Esempio n. 1
0
def identify_neuron_types():
    # get trials for a single dummy neuron
    real_data = load_mouse_data()
    dummy_session = real_data[3]
    #dummy_session = get_data_from_a_dummy_sesion()
    # this is the first neuron from the dummy session:
    print('Analyze two example neurons first.')
    neuron_index = 0  # we will try to decide whether this is a choice neuron
    left_vs_right_accuracy, accuracy_left_vs_nogo, accuracy_right_vs_nogo = compare_prediction_accuracies_for_neuron(dummy_session, neuron_index)
    print('accuracies (left vs right, left vs no go, right vs no go):' + str(left_vs_right_accuracy) + ' ' + str(accuracy_left_vs_nogo) + ' ' + str(accuracy_right_vs_nogo))
    neuron_type = guess_type(left_vs_right_accuracy, accuracy_left_vs_nogo, accuracy_right_vs_nogo)
    print ("neuron idx", neuron_index, neuron_type)
    print('----------------------------------------------------------------------')
    neuron_index = 55  # we will try to decide whether this is a choice neuron
    left_vs_right_accuracy, accuracy_left_vs_nogo, accuracy_right_vs_nogo = compare_prediction_accuracies_for_neuron(dummy_session, neuron_index)
    print('accuracies (left vs right, left vs no go, right vs no go):' + str(left_vs_right_accuracy) + ' ' + str(accuracy_left_vs_nogo) + ' ' + str(accuracy_right_vs_nogo))
    neuron_type = guess_type(left_vs_right_accuracy, accuracy_left_vs_nogo, accuracy_right_vs_nogo)
    print ("neuron idx", neuron_index, neuron_type)
    print('Analyze all neurons from this session and check accuracy of predictions:')
    number_of_neurons = dummy_session['spks'].shape[0]
    neuron_type_guesses = []
    for neuron_index in range(number_of_neurons):
        left_vs_right_accuracy, accuracy_left_vs_nogo, accuracy_right_vs_nogo = compare_prediction_accuracies_for_neuron(dummy_session, neuron_index)
        neuron_type = guess_type(left_vs_right_accuracy, accuracy_left_vs_nogo, accuracy_right_vs_nogo)
        neuron_type_guesses.append(neuron_type)

    compare_predicted_to_ground_truth_type(dummy_session['dummy_type'], neuron_type_guesses)
Esempio n. 2
0
def train_test_split(train_size: float = 0.8):
    """ split the dataset into training and test set """
    # load dataset
    data = load_mouse_data()
    split_trial_indices = create_dataset_split_indices(data, train_size)
    train_data = get_training_data(data, split_trial_indices)
    test_data = get_test_data(data, split_trial_indices)
    return train_data, test_data
Esempio n. 3
0
def main():
    all_data = load_data.load_mouse_data()
    print("Data loaded")
    # test_data = split_test_and_training_data.get_test_data(all_data)
    # training_data = split_test_and_training_data.get_training_data(all_data)
    train_data, test_data = split_test_and_training_data.train_test_split(
        train_size=0.8)
    train_data = dimensionality_reduction(train_data, 0.9)
Esempio n. 4
0
def get_training_data_for_simulation():
    """
    Load the training data. We need this to get the real behavioural data.
    We will later replace the real firing data with simulated data.
    """
    mouse_data = load_data.load_mouse_data()
    training_data = split_test_and_training_data.get_training_data(mouse_data)
    simulated_data = copy.deepcopy(training_data)
    return simulated_data
Esempio n. 5
0
def test_create_dataset_split_indices():
    data = load_mouse_data()
    train_size = 0.7
    session_id = 3
    trials_split_dict = create_dataset_split_indices(data, train_size)
    total_trials_in_sessionid = data[session_id]['spks'].shape[1]
    assert isinstance(trials_split_dict, dict)
    split_found = trials_split_dict[session_id]['train'].shape[0]
    split_percent = int(train_size * total_trials_in_sessionid)
    assert (split_found == split_percent)
Esempio n. 6
0
def process_on_real_data(session_id: int = 10, single_neuron_id_for_train=5, single_neuron_id_for_test=9):
    # default train test split is set = 0.8 
    data = load_mouse_data()
    train_data, test_data = train_test_split()
    session_data = train_data[session_id]
    single_neuron_session_train_data = session_data['spks'][single_neuron_id_for_train]
    single_neuron_session_test_data = session_data['spks'][single_neuron_id_for_test]
    left_vs_right = get_accuracy_predicting_left_vs_right(session_data, single_neuron_session_train_data)
    print ("left_vs_right : {}".format(left_vs_right))
    left_vs_nogo =  get_accuracy_predicting_left_vs_no_go(session_data, single_neuron_session_train_data)
    print ("left_vs_no_go : {}".format(left_vs_nogo))
    right_vs_nogo = get_accuracy_predicting_right_vs_no_go(session_data, single_neuron_session_train_data)
    print ("right_vs_no_go : {}".format(right_vs_nogo))
Esempio n. 7
0
def test_get_test_data():
    # check if it splits the same way every time
    data = load_mouse_data()
    session_id = 10
    train_size = 0.8
    trials_split_dict = create_dataset_split_indices(data, train_size)
    test_data_1 = get_test_data(data, trials_split_dict)
    test_data_2 = get_test_data(data, trials_split_dict)

    assert np.allclose(test_data_1[session_id]['contrast_right'],
                       test_data_2[session_id]['contrast_right'],
                       rtol=1e-05,
                       atol=1e-08,
                       equal_nan=False)
Esempio n. 8
0
def test_get_test_and_training_data():
    data = load_mouse_data()
    train_size = 0.7
    session_id = 6
    training_data, test_data = train_test_split(train_size)
    num_of_trials_all_example = data[session_id]['spks'].shape[1]
    num_of_trials_test_example = test_data[session_id]['spks'].shape[1]
    num_of_trials_training_example = training_data[session_id]['spks'].shape[1]

    assert num_of_trials_all_example == (num_of_trials_test_example +
                                         num_of_trials_training_example)

    num_of_trials_all_example = data[session_id]['contrast_right'].shape[0]
    num_of_trials_test_example = test_data[session_id]['contrast_right'].shape[
        0]
    num_of_trials_training_example = training_data[session_id][
        'contrast_right'].shape[0]

    assert num_of_trials_all_example == (num_of_trials_test_example +
                                         num_of_trials_training_example)
Esempio n. 9
0
def get_real_data_from_session(session_id: int = 10):
    data = load_mouse_data()
    session_data = data[session_id]
    return session_id