse.loc[theta]['taus'] *
            self.numberOfOrbitsPerManifold)
        index_near_heteroclinic_u = int(
            self.minimumImpulse.loc[theta]['tauu'] *
            self.numberOfOrbitsPerManifold)

        portrait_s = []
        portrait_u = []
        for i in range(0, 5000, 10):
            portrait_s.append(df_s.xs(i).head(1))
            portrait_u.append(df_u.xs(i).tail(1))
            pass

        portrait_s = pd.concat(portrait_s)
        portrait_u = pd.concat(portrait_u)
        plt.plot(portrait_s['x'],
                 portrait_s['y'],
                 portrait_s['z'],
                 color='g',
                 linewidth=0.5)
        plt.plot(portrait_u['x'],
                 portrait_u['y'],
                 portrait_u['z'],
                 color='r',
                 linewidth=0.5)

        # for i in range(0, 5000, 10):
        #     ax0.scatter(df_s.xs(i).head(1)['x'], df_s.xs(i).head(1)['y'],
        #                 df_s.xs(i).head(1)['z'], color='g', s=0.1)
        #     ax0.scatter(df_u.xs(i).tail(1)['x'], df_u.xs(i).tail(1)['y'],
        #                 df_u.xs(i).tail(1)['z'], color='r', s=0.1)

        # (T1)
        ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                 df_s.xs(index_near_heteroclinic_s)['y'],
                 df_s.xs(index_near_heteroclinic_s)['z'],
                 color='g',
                 alpha=plot_alpha,
                 linewidth=line_width_near_heteroclinic)
        ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                 df_u.xs(index_near_heteroclinic_u)['y'],
                 df_u.xs(index_near_heteroclinic_u)['z'],
                 color='r',
                 alpha=plot_alpha,
                 linewidth=line_width_near_heteroclinic)

        # # (T4)
        # ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'], -df_s.xs(index_near_heteroclinic_s)['y'], df_s.xs(index_near_heteroclinic_s)['z'], color='r', alpha=plot_alpha, linewidth=line_width_near_heteroclinic)
        # ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'], -df_u.xs(index_near_heteroclinic_u)['y'], df_u.xs(index_near_heteroclinic_u)['z'], color='g', alpha=plot_alpha, linewidth=line_width_near_heteroclinic)
        #
        # # (T3)
        # ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'], df_s.xs(index_near_heteroclinic_s)['y'],
        #          -df_s.xs(index_near_heteroclinic_s)['z'], color='g', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)
        # ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'], df_u.xs(index_near_heteroclinic_u)['y'],
        #          -df_u.xs(index_near_heteroclinic_u)['z'], color='r', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)
        # # (T2)
        # ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'], -df_s.xs(index_near_heteroclinic_s)['y'],
        #          -df_s.xs(index_near_heteroclinic_s)['z'], color='r', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)
        # ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'], -df_u.xs(index_near_heteroclinic_u)['y'],
        #          -df_u.xs(index_near_heteroclinic_u)['z'], color='g', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        # for body in ['Moon']:
        for body in ['Earth', 'Moon']:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax0.plot_surface(x, y, z, color='black')

        # Lagrange points and bodies
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            ax0.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                        lagrange_points_df[lagrange_point_nr]['y'],
                        lagrange_points_df[lagrange_point_nr]['z'],
                        color='black',
                        marker='x')

        # Create cubic bounding box to simulate equal aspect ratio
        max_range = np.array([
            max(df_s['x'].max(), df_u['x'].max()) -
            min(df_s['x'].min(), df_u['x'].min()),
            max(df_s['y'].max(), df_u['y'].max()) -
            min(df_s['y'].min(), df_u['y'].min()),
            max(df_s['z'].max(), df_u['z'].max()) -
            min(df_s['z'].min(), df_u['z'].min())
        ]).max()

        Xb = 0.3 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten(
        ) + 0.2 * (max(df_s['x'].max(), df_u['x'].max()) +
                   min(df_s['x'].min(), df_u['x'].min()))
        Yb = 0.3 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten(
        ) + 0.5 * (max(df_s['y'].max(), df_u['y'].max()) +
                   min(df_s['y'].min(), df_u['y'].min()))
        Zb = 0.3 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten(
        ) + 0.5 * (max(df_s['z'].max(), df_u['z'].max()) +
                   min(df_s['z'].min(), df_u['z'].min()))
        # Comment or uncomment following both lines to test the fake bounding box:
        if self.orbitType != 'halo':
            for xb, yb, zb in zip(Xb, Yb, Zb):
                ax0.plot([xb], [yb], [zb], 'w')

        arc_length = 0.2
        surface_alpha = 0.1
        surface_color = 'black'

        x_range = np.arange(1 - self.massParameter - arc_length * 0.75,
                            1 - self.massParameter, 0.001)
        z_range = np.arange(-arc_length * 0.75, arc_length * 0.75, 0.001)
        x_mesh, z_mesh = np.meshgrid(x_range, z_range)
        y_mesh = -abs(x_mesh -
                      (1 - self.massParameter)) / np.tan(35 * np.pi / 180)

        # Plot poincare plane
        ax0.plot_surface(x_mesh,
                         y_mesh,
                         z_mesh,
                         alpha=surface_alpha,
                         color=surface_color)
        ax0.plot_wireframe(x_mesh,
                           y_mesh,
                           z_mesh,
                           color=surface_color,
                           rstride=500,
                           cstride=500,
                           linewidth=1)

        # Plot line at angle
        plt.plot(
            [1 - self.massParameter, np.min(x_mesh)], [0, np.min(y_mesh)],
            [0, 0],
            color='k',
            linestyle=':',
            linewidth=1)

        # Plot line orthogonal to collinear points
        plt.plot([1 - self.massParameter, 1 - self.massParameter],
                 [0, np.min(y_mesh)], [0, 0],
                 color='k',
                 linestyle=':',
                 linewidth=1)

        # Plot line from primary to L2
        plt.plot([-self.massParameter, lagrange_points_df['L2']['x']], [0, 0],
                 [0, 0],
                 color='k',
                 linestyle=':',
                 linewidth=1)

        # Indicate connection on plane
        ax0.scatter(df_u.xs(index_near_heteroclinic_u).tail(1)['x'],
                    df_u.xs(index_near_heteroclinic_u).tail(1)['y'],
                    df_u.xs(index_near_heteroclinic_u).tail(1)['z'],
                    s=20,
                    linewidth=line_width_near_heteroclinic,
                    facecolors='none',
                    edgecolors='r')

        # Set viewpoint
        ax0.set_xlim(lagrange_points_df['L1']['x'],
                     lagrange_points_df['L2']['x'])
        ax0.set_ylim(-0.15, 0.05)
        ax0.set_zlim(-0.1, 0.1)
        print(ax0.azim)
        print(ax0.elev)
        # ax0.view_init(elev=15, azim=220)  # Single line
        ax0.view_init(elev=5, azim=220)  # View from Earth
        # ax0.view_init(elev=5, azim=340)  # View from outside
        plt.tight_layout()
        fig.subplots_adjust(right=1.1)
        plt.axis('off')
        # plt.show()
        plt.savefig('../../data/figures/cover_page_angle.pdf',
                    transparent=True)
        plt.close()
        pass
Esempio n. 12
0
    def plot_image_trajectories(self, theta):
        line_width_near_heteroclinic = 3

        print('Theta:')
        # for theta in self.thetaRangeList:
        print(theta)

        df_s = load_manifold_refactored('../../data/raw/poincare_sections/' +
                                        str(self.numberOfOrbitsPerManifold) +
                                        '/L2_' + self.orbitType +
                                        '_W_S_min_3.1_' + str(int(theta)) +
                                        '_full.txt')
        df_u = load_manifold_refactored('../../data/raw/poincare_sections/' +
                                        str(self.numberOfOrbitsPerManifold) +
                                        '/L1_' + self.orbitType +
                                        '_W_U_plus_3.1_' + str(int(theta)) +
                                        '_full.txt')
        print(df_s)

        fig = plt.figure(figsize=self.figSize)
        ax0 = fig.add_subplot(111, projection='3d')

        plot_alpha = 1

        # Plot near-heteroclinic connection
        index_near_heteroclinic_s = int(
            self.minimumImpulse.loc[theta]['taus'] *
            self.numberOfOrbitsPerManifold)
        index_near_heteroclinic_u = int(
            self.minimumImpulse.loc[theta]['tauu'] *
            self.numberOfOrbitsPerManifold)

        # for i in range(0, 5000, 50):
        #     ax0.plot(df_s.xs(i)['x'], df_s.xs(i)['y'],
        #              df_s.xs(i)['z'], color='g', alpha=plot_alpha,
        #              linewidth=0.5)
        #     ax0.plot(df_u.xs(i)['x'], df_u.xs(i)['y'],
        #              df_u.xs(i)['z'], color='r', alpha=plot_alpha,
        #              linewidth=0.5)

        # (T1)
        ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                 df_s.xs(index_near_heteroclinic_s)['y'],
                 df_s.xs(index_near_heteroclinic_s)['z'],
                 color='g',
                 alpha=plot_alpha,
                 linewidth=line_width_near_heteroclinic)
        ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                 df_u.xs(index_near_heteroclinic_u)['y'],
                 df_u.xs(index_near_heteroclinic_u)['z'],
                 color='r',
                 alpha=plot_alpha,
                 linewidth=line_width_near_heteroclinic)

        # # (T4)
        # ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'], -df_s.xs(index_near_heteroclinic_s)['y'], df_s.xs(index_near_heteroclinic_s)['z'], color='r', alpha=plot_alpha, linewidth=line_width_near_heteroclinic)
        # ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'], -df_u.xs(index_near_heteroclinic_u)['y'], df_u.xs(index_near_heteroclinic_u)['z'], color='g', alpha=plot_alpha, linewidth=line_width_near_heteroclinic)
        #
        # # (T3)
        # ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'], df_s.xs(index_near_heteroclinic_s)['y'],
        #          -df_s.xs(index_near_heteroclinic_s)['z'], color='g', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)
        # ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'], df_u.xs(index_near_heteroclinic_u)['y'],
        #          -df_u.xs(index_near_heteroclinic_u)['z'], color='r', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)
        # # (T2)
        # ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'], -df_s.xs(index_near_heteroclinic_s)['y'],
        #          -df_s.xs(index_near_heteroclinic_s)['z'], color='r', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)
        # ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'], -df_u.xs(index_near_heteroclinic_u)['y'],
        #          -df_u.xs(index_near_heteroclinic_u)['z'], color='g', alpha=plot_alpha,
        #          linewidth=line_width_near_heteroclinic)

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        # for body in ['Earth', 'Moon']:
        for body in ['Moon']:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax0.plot_surface(x, y, z, color='black')

        # Lagrange points and bodies
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            ax0.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                        lagrange_points_df[lagrange_point_nr]['y'],
                        lagrange_points_df[lagrange_point_nr]['z'],
                        color='black',
                        marker='x')

        # Create cubic bounding box to simulate equal aspect ratio
        max_range = np.array([
            max(df_s['x'].max(), df_u['x'].max()) -
            min(df_s['x'].min(), df_u['x'].min()),
            max(df_s['y'].max(), df_u['y'].max()) -
            min(df_s['y'].min(), df_u['y'].min()),
            max(df_s['z'].max(), df_u['z'].max()) -
            min(df_s['z'].min(), df_u['z'].min())
        ]).max()

        Xb = 0.3 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten(
        ) + 0.2 * (max(df_s['x'].max(), df_u['x'].max()) +
                   min(df_s['x'].min(), df_u['x'].min()))
        Yb = 0.3 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten(
        ) + 0.5 * (max(df_s['y'].max(), df_u['y'].max()) +
                   min(df_s['y'].min(), df_u['y'].min()))
        Zb = 0.3 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten(
        ) + 0.5 * (max(df_s['z'].max(), df_u['z'].max()) +
                   min(df_s['z'].min(), df_u['z'].min()))
        # Comment or uncomment following both lines to test the fake bounding box:
        if self.orbitType != 'halo':
            for xb, yb, zb in zip(Xb, Yb, Zb):
                ax0.plot([xb], [yb], [zb], 'w')

        # azim=150
        # elev=25
        print(ax0.azim)
        print(ax0.elev)
        ax0.view_init(elev=15, azim=220)  # Single line
        # ax0.view_init(elev=20, azim=240)  # Manifold lines
        plt.tight_layout()
        plt.axis('off')
        # plt.show()

        plt.savefig('../../data/figures/cover_page.pdf', transparent=True)
        plt.close()
        pass
Esempio n. 13
0
    def animate(self):
        fig = plt.figure()
        self.ax = fig.add_subplot(111, projection='3d')

        self.horizontalLyapunov = [
            load_orbit('../../../data/raw/orbits/L' + str(1) + '_horizontal_' +
                       str(self.orbitIds['horizontal'][1][self.cLevel]) +
                       '_100.txt'),
            load_orbit('../../../data/raw/orbits/L' + str(2) + '_horizontal_' +
                       str(self.orbitIds['horizontal'][2][self.cLevel]) +
                       '_100.txt')
        ]

        self.verticalLyapunov = [
            load_orbit('../../../data/raw/orbits/L' + str(1) + '_vertical_' +
                       str(self.orbitIds['vertical'][1][self.cLevel]) +
                       '_100.txt'),
            load_orbit('../../../data/raw/orbits/L' + str(2) + '_vertical_' +
                       str(self.orbitIds['vertical'][2][self.cLevel]) +
                       '_100.txt')
        ]

        self.halo = [
            load_orbit('../../../data/raw/orbits/L' + str(1) + '_halo_' +
                       str(self.orbitIds['halo'][1][self.cLevel]) +
                       '_100.txt'),
            load_orbit('../../../data/raw/orbits/L' + str(2) + '_halo_' +
                       str(self.orbitIds['halo'][2][self.cLevel]) + '_100.txt')
        ]

        self.lines = [
            plt.plot([], [],
                     color=self.orbitColor,
                     alpha=self.orbitAlpha,
                     marker='o',
                     markevery=[-1])[0] for idx in range(6)
        ]

        # Text object to display absolute normalized time of trajectories within the manifolds
        self.timeText = self.ax.text2D(0.05,
                                       0.05,
                                       s='$\|t\| \\approx 0$',
                                       transform=self.ax.transAxes,
                                       size=self.timeTextSize)

        # Plot zero velocity surface
        x_range = np.arange(self.xLim[0], self.xLim[1], 0.001)
        y_range = np.arange(self.yLim[0], self.yLim[1], 0.001)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh = cr3bp_velocity(x_mesh, y_mesh, c_level)
        if z_mesh.min() < 0:
            plt.contour(x_mesh,
                        y_mesh,
                        z_mesh, [z_mesh.min(), 0],
                        colors='black',
                        alpha=0.3)

        # Plot both orbits
        for k in range(2):
            plt.plot(self.horizontalLyapunov[k]['x'],
                     self.horizontalLyapunov[k]['y'],
                     self.horizontalLyapunov[k]['z'],
                     color=self.orbitColor,
                     alpha=self.orbitAlpha,
                     linewidth=self.orbitLinewidth,
                     linestyle=':')
            plt.plot(self.verticalLyapunov[k]['x'],
                     self.verticalLyapunov[k]['y'],
                     self.verticalLyapunov[k]['z'],
                     color=self.orbitColor,
                     alpha=self.orbitAlpha,
                     linewidth=self.orbitLinewidth,
                     linestyle=':')
            plt.plot(self.halo[k]['x'],
                     self.halo[k]['y'],
                     self.halo[k]['z'],
                     color=self.orbitColor,
                     alpha=self.orbitAlpha,
                     linewidth=self.orbitLinewidth,
                     linestyle=':')

        # Plot both primaries
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            self.ax.plot_surface(x, y, z, color='black')

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            self.ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'],
                              lagrange_points_df[lagrange_point_nr]['y'],
                              lagrange_points_df[lagrange_point_nr]['z'],
                              color='black',
                              marker='x',
                              s=self.lagrangePointMarkerSize)

        title = 'Types of periodic libration point motion - Rotating spatial overview at C = ' + str(
            c_level)

        self.ax.set_xlim3d(self.xLim)
        self.ax.set_ylim3d(self.yLim)
        self.ax.set_zlim3d(self.zLim)
        self.ax.set_xlabel('x [-]')
        self.ax.set_ylabel('y [-]')
        self.ax.set_zlabel('z [-]')

        self.ax.grid(True, which='both', ls=':')
        fig.tight_layout()
        fig.subplots_adjust(top=0.9)
        plt.suptitle(title, size=self.suptitleSize)

        # Fix overlap between labels and ticks
        self.ax.xaxis._axinfo['label']['space_factor'] = 2.0
        self.ax.yaxis._axinfo['label']['space_factor'] = 2.0
        self.ax.zaxis._axinfo['label']['space_factor'] = 2.0

        self.initialElevation = self.ax.elev
        self.initialAzimuth = self.ax.azim

        # Determine the maximum value of t
        t_max = 0
        for lagrange_point_idx in [0, 1]:
            t_max = max(
                t_max, self.horizontalLyapunov[lagrange_point_idx].tail(1)
                ['time'].values[0])
            t_max = max(
                t_max, self.verticalLyapunov[lagrange_point_idx].tail(1)
                ['time'].values[0])
            t_max = max(
                t_max, self.halo[lagrange_point_idx].tail(1)['time'].values[0])
        print('Maximum value for t = ' + str(t_max) + ', animation t: = ')

        # Introduce a new time-vector for linearly spaced time throughout the animation
        self.t = np.linspace(0, t_max, np.round(t_max / 0.005) + 1)

        animation_function = animation.FuncAnimation(
            fig,
            self.update_lines,
            init_func=self.initiate_lines,
            frames=len(self.t),
            interval=1,
            blit=True)

        empty_writer_object = animation.writers['ffmpeg']
        animation_writer = empty_writer_object(
            fps=30, metadata=dict(artist='Koen Langemeijer'))
        file_name = '../../../data/animations/orbits/spatial_orbits_rotating_' + str(
            c_level) + '.mp4'
        animation_function.save(file_name, writer=animation_writer)
    def plot_image_trajectories(self):
        line_width_near_heteroclinic = 1.5

        print('Theta:')
        for theta in self.thetaRangeList:
            print(theta)

            df_s = load_manifold_refactored(
                '../../data/raw/poincare_sections/' +
                str(self.numberOfOrbitsPerManifold) + '/L2_' + self.orbitType +
                '_W_S_min_3.1_' + str(int(theta)) + '_full.txt')
            df_u = load_manifold_refactored(
                '../../data/raw/poincare_sections/' +
                str(self.numberOfOrbitsPerManifold) + '/L1_' + self.orbitType +
                '_W_U_plus_3.1_' + str(int(theta)) + '_full.txt')

            fig = plt.figure(figsize=self.figSize)
            ax0 = fig.add_subplot(111, projection='3d')

            if self.numberOfOrbitsPerManifold > 100:
                # Plot at max 100 lines
                range_step_size = int(self.numberOfOrbitsPerManifold / 100)
            else:
                range_step_size = 1

            plot_alpha = 1
            line_width = 0.5

            # Plot near-heteroclinic connection
            try:
                index_near_heteroclinic_s = int(
                    self.minimumImpulse.loc[theta]['tau1'] *
                    self.numberOfOrbitsPerManifold)
                index_near_heteroclinic_u = int(
                    self.minimumImpulse.loc[theta]['tau2'] *
                    self.numberOfOrbitsPerManifold)

                # (T1)
                ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                         df_s.xs(index_near_heteroclinic_s)['y'],
                         df_s.xs(index_near_heteroclinic_s)['z'],
                         color='g',
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                         df_u.xs(index_near_heteroclinic_u)['y'],
                         df_u.xs(index_near_heteroclinic_u)['z'],
                         color='r',
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)

                # (T4)
                ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                         -df_s.xs(index_near_heteroclinic_s)['y'],
                         df_s.xs(index_near_heteroclinic_s)['z'],
                         color='r',
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                         -df_u.xs(index_near_heteroclinic_u)['y'],
                         df_u.xs(index_near_heteroclinic_u)['z'],
                         color='g',
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)

                if orbit_type != 'horizontal':
                    # (T3)
                    ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                             df_s.xs(index_near_heteroclinic_s)['y'],
                             -df_s.xs(index_near_heteroclinic_s)['z'],
                             color='g',
                             alpha=plot_alpha,
                             linewidth=line_width_near_heteroclinic)
                    ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                             df_u.xs(index_near_heteroclinic_u)['y'],
                             -df_u.xs(index_near_heteroclinic_u)['z'],
                             color='r',
                             alpha=plot_alpha,
                             linewidth=line_width_near_heteroclinic)
                    # (T2)
                    ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                             -df_s.xs(index_near_heteroclinic_s)['y'],
                             -df_s.xs(index_near_heteroclinic_s)['z'],
                             color='r',
                             alpha=plot_alpha,
                             linewidth=line_width_near_heteroclinic)
                    ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                             -df_u.xs(index_near_heteroclinic_u)['y'],
                             -df_u.xs(index_near_heteroclinic_u)['z'],
                             color='g',
                             alpha=plot_alpha,
                             linewidth=line_width_near_heteroclinic)
                    pass

                connection_text = '$min(\Delta r)  \quad \\forall \enskip \Delta V < 0.5$ \n' + \
                                  '$\Delta V  = \enskip  $' + str(np.round(self.minimumImpulse.loc[theta]['dv'], 1)) + '\n' + \
                                  '$\Delta r  = \enskip $' + str(np.round(self.minimumImpulse.loc[theta]['dr'], 1))

                ax0.text2D(0.0,
                           0.8,
                           s=connection_text,
                           horizontalalignment='left',
                           verticalalignment='bottom',
                           transform=ax0.transAxes,
                           bbox=dict(boxstyle="round", fc="w"))
            except KeyError:
                pass

            bodies_df = load_bodies_location()
            u = np.linspace(0, 2 * np.pi, 100)
            v = np.linspace(0, np.pi, 100)
            x = bodies_df['Moon']['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
            y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)),
                                                  np.cos(v))

            ax0.plot_surface(x, y, z, color='black')

            # Create cubic bounding box to simulate equal aspect ratio
            max_range = np.array([
                max(df_s['x'].max(), df_u['x'].max()) -
                min(df_s['x'].min(), df_u['x'].min()),
                max(df_s['y'].max(), df_u['y'].max()) -
                min(df_s['y'].min(), df_u['y'].min()),
                max(df_s['z'].max(), df_u['z'].max()) -
                min(df_s['z'].min(), df_u['z'].min())
            ]).max()

            Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten(
            ) + 0.5 * (max(df_s['x'].max(), df_u['x'].max()) +
                       min(df_s['x'].min(), df_u['x'].min()))
            Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten(
            ) + 0.5 * (max(df_s['y'].max(), df_u['y'].max()) +
                       min(df_s['y'].min(), df_u['y'].min()))
            Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten(
            ) + 0.5 * (max(df_s['z'].max(), df_u['z'].max()) +
                       min(df_s['z'].min(), df_u['z'].min()))
            # Comment or uncomment following both lines to test the fake bounding box:
            for xb, yb, zb in zip(Xb, Yb, Zb):
                ax0.plot([xb], [yb], [zb], 'w')

            ax0.set_xlabel('x [-]')
            ax0.set_ylabel('y [-]')
            ax0.set_zlabel('z [-]')

            ax0.grid(True, which='both', ls=':')

            fig.tight_layout()
            fig.subplots_adjust(top=0.9)
            plt.suptitle(
                self.orbitTypeForTitle +
                ' near-heteroclinic cycle  $\mathcal{W}^{U+} \cup \mathcal{W}^{S-}$ (C = 3.1, $\\theta$ = '
                + str(theta) + '$^\circ$)',
                size=self.suptitleSize)
            # plt.show()
            plt.savefig('../../data/figures/poincare_sections/' +
                        str(self.numberOfOrbitsPerManifold) + '/' +
                        self.orbitType + '_3.1_heteroclinic_cycle_' +
                        str(theta) + '.pdf',
                        transparent=True)
            plt.close()
        pass
Esempio n. 15
0
    def plot_family(self):
        c_normalized = [(value - min(self.C)) / (max(self.C) - min(self.C))
                        for value in self.C]
        colors = matplotlib.colors.ListedColormap(
            sns.color_palette("viridis_r"))(c_normalized)
        # colors = matplotlib.colors.ListedColormap(sns.dark_palette("blue", reverse=True))(c_normalized)

        sm = plt.cm.ScalarMappable(cmap=matplotlib.colors.ListedColormap(
            sns.color_palette("viridis", len(self.C))),
                                   norm=plt.Normalize(vmin=min(self.C),
                                                      vmax=max(self.C)))
        # sm = plt.cm.ScalarMappable(cmap=sns.dark_palette("blue", as_cmap=True, reverse=True), norm=plt.Normalize(vmin=min(self.C), vmax=max(self.C)))
        # clean the array of the scalar mappable
        sm._A = []

        # Plot 1: 3d overview
        fig1 = plt.figure(figsize=self.figSize)
        ax1 = fig1.gca()

        # Plot 2: subplots
        if self.orbitType == 'horizontal':
            fig2 = plt.figure(figsize=(self.figSize[0], self.figSize[1] / 2))
            ax2 = fig2.add_subplot(1, 2, 1, projection='3d')
            ax5 = fig2.add_subplot(1, 2, 2)
        else:
            fig2 = plt.figure(figsize=self.figSize)
            ax2 = fig2.add_subplot(2, 2, 1, projection='3d')
            ax3 = fig2.add_subplot(2, 2, 4)
            ax4 = fig2.add_subplot(2, 2, 3)
            ax5 = fig2.add_subplot(2, 2, 2)

        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        # Lagrange points and bodies
        for lagrange_point_nr in lagrange_point_nrs:
            ax1.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                        lagrange_points_df[lagrange_point_nr]['y'],
                        color='black',
                        marker='x')
            ax2.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                        lagrange_points_df[lagrange_point_nr]['y'],
                        lagrange_points_df[lagrange_point_nr]['z'],
                        color='black',
                        marker='x')
            ax5.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                        lagrange_points_df[lagrange_point_nr]['y'],
                        color='black',
                        marker='x')
            if self.orbitType != 'horizontal':
                ax3.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                            lagrange_points_df[lagrange_point_nr]['z'],
                            color='black',
                            marker='x')
                ax4.scatter(lagrange_points_df[lagrange_point_nr]['y'],
                            lagrange_points_df[lagrange_point_nr]['z'],
                            color='black',
                            marker='x')

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        x = bodies_df['Moon']['r'] * np.outer(
            np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
        y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
        z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)), np.cos(v))

        ax1.contourf(x, y, z, colors='black')
        ax2.plot_surface(x, y, z, color='black')
        ax5.contourf(x, y, z, colors='black')
        if self.orbitType != 'horizontal':
            ax3.contourf(x, z, y, colors='black')
            ax4.contourf(y, z, x, colors='black')

        # Determine color for plot
        # colorOrderOfLinearInstability = ['whitesmoke', 'silver', 'dimgrey']
        plot_alpha = 1
        line_width = 0.5

        # Plot every 100th member, including the ultimate member of the family
        spacing_factor = 100

        orbitIdsPlot = list(range(0, len(self.C) - 1, spacing_factor))
        if orbitIdsPlot[-1] != len(self.C) - 1:
            orbitIdsPlot.append(len(self.C) - 1)

        # Plot orbits
        for i in orbitIdsPlot:
            # plot_color = colorOrderOfLinearInstability[self.orderOfLinearInstability[i]]
            nan_correction = sum(
                [1 for nan in self.indexNanEntries if nan < i])
            plot_color = colors[self.plotColorIndexBasedOnC[i -
                                                            nan_correction]]
            df = load_orbit('../../data/raw/orbits/extended/L' +
                            str(self.lagrangePointNr) + '_' + self.orbitType +
                            '_' + str(i) + '.txt')
            ax1.plot(df['x'],
                     df['y'],
                     color=plot_color,
                     alpha=plot_alpha,
                     linewidth=line_width)
            ax2.plot(df['x'],
                     df['y'],
                     df['z'],
                     color=plot_color,
                     alpha=plot_alpha,
                     linewidth=line_width)
            ax5.plot(df['x'],
                     df['y'],
                     color=plot_color,
                     alpha=plot_alpha,
                     linewidth=line_width)
            if self.orbitType != 'horizontal':
                ax3.plot(df['x'],
                         df['z'],
                         color=plot_color,
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax4.plot(df['y'],
                         df['z'],
                         color=plot_color,
                         alpha=plot_alpha,
                         linewidth=line_width)

        # # Plot the bifurcations
        # for i in self.orbitIdBifurcations:
        #     # plot_color = 'b'
        #     nan_correction = sum([1 for nan in self.indexNanEntries if nan < i])
        #     plot_color = colors[self.plotColorIndexBasedOnC[i - nan_correction]]
        #     df = load_orbit('../../data/raw/orbits/extended/L' + str(self.lagrangePointNr) + '_' + self.orbitType + '_' + str(i) + '.txt')
        #     ax1.plot(df['x'], df['y'], color=plot_color, linewidth=3)
        #     ax2.plot(df['x'], df['y'], df['z'], color=plot_color, linewidth=3)
        #     ax5.plot(df['x'], df['y'], color=plot_color, linewidth=3)
        #     if self.orbitType != 'horizontal':
        #         ax3.plot(df['x'], df['z'], color=plot_color, linewidth=3)
        #         ax4.plot(df['y'], df['z'], color=plot_color, linewidth=3)

        ax1.set_xlabel('x [-]')
        ax1.set_ylabel('y [-]')
        ax1.grid(True, which='both', ls=':')

        ax2.set_xlabel('x [-]')
        ax2.set_ylabel('y [-]')
        ax2.set_zlabel('z [-]')
        ax2.set_zlim([-1.2, 1.2])
        ax2.grid(True, which='both', ls=':')
        ax2.view_init(30, -120)

        if self.orbitType != 'horizontal':
            ax3.set_xlabel('x [-]')
            ax3.set_ylabel('z [-]')
            ax3.set_ylim([-1.2, 1.2])
            ax3.grid(True, which='both', ls=':')

            ax4.set_xlabel('y [-]')
            ax4.set_ylabel('z [-]')
            ax4.set_ylim([-1.2, 1.2])
            ax4.grid(True, which='both', ls=':')

        ax5.set_xlabel('x [-]')
        ax5.set_ylabel('y [-]')
        ax5.grid(True, which='both', ls=':')

        fig2.tight_layout()
        if self.orbitType == 'horizontal':
            fig2.subplots_adjust(top=0.8)
        else:
            fig2.subplots_adjust(top=0.9)

        if self.orbitType != 'horizontal':
            cax, kw = matplotlib.colorbar.make_axes([ax2, ax3, ax4, ax5])
        else:
            cax, kw = matplotlib.colorbar.make_axes([ax2, ax5])
        cbar = plt.colorbar(sm, cax=cax, label='C [-]', **kw)

        plt.suptitle('$L_' + str(self.lagrangePointNr) + '$ ' +
                     self.orbitTypeForTitle + ' - Orthographic projection',
                     size=self.suptitleSize)

        fig1.suptitle('$L_' + str(self.lagrangePointNr) + '$ ' +
                      self.orbitTypeForTitle + ': family',
                      size=self.suptitleSize)

        fig2.savefig('../../data/figures/orbits/extended/L' +
                     str(self.lagrangePointNr) + '_' + self.orbitType +
                     '_family_subplots.pdf',
                     transparent=True)
        plt.close(fig2)

        plt.close()
        pass
    def plot_manifolds(self):
        line_width_near_heteroclinic = 2
        color_near_heteroclinic = 'k'

        print('Theta:')
        for theta in self.thetaRangeList:
            print(theta)

            df_s = load_manifold_refactored(
                '../../data/raw/poincare_sections/' +
                str(self.numberOfOrbitsPerManifold) + '/L2_' + self.orbitType +
                '_W_S_min_3.1_' + str(int(theta)) + '_full.txt')
            df_u = load_manifold_refactored(
                '../../data/raw/poincare_sections/' +
                str(self.numberOfOrbitsPerManifold) + '/L1_' + self.orbitType +
                '_W_U_plus_3.1_' + str(int(theta)) + '_full.txt')

            fig = plt.figure(figsize=self.figSize)
            ax0 = fig.add_subplot(2, 2, 1, projection='3d')
            ax1 = fig.add_subplot(2, 2, 2)
            ax3 = fig.add_subplot(2, 2, 3)
            ax2 = fig.add_subplot(2, 2, 4)

            # ax0.set_aspect('equal')
            # ax1.set_aspect('equal')
            # ax2.set_aspect('equal')
            # ax3.set_aspect('equal')

            if self.numberOfOrbitsPerManifold > 100:
                # Plot at max 100 lines
                range_step_size = int(self.numberOfOrbitsPerManifold / 100)
            else:
                range_step_size = 1

            plot_alpha = 1
            line_width = 0.5

            for i in range(0, self.numberOfOrbitsPerManifold, range_step_size):
                # Plot manifolds
                ax0.plot(df_u.xs(i)['x'],
                         df_u.xs(i)['y'],
                         df_u.xs(i)['z'],
                         color=self.colorPaletteUnstable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax0.plot(df_s.xs(i)['x'],
                         df_s.xs(i)['y'],
                         df_s.xs(i)['z'],
                         color=self.colorPaletteStable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax1.plot(df_s.xs(i)['x'],
                         df_s.xs(i)['y'],
                         color=self.colorPaletteStable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax1.plot(df_u.xs(i)['x'],
                         df_u.xs(i)['y'],
                         color=self.colorPaletteUnstable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax2.plot(df_s.xs(i)['x'],
                         df_s.xs(i)['z'],
                         color=self.colorPaletteStable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax2.plot(df_u.xs(i)['x'],
                         df_u.xs(i)['z'],
                         color=self.colorPaletteUnstable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax3.plot(df_s.xs(i)['y'],
                         df_s.xs(i)['z'],
                         color=self.colorPaletteStable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)
                ax3.plot(df_u.xs(i)['y'],
                         df_u.xs(i)['z'],
                         color=self.colorPaletteUnstable[i],
                         alpha=plot_alpha,
                         linewidth=line_width)

            # Plot near-heteroclinic connection
            try:
                index_near_heteroclinic_s = int(
                    self.minimumImpulse.loc[theta]['tau1'] *
                    self.numberOfOrbitsPerManifold)
                index_near_heteroclinic_u = int(
                    self.minimumImpulse.loc[theta]['tau2'] *
                    self.numberOfOrbitsPerManifold)

                ax0.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                         df_s.xs(index_near_heteroclinic_s)['y'],
                         df_s.xs(index_near_heteroclinic_s)['z'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax0.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                         df_u.xs(index_near_heteroclinic_u)['y'],
                         df_u.xs(index_near_heteroclinic_u)['z'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax1.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                         df_s.xs(index_near_heteroclinic_s)['y'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax1.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                         df_u.xs(index_near_heteroclinic_u)['y'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax2.plot(df_s.xs(index_near_heteroclinic_s)['x'],
                         df_s.xs(index_near_heteroclinic_s)['z'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax2.plot(df_u.xs(index_near_heteroclinic_u)['x'],
                         df_u.xs(index_near_heteroclinic_u)['z'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax3.plot(df_s.xs(index_near_heteroclinic_s)['y'],
                         df_s.xs(index_near_heteroclinic_s)['z'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)
                ax3.plot(df_u.xs(index_near_heteroclinic_u)['y'],
                         df_u.xs(index_near_heteroclinic_u)['z'],
                         color=color_near_heteroclinic,
                         alpha=plot_alpha,
                         linewidth=line_width_near_heteroclinic)

                connection_text = '$\Delta \mathbf{V} = $' + str(np.round(self.minimumImpulse.loc[theta]['dv'], 1)) + 'm/s \n' + \
                                  '$\Delta \mathbf{r} = $' + str(np.round(self.minimumImpulse.loc[theta]['dr'], 1)) + 'km'

                ax1.text(0.975,
                         0.075,
                         connection_text,
                         horizontalalignment='right',
                         verticalalignment='bottom',
                         transform=ax1.transAxes,
                         bbox={
                             'facecolor': 'navy',
                             'alpha': 0.1,
                             'pad': 3
                         })
            except KeyError:
                pass

            bodies_df = load_bodies_location()
            u = np.linspace(0, 2 * np.pi, 100)
            v = np.linspace(0, np.pi, 100)
            x = bodies_df['Moon']['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
            y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)),
                                                  np.cos(v))

            ax0.plot_surface(x, y, z, color='black')
            ax1.contourf(x, y, z, colors='black')
            ax2.contourf(x, z, y, colors='black')
            # ax3.contourf(y, z, x, colors='black')

            # Create cubic bounding box to simulate equal aspect ratio
            max_range = np.array([
                max(df_s['x'].max(), df_u['x'].max()) -
                min(df_s['x'].min(), df_u['x'].min()),
                max(df_s['y'].max(), df_u['y'].max()) -
                min(df_s['y'].min(), df_u['y'].min()),
                max(df_s['z'].max(), df_u['z'].max()) -
                min(df_s['z'].min(), df_u['z'].min())
            ]).max()

            Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten(
            ) + 0.5 * (max(df_s['x'].max(), df_u['x'].max()) +
                       min(df_s['x'].min(), df_u['x'].min()))
            Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten(
            ) + 0.5 * (max(df_s['y'].max(), df_u['y'].max()) +
                       min(df_s['y'].min(), df_u['y'].min()))
            Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten(
            ) + 0.5 * (max(df_s['z'].max(), df_u['z'].max()) +
                       min(df_s['z'].min(), df_u['z'].min()))
            # Comment or uncomment following both lines to test the fake bounding box:
            for xb, yb, zb in zip(Xb, Yb, Zb):
                ax0.plot([xb], [yb], [zb], 'w')

            ax0.set_xlabel('x [-]')
            ax0.set_ylabel('y [-]')
            ax0.set_zlabel('z [-]')

            ax1.set_xlabel('x [-]')
            ax1.set_ylabel('y [-]')

            ax2.set_xlabel('x [-]')
            ax2.set_ylabel('z [-]')

            ax3.set_xlabel('y [-]')
            ax3.set_ylabel('z [-]')

            ax0.grid(True, which='both', ls=':')
            ax1.grid(True, which='both', ls=':')
            ax2.grid(True, which='both', ls=':')
            ax3.grid(True, which='both', ls=':')

            fig.tight_layout()
            fig.subplots_adjust(top=0.9)
            plt.suptitle(
                'Near-heteroclinic connection for $min(\Delta r) \enskip \\forall \Delta V < 0.5$ (at  $\mathcal{W}^{U+} \cup \mathcal{W}^{S-}$, C = 3.1, $\\theta$ = '
                + str(theta) + '$^\circ$)',
                size=self.suptitleSize)
            # plt.show()
            plt.savefig('../../data/figures/poincare_sections/' +
                        str(self.numberOfOrbitsPerManifold) + '/' +
                        self.orbitType + '_3.1_heteroclinic_connection_' +
                        str(theta) + '.pdf')
            plt.close()
        pass
Esempio n. 17
0
    def plot_result(self):
        color_palette_green = sns.dark_palette(
            'green', n_colors=self.numberOfOrbitsPerManifold)
        color_palette_red = sns.dark_palette(
            'red', n_colors=self.numberOfOrbitsPerManifold)

        plt.figure(figsize=(5 * (1 + np.sqrt(5)) / 2, 5))
        gs = gridspec.GridSpec(2, 2)
        ax1 = plt.subplot(gs[0, :])
        ax2 = plt.subplot(gs[1, 0])
        ax3 = plt.subplot(gs[1, 1])

        # Subplot 1: manifolds
        for i in range(self.numberOfOrbitsPerManifold):
            ax1.plot(self.WS.xs(i)['x'],
                     self.WS.xs(i)['y'],
                     color=color_palette_green[i],
                     alpha=0.5)
            ax1.plot(self.WU.xs(i)['x'],
                     self.WU.xs(i)['y'],
                     color=color_palette_red[i],
                     alpha=0.5)

        x_range = np.arange(ax1.get_xlim()[0], ax1.get_xlim()[1], 0.001)
        y_range = np.arange(ax1.get_ylim()[0] * 1.2,
                            ax1.get_ylim()[1] * 1.2, 0.001)
        X, Y = np.meshgrid(x_range, y_range)
        Z = cr3bp_velocity(X, Y, self.C[0])

        if Z.min() < 0:
            ax1.contourf(X, Y, Z, [Z.min(), 0], colors='black', alpha=0.2)

        if self.U_section == 2:
            # ax1.axvline(1 - self.massParameter, color='black')
            ax1.plot([1 - self.massParameter, 1 - self.massParameter],
                     [-0.11, 0.01],
                     color='black',
                     linewidth=3)
            ax1.text(s='$\sum_2$', x=(1 - 0.5 * self.massParameter), y=0.01)

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        x = bodies_df['Moon']['r'] * np.outer(
            np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
        y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
        z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
        # ax1.scatter(x, y, color='black', s=1)
        ax1.contourf(x, y, z, [z.min(), 0], colors='black')
        ax1.grid(True, which='both', ls=':')
        ax1.set_title('$C_1 = ' + str(self.C[0]) + ', C_2 = ' +
                      str(self.C[1]) + '$')
        ax1.set_aspect('equal', adjustable='box')

        # Subplot 2: poincare
        v_max = 2
        if self.U_section in set([2, 3]):
            variable_axis = 'y'
        elif self.U_section in set([3, 4]):
            variable_axis = 'x'

        ax2.plot(
            self.poincareWS[abs(self.poincareWS[variable_axis + 'dot']) <
                            v_max][variable_axis].values,
            self.poincareWS[abs(self.poincareWS[variable_axis +
                                                'dot']) < v_max][variable_axis
                                                                 +
                                                                 'dot'].values,
            color='g')
        ax2.plot(
            self.poincareWU[abs(self.poincareWU[variable_axis + 'dot']) <
                            v_max][variable_axis].values,
            self.poincareWU[abs(self.poincareWU[variable_axis +
                                                'dot']) < v_max][variable_axis
                                                                 +
                                                                 'dot'].values,
            color='r')

        # Find entry of lowest difference in derivative of variable_axis (which is the variable with maximum spread in phase plane)
        s = set(
            np.round(self.poincareWS[variable_axis + 'dot'],
                     self.roundOrderConnection))
        intersections = list(
            s.intersection(
                np.round(self.poincareWU[variable_axis + 'dot'],
                         self.roundOrderConnection)))
        poincare_w_s_in_v = self.poincareWS[np.round(
            self.poincareWS[variable_axis + 'dot'],
            self.roundOrderConnection).isin(intersections)]
        poincare_w_u_in_v = self.poincareWU[np.round(
            self.poincareWU[variable_axis + 'dot'],
            self.roundOrderConnection).isin(intersections)]

        # Use tuples to bind pairs of position and velocity
        subset = poincare_w_s_in_v[[variable_axis, variable_axis + 'dot']]
        tuples_w_s_in_v = [
            tuple(np.round(x, self.roundOrderConnection))
            for x in subset.values
        ]
        subset = poincare_w_u_in_v[[variable_axis, variable_axis + 'dot']]
        tuples_w_u_in_v = [
            tuple(np.round(x, self.roundOrderConnection))
            for x in subset.values
        ]

        s = set(tuples_w_s_in_v)
        intersections = list(s.intersection(tuples_w_u_in_v))

        for intersection in intersections:
            poincare_temp = poincare_w_s_in_v[np.round(
                poincare_w_s_in_v[variable_axis], self.roundOrderConnection) ==
                                              intersection[0]]
            poincare_temp = poincare_temp[np.round(
                poincare_temp[variable_axis + 'dot'],
                self.roundOrderConnection) == intersection[1]]
            idx_s = int(poincare_temp.index.values)
            poincare_temp = poincare_w_u_in_v[np.round(
                poincare_w_u_in_v[variable_axis], self.roundOrderConnection) ==
                                              intersection[0]]
            poincare_temp = poincare_temp[np.round(
                poincare_temp[variable_axis + 'dot'],
                self.roundOrderConnection) == intersection[1]]
            idx_u = int(poincare_temp.index.values)

            ax2.scatter(self.poincareWS[variable_axis][idx_s],
                        self.poincareWS[variable_axis + 'dot'][idx_s],
                        color='black')
            ax2.scatter(self.poincareWU[variable_axis][idx_u],
                        self.poincareWU[variable_axis + 'dot'][idx_u],
                        color='black')

            ax1.plot(self.WS.xs(idx_s)['x'],
                     self.WS.xs(idx_s)['y'],
                     color='black')
            ax1.plot(self.WU.xs(idx_u)['x'],
                     self.WU.xs(idx_u)['y'],
                     color='black')

        ax2.set_xlabel('$' + variable_axis + '$')
        ax2.set_ylabel('$\dot{' + variable_axis + '}$')
        ax2.set_ylim([-1.5, 1.5])
        ax2.grid(True, which='both', ls=':')

        title = '$\sum_' + str(self.U_section) + '$'
        ax2.set_title(title)

        # Subplot 3: x error
        # ax3.axhline(abs(self.poincareWS['y'][46] - self.poincareWU['y'][65]))
        # ax3.axhline(abs(self.poincareWS['y'][37] - self.poincareWU['y'][77]))
        # ax3.axhline(abs(self.poincareWS['ydot'][46] - self.poincareWU['ydot'][65]))
        # ax3.axhline(abs(self.poincareWS['ydot'][37] - self.poincareWU['ydot'][77]))
        if self.U_section == (2 or 3):
            ax3.semilogy(abs((1 - self.massParameter) -
                             self.poincareWS['x'].values),
                         color='g')
            ax3.semilogy(abs((1 - self.massParameter) -
                             self.poincareWU['x'].values),
                         color='r')
            ax3.set_ylabel('$\| x - (1-\mu) \|$')
        elif self.U_section == (1 or 4):
            ax3.semilogy(abs(self.poincareWS['y'].values), color='g')
            ax3.semilogy(abs(self.poincareWU['y'].values), color='r')
            ax3.set_ylabel('$\| y \|$')

        ax3.set_xlabel('orbitId [-]')
        ax3.grid(True, which='both', ls=':')
        plt.tight_layout()

        # plt.savefig('../../data/figures/heteroclinic_connection.pdf')
        # plt.savefig('../../data/figures/homoclinic_connection.pdf')
        pass
    def animate(self):
        self.W_S_plus = [
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(1) + '_' +
                self.orbitType + '_' + str(self.orbitIds[0]) +
                '_W_S_plus.txt'),
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(2) + '_' +
                self.orbitType + '_' + str(self.orbitIds[1]) + '_W_S_plus.txt')
        ]
        self.W_S_min = [
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(1) + '_' +
                self.orbitType + '_' + str(self.orbitIds[0]) + '_W_S_min.txt'),
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(2) + '_' +
                self.orbitType + '_' + str(self.orbitIds[1]) + '_W_S_min.txt')
        ]
        self.W_U_plus = [
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(1) + '_' +
                self.orbitType + '_' + str(self.orbitIds[0]) +
                '_W_U_plus.txt'),
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(2) + '_' +
                self.orbitType + '_' + str(self.orbitIds[1]) + '_W_U_plus.txt')
        ]
        self.W_U_min = [
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(1) + '_' +
                self.orbitType + '_' + str(self.orbitIds[0]) + '_W_U_min.txt'),
            load_manifold_refactored(
                '../../../data/raw/manifolds/refined_for_c/L' + str(2) + '_' +
                self.orbitType + '_' + str(self.orbitIds[1]) + '_W_U_min.txt')
        ]

        self.numberOfOrbitsPerManifold = len(
            set(self.W_S_plus[0].index.get_level_values(0)))
        color_palette_green = sns.dark_palette(
            'green', n_colors=self.numberOfOrbitsPerManifold)
        color_palette_red = sns.dark_palette(
            'red', n_colors=self.numberOfOrbitsPerManifold)

        self.lines = [
            self.ax.plot([], [],
                         color=color_palette_red[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ]
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_green[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_red[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_green[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_red[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_green[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_green[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])
        self.lines.extend([
            self.ax.plot([], [],
                         color=color_palette_red[idx],
                         alpha=self.orbitAlpha)[0]
            for idx in range(self.numberOfOrbitsPerManifold)
        ])

        # Text object to display absolute normalized time of trajectories within the manifolds
        self.timeText = self.ax.text2D(0.05,
                                       0.05,
                                       s='$\|t\| \\approx 0$',
                                       transform=self.ax.transAxes,
                                       size=self.timeTextSize)

        # Plot zero velocity surface
        x_range = np.arange(self.xLim[0], self.xLim[1], 0.001)
        y_range = np.arange(self.yLim[0], self.yLim[1], 0.001)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh = cr3bp_velocity(x_mesh, y_mesh, self.cLevel)
        if z_mesh.min() < 0:
            self.ax.contour(x_mesh,
                            y_mesh,
                            z_mesh, [z_mesh.min(), 0],
                            colors='black',
                            alpha=0.3)

        # Plot both orbits
        for k in range(2):
            orbit_df = load_orbit('../../../data/raw/orbits/refined_for_c/L' +
                                  str(k + 1) + '_' + self.orbitType + '_' +
                                  str(self.orbitIds[k]) + '.txt')
            self.ax.plot(orbit_df['x'],
                         orbit_df['y'],
                         orbit_df['z'],
                         color=self.orbitColor,
                         alpha=self.orbitAlpha,
                         linewidth=self.orbitLinewidth)

        # Plot both primaries
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            self.ax.plot_surface(x, y, z, color='black')

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            self.ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'],
                              lagrange_points_df[lagrange_point_nr]['y'],
                              lagrange_points_df[lagrange_point_nr]['z'],
                              color='black',
                              marker='x',
                              s=self.lagrangePointMarkerSize)

        title = self.orbitTypeForTitle + ' $\{ \mathcal{W}^{S \pm}, \mathcal{W}^{U \pm} \}$ - Orthographic projection (C = ' + str(
            c_level) + ')'

        # self.ax.set_xlim3d(self.xLim)
        # self.ax.set_ylim3d(self.yLim)
        # self.ax.set_zlim3d(self.zLim)
        self.ax.set_xlim(self.xLim)
        self.ax.set_ylim(self.yLim)
        self.ax.set_zlim(self.zLim)
        self.ax.axis('off')

        # fig.tight_layout()
        self.fig.subplots_adjust(top=0.9)
        self.fig.suptitle(title, size=self.suptitleSize)

        self.initialElevation = self.ax.elev
        self.initialAzimuth = self.ax.azim

        # Determine the maximum value of t
        t_max = 0
        for lagrange_point_idx in [0, 1]:
            for index in range(self.numberOfOrbitsPerManifold):
                t_max = max(
                    t_max,
                    abs(self.W_S_plus[lagrange_point_idx].xs(index).head(
                        1).index.values[0]))
                t_max = max(
                    t_max,
                    abs(self.W_S_min[lagrange_point_idx].xs(index).head(
                        1).index.values[0]))
                t_max = max(
                    t_max,
                    abs(self.W_U_plus[lagrange_point_idx].xs(index).tail(
                        1).index.values[0]))
                t_max = max(
                    t_max,
                    abs(self.W_U_min[lagrange_point_idx].xs(index).tail(
                        1).index.values[0]))
        print('Maximum value for t = ' + str(t_max) + ', animation t: = ')

        # Introduce a new time-vector for linearly spaced time throughout the animation
        self.t = np.linspace(0, t_max, np.round(t_max / 0.01) + 1)

        self.animation_function = animation.FuncAnimation(
            self.fig,
            self.update_lines,
            init_func=self.initiate_lines,
            frames=len(self.t),
            interval=1,
            blit=True)

        self.empty_writer_object = animation.writers['ffmpeg']
        self.animation_writer = self.empty_writer_object(
            fps=30, metadata=dict(artist='Koen Langemeijer'))
        self.file_name = '../../../data/animations/manifolds/spatial_manifolds_rotating_no_axes_' + self.orbitType + '_' + str(
            self.cLevel) + '.mp4'
        self.animation_function.save(self.file_name,
                                     writer=self.animation_writer)
    def animate(self):

        color_palette_green = sns.dark_palette(
            'green', n_colors=self.numberOfOrbitsPerManifold)
        color_palette_red = sns.dark_palette(
            'red', n_colors=self.numberOfOrbitsPerManifold)

        self.lines = [
            self.ax.plot([], [],
                         color='red',
                         linewidth=self.orbitLinewidth,
                         alpha=self.orbitAlpha)[0],
            self.ax.plot([], [],
                         color='green',
                         linewidth=self.orbitLinewidth,
                         alpha=self.orbitAlpha)[0]
        ]

        # Text object to display absolute normalized time of trajectories within the manifolds
        self.timeText = self.ax.text2D(0.05,
                                       0.05,
                                       s='$\|t\| \\approx 0$',
                                       transform=self.ax.transAxes,
                                       size=self.timeTextSize)

        # Plot zero velocity surface
        x_range = np.arange(self.xLim[0], self.xLim[1], 0.001)
        y_range = np.arange(self.yLim[0], self.yLim[1], 0.001)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh = cr3bp_velocity(x_mesh, y_mesh, self.cLevel)
        if z_mesh.min() < 0:
            # plt.contour(x_mesh, y_mesh, z_mesh, [z_mesh.min(), 0], colors='black', alpha=0.3)
            self.ax.contour(x_mesh,
                            y_mesh,
                            z_mesh,
                            list(np.linspace(z_mesh.min(), 0, 10)),
                            cmap='gist_gray_r',
                            alpha=0.5)

        # Plot both orbits
        for k in range(2):
            orbit_df = load_orbit(
                '../../../data/raw/orbits/refined_for_c/L' + str(k + 1) + '_' +
                self.orbitType + '_' +
                str(self.orbitIds[self.orbitType][k + 1][self.cLevel]) +
                '.txt')
            self.ax.plot(orbit_df['x'],
                         orbit_df['y'],
                         orbit_df['z'],
                         color=self.orbitColor,
                         alpha=self.orbitAlpha,
                         linewidth=2,
                         linestyle=':')

        # Plot both primaries
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(
                np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            self.ax.plot_surface(x, y, z, color='black')

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            self.ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'],
                              lagrange_points_df[lagrange_point_nr]['y'],
                              lagrange_points_df[lagrange_point_nr]['z'],
                              color='black',
                              marker='x',
                              s=self.lagrangePointMarkerSize)

        title = self.orbitTypeForTitle + ' $\{ \mathcal{W}^{S \pm}, \mathcal{W}^{U \pm} \}$ - Orthographic projection (C = ' + str(
            self.cLevel) + ')'

        self.ax.set_xlim(self.xLim)
        self.ax.set_ylim(self.yLim)
        self.ax.set_zlim(self.zLim)
        self.ax.set_xlabel('x [-]')
        self.ax.set_ylabel('y [-]')
        self.ax.set_zlabel('z [-]')

        self.ax.grid(True, which='both', ls=':')
        # self.fig.tight_layout()
        self.fig.subplots_adjust(top=0.9)
        self.fig.suptitle(title, size=self.suptitleSize)

        # Fix overlap between labels and ticks
        self.ax.xaxis._axinfo['label']['space_factor'] = 6.0
        self.ax.yaxis._axinfo['label']['space_factor'] = 6.0
        self.ax.zaxis._axinfo['label']['space_factor'] = 6.0

        # Determine the maximum value of t
        t_max = max(abs(self.W_U_plus.index)) + max(abs(self.W_S_min.index))
        print('Maximum value for unstable = ' +
              str(max(abs(self.W_U_plus.index))))
        print('Maximum value for stable = ' +
              str(max(abs(self.W_S_min.index))))
        print('Maximum value for t = ' + str(t_max) + ', animation t: = ')

        # Introduce a new time-vector for linearly spaced time throughout the animation
        self.t = np.linspace(0, t_max, 150)

        self.animation_function = animation.FuncAnimation(
            self.fig,
            self.update_lines,
            init_func=self.initiate_lines,
            frames=len(self.t),
            interval=1,
            blit=True)

        self.empty_writer_object = animation.writers['ffmpeg']
        self.animation_writer = self.empty_writer_object(
            fps=30, metadata=dict(artist='Koen Langemeijer'))
        self.file_name = '../../../data/animations/natural_connections/spatial_heteroclinic_' + self.orbitType + '_' + str(
            int(self.theta)) + '.mp4'
        self.animation_function.save(self.file_name,
                                     writer=self.animation_writer)
    def animate(self):
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        self.W_S_plus = [load_manifold('../../../data/raw/manifolds/L' + str(1) + '_' + self.orbitType + '_' + str(self.orbitIds[0]) + '_W_S_plus.txt'),
                         load_manifold('../../../data/raw/manifolds/L' + str(2) + '_' + self.orbitType + '_' + str(self.orbitIds[1]) + '_W_S_plus.txt')]
        self.W_S_min = [load_manifold('../../../data/raw/manifolds/L' + str(1) + '_' + self.orbitType + '_' + str(self.orbitIds[0]) + '_W_S_min.txt'),
                        load_manifold('../../../data/raw/manifolds/L' + str(2) + '_' + self.orbitType + '_' + str(self.orbitIds[1]) + '_W_S_min.txt')]
        self.W_U_plus = [load_manifold('../../../data/raw/manifolds/L' + str(1) + '_' + self.orbitType + '_' + str(self.orbitIds[0]) + '_W_U_plus.txt'),
                         load_manifold('../../../data/raw/manifolds/L' + str(2) + '_' + self.orbitType + '_' + str(self.orbitIds[1]) + '_W_U_plus.txt')]
        self.W_U_min = [load_manifold('../../../data/raw/manifolds/L' + str(1) + '_' + self.orbitType + '_' + str(self.orbitIds[0]) + '_W_U_min.txt'),
                        load_manifold('../../../data/raw/manifolds/L' + str(2) + '_' + self.orbitType + '_' + str(self.orbitIds[1]) + '_W_U_min.txt')]

        self.numberOfOrbitsPerManifold = len(set(self.W_S_plus[0].index.get_level_values(0)))
        color_palette_green = sns.dark_palette('green', n_colors=self.numberOfOrbitsPerManifold)
        color_palette_red = sns.dark_palette('red', n_colors=self.numberOfOrbitsPerManifold)

        self.lines = [plt.plot([], [], color=color_palette_red[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)]
        self.lines.extend([plt.plot([], [], color=color_palette_green[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])
        self.lines.extend([plt.plot([], [], color=color_palette_red[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])
        self.lines.extend([plt.plot([], [], color=color_palette_green[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])
        self.lines.extend([plt.plot([], [], color=color_palette_red[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])
        self.lines.extend([plt.plot([], [], color=color_palette_green[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])
        self.lines.extend([plt.plot([], [], color=color_palette_green[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])
        self.lines.extend([plt.plot([], [], color=color_palette_red[idx], alpha=self.orbitAlpha)[0] for idx in range(self.numberOfOrbitsPerManifold)])

        # Text object to display absolute normalized time of trajectories within the manifolds
        self.timeText = ax.text2D(0.05, 0.05, s='$\|t\| \\approx 0$', transform=ax.transAxes, size=self.timeTextSize)

        # Plot zero velocity surface
        x_range = np.arange(self.xLim[0], self.xLim[1], 0.001)
        y_range = np.arange(self.yLim[0], self.yLim[1], 0.001)
        x_mesh, y_mesh = np.meshgrid(x_range, y_range)
        z_mesh = cr3bp_velocity(x_mesh, y_mesh, c_level)
        if z_mesh.min() < 0:
            plt.contour(x_mesh, y_mesh, z_mesh, [z_mesh.min(), 0], colors='black', alpha=0.3)

        # Plot both orbits
        for k in range(2):
            orbit_df = load_orbit('../../../data/raw/orbits/L' + str(k+1) + '_' + self.orbitType + '_' + str(self.orbitIds[k]) + '.txt')
            plt.plot(orbit_df['x'], orbit_df['y'], orbit_df['z'], color=self.orbitColor, alpha=self.orbitAlpha, linewidth=self.orbitLinewidth)

        # Plot both primaries
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        bodies_df = load_bodies_location()
        for body in bodies_df:
            x = bodies_df[body]['r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df[body]['x']
            y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
            z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
            ax.plot_surface(x, y, z, color='black')

        # Plot Lagrange points 1 and 2
        lagrange_points_df = load_lagrange_points_location()
        lagrange_point_nrs = ['L1', 'L2']
        for lagrange_point_nr in lagrange_point_nrs:
            ax.scatter3D(lagrange_points_df[lagrange_point_nr]['x'], lagrange_points_df[lagrange_point_nr]['y'],
                         lagrange_points_df[lagrange_point_nr]['z'], color='black', marker='x', s=self.lagrangePointMarkerSize)

        title = self.orbitTypeForTitle + ' $\{ \mathcal{W}^{S \pm}, \mathcal{W}^{U \pm} \}$ - Spatial overview at C = ' + str(c_level)

        ax.set_xlim3d(self.xLim)
        ax.set_ylim3d(self.yLim)
        ax.set_zlim3d(self.zLim)
        ax.set_xlabel('x [-]')
        ax.set_ylabel('y [-]')
        ax.set_zlabel('z [-]')

        ax.grid(True, which='both', ls=':')
        fig.tight_layout()
        fig.subplots_adjust(top=0.9)
        plt.suptitle(title, size=self.suptitleSize)

        # Fix overlap between labels and ticks
        ax.xaxis._axinfo['label']['space_factor'] = 6.0
        ax.yaxis._axinfo['label']['space_factor'] = 6.0
        ax.zaxis._axinfo['label']['space_factor'] = 6.0

        # Determine the maximum value of t
        t_max = 0
        for lagrange_point_idx in [0, 1]:
            for index in range(self.numberOfOrbitsPerManifold):
                t_max = max(t_max, abs(self.W_S_plus[lagrange_point_idx].xs(index).tail(1).index.values[0]))
                t_max = max(t_max, abs(self.W_S_min[lagrange_point_idx].xs(index).tail(1).index.values[0]))
                t_max = max(t_max, abs(self.W_U_plus[lagrange_point_idx].xs(index).tail(1).index.values[0]))
                t_max = max(t_max, abs(self.W_U_min[lagrange_point_idx].xs(index).tail(1).index.values[0]))
        print('Maximum value for t = ' + str(t_max) + ', animation t: = ')

        # Introduce a new time-vector for linearly spaced time throughout the animation
        self.t = np.linspace(0, t_max, np.round(t_max / 0.04) + 1)

        animation_function = animation.FuncAnimation(fig, self.update_lines, init_func=self.initiate_lines,
                                                     frames=len(self.t), interval=1, blit=True)

        #
        # # Determine the maximum number of frames
        # number_of_frames = 0
        # for lagrange_point_idx in [0, 1]:
        #     for index in range(self.numberOfOrbitsPerManifold):
        #         number_of_frames = max(number_of_frames, len(self.W_S_plus[lagrange_point_idx].xs(index)['x']))
        #         number_of_frames = max(number_of_frames, len(self.W_S_min[lagrange_point_idx].xs(index)['x']))
        #         number_of_frames = max(number_of_frames, len(self.W_U_plus[lagrange_point_idx].xs(index)['x']))
        #         number_of_frames = max(number_of_frames, len(self.W_U_min[lagrange_point_idx].xs(index)['x']))
        #
        # animation_function = animation.FuncAnimation(fig, self.update_lines, init_func=self.initiate_lines,
        #                                              frames=int(number_of_frames), interval=1, blit=True)

        empty_writer_object = animation.writers['ffmpeg']
        animation_writer = empty_writer_object(fps=30, metadata=dict(artist='Koen Langemeijer'))
        file_name = '../../../data/animations/manifolds/spatial_manifolds_' + orbit_type + '_' + str(c_level) + '.mp4'
        animation_function.save(file_name, writer=animation_writer)
Esempio n. 21
0
    def plot_horizontal_to_halo(self):
        fig = plt.figure(figsize=self.figSize)
        ax1 = fig.add_subplot(2, 2, 1, projection='3d')
        ax2 = fig.add_subplot(2, 2, 2)
        ax3 = fig.add_subplot(2, 2, 3)
        ax4 = fig.add_subplot(2, 2, 4)

        horizontal_color = self.plottingColors['tripleLine'][2]
        halo_color = self.plottingColors['tripleLine'][0]

        # Plot bifurcations
        line_width = 2
        plot_alpha = 1
        df = load_orbit('../../data/raw/orbits/L1_horizontal_' +
                        str(self.horizontalBifurcations[0]) + '.txt')
        l1, = ax1.plot(df['x'],
                       df['y'],
                       df['z'],
                       color=horizontal_color,
                       alpha=plot_alpha,
                       linewidth=1,
                       label='Horizontal Lyapunov')
        ax1.plot(df['x'],
                 df['y'],
                 df['z'],
                 color=horizontal_color,
                 alpha=plot_alpha,
                 linewidth=line_width)
        ax2.plot(df['x'],
                 df['y'],
                 color=horizontal_color,
                 alpha=plot_alpha,
                 linewidth=line_width)
        ax3.plot(df['y'],
                 df['z'],
                 color=horizontal_color,
                 alpha=plot_alpha,
                 linewidth=line_width)
        ax4.plot(df['x'],
                 df['z'],
                 color=horizontal_color,
                 alpha=plot_alpha,
                 linewidth=line_width)

        number_of_orbits = 10
        line_width = 1
        plot_alpha = 0.5
        for i in [
                int(i)
                for i in (np.linspace(1, self.haloMaxId, number_of_orbits))
        ]:
            df = load_orbit('../../data/raw/orbits/L1_halo_' + str(i) + '.txt')
            l2, = ax1.plot(df['x'],
                           df['y'],
                           df['z'],
                           color=halo_color,
                           alpha=plot_alpha,
                           linewidth=line_width,
                           label='Halo')
            ax2.plot(df['x'],
                     df['y'],
                     color=halo_color,
                     alpha=plot_alpha,
                     linewidth=line_width)
            ax3.plot(df['y'],
                     df['z'],
                     color=halo_color,
                     alpha=plot_alpha,
                     linewidth=line_width)
            ax4.plot(df['x'],
                     df['z'],
                     color=halo_color,
                     alpha=plot_alpha,
                     linewidth=line_width)

            # Lagrange points and bodies
            lagrange_points_df = load_lagrange_points_location()
            lagrange_point_nrs = ['L1', 'L2']
            for lagrange_point_nr in lagrange_point_nrs:
                ax1.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                            lagrange_points_df[lagrange_point_nr]['y'],
                            lagrange_points_df[lagrange_point_nr]['z'],
                            color='black',
                            marker='x')
                ax2.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                            lagrange_points_df[lagrange_point_nr]['y'],
                            color='black',
                            marker='x')
                ax3.scatter(lagrange_points_df[lagrange_point_nr]['y'],
                            lagrange_points_df[lagrange_point_nr]['z'],
                            color='black',
                            marker='x')
                ax4.scatter(lagrange_points_df[lagrange_point_nr]['x'],
                            lagrange_points_df[lagrange_point_nr]['z'],
                            color='black',
                            marker='x')

            bodies_df = load_bodies_location()
            u = np.linspace(0, 2 * np.pi, 100)
            v = np.linspace(0, np.pi, 100)
            for body in ['Moon']:
                x = bodies_df[body]['r'] * np.outer(
                    np.cos(u), np.sin(v)) + bodies_df[body]['x']
                y = bodies_df[body]['r'] * np.outer(np.sin(u), np.sin(v))
                z = bodies_df[body]['r'] * np.outer(np.ones(np.size(u)),
                                                    np.cos(v))
                ax1.plot_surface(x, y, z, color='black')
                ax2.contourf(x, y, z, colors='black')
                ax3.contourf(y, z, x, colors='black')
                ax4.contourf(x, z, y, colors='black')

        ax1.set_xlabel('x [-]')
        ax1.set_ylabel('y [-]')
        ax1.set_zlabel('z [-]')
        ax1.grid(True, which='both', ls=':')

        ax2.set_xlabel('x [-]')
        ax2.set_ylabel('y [-]')
        ax2.grid(True, which='both', ls=':')

        ax3.set_xlabel('y [-]')
        ax3.set_ylabel('z [-]')
        ax3.grid(True, which='both', ls=':')

        ax4.set_xlabel('x [-]')
        ax4.set_ylabel('z [-]')
        ax4.grid(True, which='both', ls=':')

        plt.tight_layout()
        plt.subplots_adjust(top=0.9)
        ax1.legend(frameon=True, handles=[l1, l2])
        plt.suptitle(
            '$L_1$ Bifurcation - Halo family connecting to horizontal Lyapunov orbits',
            size=self.suptitleSize)
        plt.savefig('../../data/figures/orbits/L1_bifurcation_halo.pdf',
                    transparent=True)
        plt.close()
        pass
Esempio n. 22
0
        C = float(config[orbit_type][orbit_name]['C'])
        x_range = np.arange(0.5, 1.5, 0.001)
        y_range = np.arange(-0.5, 0.5, 0.001)
        X, Y = np.meshgrid(x_range, y_range)
        Z = cr3bp_velocity(X, Y, C)
        if Z.min() < 0:
            plt.contourf(X, Y, Z, [Z.min(), 0], colors='black', alpha=0.05)

        title = 'C = ' + str(round(C, 3)) + \
                ', T = ' + str(round(float(config[orbit_type][orbit_name]['T']), 3))
        plt.title(title, size=30)

        phi = np.linspace(0, 2 * np.pi, 100)
        theta = np.linspace(0, np.pi, 100)
        bodies = load_bodies_location()
        for body in bodies:
            x_body = bodies[body]['r'] * np.outer(
                np.cos(phi), np.sin(theta)) + bodies[body]['x']
            y_body = bodies[body]['r'] * np.outer(
                np.sin(phi), np.sin(theta)) + bodies[body]['y']
            plt.plot(x_body, y_body, color='black')

        lagrange_points = load_lagrange_points_location()
        for lagrange_point in ['L1', 'L2']:
            ax.scatter(lagrange_points[lagrange_point]['x'],
                       lagrange_points[lagrange_point]['y'],
                       color='grey',
                       marker='d',
                       alpha=0.75)
            ax.text(lagrange_points[lagrange_point]['x'],
    def plot_result(self):
        color_palette_green = sns.dark_palette('green', n_colors=self.numberOfOrbitsPerManifold)
        color_palette_red = sns.dark_palette('red', n_colors=self.numberOfOrbitsPerManifold)

        C = 3.15
        x_range = np.arange(0.8, 1.2, 0.001)
        y_range = np.arange(-0.15, 0.15, 0.001)
        X, Y = np.meshgrid(x_range, y_range)
        Z = cr3bp_velocity(X, Y, C)

        plt.figure(figsize=(5*(1+np.sqrt(5))/2, 5))
        gs = gridspec.GridSpec(2, 2)
        ax1 = plt.subplot(gs[0, :])
        ax2 = plt.subplot(gs[1, 0])
        ax3 = plt.subplot(gs[1, 1])

        # Subplot 1: manifolds
        for i in range(self.numberOfOrbitsPerManifold):
            ax1.plot(self.WS.xs(i)['x'], self.WS.xs(i)['y'], color=color_palette_green[i], alpha=0.5)
            ax1.plot(self.WU.xs(i)['x'], self.WU.xs(i)['y'], color=color_palette_red[i], alpha=0.5)
        ax1.plot(self.WS.xs(46)['x'], self.WS.xs(46)['y'], color='black')
        ax1.plot(self.WS.xs(37)['x'], self.WS.xs(37)['y'], color='black')
        ax1.plot(self.WU.xs(65)['x'], self.WU.xs(65)['y'], color='black')
        ax1.plot(self.WU.xs(77)['x'], self.WU.xs(77)['y'], color='black')

        if Z.min() < 0:
            ax1.contourf(X, Y, Z, [Z.min(), 0], colors='black', alpha=0.2)

        if self.U_section == 2:
            # ax1.axvline(1 - self.massParameter, color='black')
            ax1.plot([1 - self.massParameter, 1 - self.massParameter], [-0.11, 0.01], color='black', linewidth=3)
            ax1.text(s='$\sum_2$', x=(1-0.5*self.massParameter), y=0.01)

        bodies_df = load_bodies_location()
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        x = bodies_df['Moon']['r'] * np.outer(np.cos(u), np.sin(v)) + bodies_df['Moon']['x']
        y = bodies_df['Moon']['r'] * np.outer(np.sin(u), np.sin(v))
        z = bodies_df['Moon']['r'] * np.outer(np.ones(np.size(u)), np.cos(v))
        # ax1.scatter(x, y, color='black', s=1)
        ax1.contourf(x, y, z, [z.min(), 0], colors='black')
        ax1.grid(True, which='both', ls=':')

        # Subplot 2: poincare
        v_max = 2
        ax2.plot(self.poincareWS[abs(self.poincareWS['ydot']) < v_max]['y'].values, self.poincareWS[abs(self.poincareWS['ydot']) < v_max]['ydot'].values, color='g')
        ax2.plot(self.poincareWU[abs(self.poincareWU['ydot']) < v_max]['y'].values, self.poincareWU[abs(self.poincareWU['ydot']) < v_max]['ydot'].values, color='r')
        ax2.scatter(self.poincareWS['y'][46], self.poincareWS['ydot'][46], color='black')
        ax2.scatter(self.poincareWU['y'][65], self.poincareWU['ydot'][65], color='black')
        ax2.scatter(self.poincareWS['y'][37], self.poincareWS['ydot'][37], color='black')
        ax2.scatter(self.poincareWU['y'][77], self.poincareWU['ydot'][77], color='black')
        #     y_1   y_2
        # WS   46    41
        # WU   65    83
        # x_intersection = -0.0491777
        # print(self.poincareWS[self.poincareWS['y'] == x_intersection + abs(self.poincareWS['y'] - x_intersection).min()])
        # print(self.poincareWS[self.poincareWS['y'] == x_intersection - abs(self.poincareWS['y'] - x_intersection).min()])
        # print(self.poincareWU[self.poincareWU['y'] == x_intersection + abs(self.poincareWU['y'] - x_intersection).min()])
        # print(self.poincareWU[self.poincareWU['y'] == x_intersection - abs(self.poincareWU['y'] - x_intersection).min()])

        ax2.set_xlabel('$y$')
        ax2.set_ylabel('$\dot{y}$')
        ax2.set_ylim([-1.5, 1.5])
        ax2.grid(True, which='both', ls=':')

        title = '$\sum_' + str(self.U_section) + '$'
        ax2.set_title(title)

        # Subplot 3: x error
        ax3.axhline(abs(self.poincareWS['y'][46] - self.poincareWU['y'][65]))
        ax3.axhline(abs(self.poincareWS['y'][37] - self.poincareWU['y'][77]))
        ax3.axhline(abs(self.poincareWS['ydot'][46] - self.poincareWU['ydot'][65]))
        ax3.axhline(abs(self.poincareWS['ydot'][37] - self.poincareWU['ydot'][77]))
        ax3.semilogy((1 - self.massParameter) - self.poincareWS['x'].values)
        ax3.set_ylabel('$\| x - (1-\mu) \|$')
        ax3.set_xlabel('orbitId [-]')
        ax3.grid(True, which='both', ls=':')
        plt.tight_layout()

        # plt.savefig('../../data/figures/heteroclinic_connection.pdf')
        pass