Esempio n. 1
0
    def get_data_loader(self):
        data_phase = self.pipeline_config['data']
        data_module = __import__('load_data')

        if 'csv' in data_phase.keys():
            # For reading 'manually' filtered data from a saved dataframe
            csv_filename = data_phase['csv']
            csv_file = self.config.get_output_data_dir() + csv_filename
            self.dataloader = CSVLoader()
            self.dataloader.set_csv_file(csv_file)
        else:
            data_func = getattr(data_module, data_phase['dataloader'])
            data_file = data_phase['file']
            data = data_func(data_file)
            self.dataloader = DataLoader(label_identifier=data_phase['labels'])
            self.dataloader.set_data(data)
            if 'filters' in data_phase.keys():
                # Every filter is a function name in load_data taking a data_loader and returning it filtered
                data_filters = data_phase['filters']
                for filter_function_name in data_filters:
                    filter_function_name = 'filter_' + filter_function_name
                    filter_func = getattr(data_module, filter_function_name)
                    self.dataloader = filter_func(self.dataloader)

        return self.dataloader
Esempio n. 2
0
    def __init__(self):
        # Input shape
        self.img_rows = 256
        self.img_cols = 256
        self.channels = 3
        self.img_shape = (self.img_rows, self.img_cols, self.channels)

        # Configure data loader
        print("Reading...")
        filepath = [
            "./data/trainImage256.txt", "./data/trainLabel256.txt",
            "./data/testImage256.txt", "./data/testLabel256.txt"
        ]
        self.data_loader = DataLoader(filepath,
                                      img_res=(self.img_rows, self.img_cols))

        # Calculate output shape of D (PatchGAN)
        patch = int(self.img_rows / 2**4)
        self.disc_patch = (patch, patch, 1)

        # Number of filters in the first layer of G and D
        self.gf = 64
        self.df = 64

        optimizer = Adam(0.0002, 0.5)

        # Build and compile the discriminator
        print("Building discriminator")
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='mse',
                                   optimizer=optimizer,
                                   metrics=['accuracy'])

        #-------------------------
        # Construct Computational
        #   Graph of Generator
        #-------------------------

        # Build the generator
        self.generator = self.build_generator()

        # Input images and their conditioning images
        img_A = Input(shape=self.img_shape)
        img_B = Input(shape=self.img_shape)

        # By conditioning on B generate a fake version of A
        fake_A = self.generator(img_B)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # Discriminators determines validity of translated images / condition pairs
        valid = self.discriminator([fake_A, img_B])

        print("Building generator...")
        self.combined = Model(inputs=[img_A, img_B], outputs=[valid, fake_A])
        self.combined.compile(loss=['mse', 'mae'],
                              loss_weights=[1, 100],
                              optimizer=optimizer)
Esempio n. 3
0
 def val_predict(self):
     loader = DataLoader()
     _, val_gen = loader.load_data()
     for i, (val_x, val_y) in enumerate(val_gen):
         preds = self._predict(val_x)
         np_img_list = [val_y[0], val_x[0], preds[0]]
         self.save(i, np_img_list)
         if i >= 3:
             break
Esempio n. 4
0
class TrainAutoColor(AutoColorEncoder, ImageStore):

    def __init__(self, epochs=100):
        self.autoencoder = self.build_model()
        self.loader = DataLoader()
        self.epochs = epochs

    def train(self):
        train_gen, val_gen, test_gen = self.loader.load_data()
        train_steps, val_steps, test_steps = self.loader.cal_steps()
        self._train(train_gen, train_steps, val_gen, val_steps)
        self._predict(test_gen, test_steps, self.loader.test_list, self.loader.batch_size)

    def _train(self, train_gen, train_steps, val_gen, val_steps):
        self.autoencoder.fit_generator(
            generator=train_gen,
            steps_per_epoch=train_steps,
            epochs=self.epochs,
            validation_data=val_gen,
            validation_steps=val_steps,
        )
        self.autoencoder.save_weights(os.path.join(settings.MODEL, 'auto_color_model.h5'))

    def _predict(self, test_gen, test_steps, test_lists, batch_size):
        preds = self.autoencoder.predict_generator(test_gen, steps=test_steps, verbose=0)
        x_test = []
        y_test = []
        for i, (l, ab) in enumerate(self.loader.generator_with_preprocessing(test_lists, batch_size)):
            x_test.append(l)
            y_test.append(ab)
            if i == test_steps - 1:
                break
        x_test = np.vstack(x_test)
        y_test = np.vstack(y_test) 

        test_preds_lab = np.concatenate((x_test, preds), 3).astype(np.uint8)
        test_preds_rgb = []
        for i in range(test_preds_lab.shape[0]):
            preds_rgb = lab_to_rgb(test_preds_lab[i, :, :, :])
            test_preds_rgb.append(preds_rgb)
        test_preds_rgb = np.stack(test_preds_rgb)

        original_lab = np.concatenate((x_test, y_test), 3).astype(np.uint8)
        original_rgb = []
        for i in range(original_lab.shape[0]):
            original_rgb.append(lab_to_rgb(original_lab[i, :, :, :]))
        original_rgb = np.stack(original_rgb)

        for i in range(test_preds_rgb.shape[0]):
            gray_image = img_to_array(ImageOps.grayscale(array_to_img(test_preds_rgb[i])))
            auto_colored_image = test_preds_rgb[i]
            original_image = original_rgb[i]
            np_img_list = [gray_image, auto_colored_image, original_image]
            self.save(i, np_img_list)
Esempio n. 5
0
    def __init__(self, identity):
        self.identity = identity
        self.img_rows = 32
        self.img_cols = 32
        self.channels = 3
        self.img_shape = (self.img_rows, self.img_cols, self.channels)

        # Configure data loader
        self.dataset_name = self.identity
        self.data_loader = DataLoader(img_res=(self.img_rows, self.img_cols))

        # Calculate output shape of D (PatchRAN)
        patch = int(self.img_rows / 2**4)
        self.disc_patch = (patch, patch, 1)

        optimizer = Adam(0.0002, 0.5)

        # Number of filters in the first layer of G and D
        self.gf = 32
        self.df = 64

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='mse',
                                   optimizer=optimizer,
                                   metrics=['accuracy'])

        # Build and compile the reconstructor
        self.reconstructor = self.build_reconstructor()
        print(self.reconstructor.summary())
        self.reconstructor.compile(loss='mse', optimizer=optimizer)

        # The reconstructor takes noise as input and generated imgs
        img = Input(shape=self.img_shape)
        reconstr = self.reconstructor(img)

        # For the combined model we will only train the reconstructor
        self.discriminator.trainable = False

        # The valid takes generated images as input and determines validity
        valid = self.discriminator(reconstr)

        # The combined model  (stacked reconstructor and discriminator) takes
        # images as input => reconstruct images => determines validity
        self.combined = Model(img, [reconstr, valid])
        self.combined.compile(loss=['mse', 'mse'],
                              loss_weights=[0.999, 0.001],
                              optimizer=optimizer)
Esempio n. 6
0
 def train(self):
     (x_train, x_test), (noised_x_train, noised_x_test) = DataLoader().run(mode=self.mode, is_mnist=self.is_mnist)
     self._train(noised_x_train, x_train)
     noised_preds = self._predict(noised_x_test)
     for i in range(1):
         np_img_list = [x_test[i], noised_x_test[i], noised_preds[i]]
         self.save(i, np_img_list)
Esempio n. 7
0
	def run(self, data_filename, do_eval=None, output_dir=None): 
		"""Run the two-steps ExreadCluster algorithm (no edge information).
		Parameter:
			row_header (String[]): column names
			rows (String[[]]): array of string arrays.
		Output:
			data2rep (int array): cluster assignment for each data
			r_emb (K * emb_size): representative embedding
			emb_tensor (N * emb_size): fine-tuned input embedding
			cls_loss (float): clustering loss
		"""
		accuracies = []
		# Get data.
		row_header, rows = FileLoader(data_filename)
		target_rows, aux_rows, gold, spans = self.get_basics(row_header, rows)

		# Generate batches.
		row_iter, aux_c_sizes, aux_weights = DataLoader(target_rows, aux_rows, 
			self.batch_size, self.w2v_model)

		# Get the initial embedding tensor as the average w2v embedding.
		emb_tensor = self.w2v_model.get_emb_matrix(target_rows)
		if do_eval is not None:
			with open(os.path.join(output_dir, "emb_before"), "wb") as handle:
				pickle.dump((emb_tensor, spans, gold), handle, 
					protocol=pickle.HIGHEST_PROTOCOL)
		
		# Run the base cluster module
		print("Run 1st module: clustering algorithm")
		c_emb, labels, cls_loss = self.cluster_module.run(emb_tensor)
	
		# Run the embedding fine-tuning module
		print("Run 2nd module: refine embedding")
		enc, emb_loss, emb_labels = self.emb_module.run(aux_c_sizes, row_iter,
			LabelLoader(labels, self.batch_size), c_emb, spans, gold,
			output_dir, aux_weights=aux_weights)
		print("****cluster loss: %f; emb loss:%f****" % (cls_loss, emb_loss))
		
		# Update embedding tensor
		emb_tensor = enc.data

		if do_eval is not None:
			accuracies.append(Evaluate(labels, gold, do_eval))	
		
		print("Run 3rd module: refinement by clustering algorithm")
		# Final refinement
		c_emb, labels, cls_loss = self.cluster_module.run(emb_tensor)		
		labels = self.post_processing(row_header, rows, labels)

		if do_eval is not None:
			accuracies.append(Evaluate(labels, gold, do_eval))	
			with open(os.path.join(output_dir, "emb_after"), "wb") as handle:
				pickle.dump((emb_tensor, spans, gold), handle, 
					protocol=pickle.HIGHEST_PROTOCOL)

		return row_header, rows, labels, c_emb, emb_tensor, cls_loss, accuracies
Esempio n. 8
0
 def __init__(
         self,
         sdg_target_definitions_path='../data/SDG target definitions.xlsx',
         sdg_target_document_matches_path='../data/SDG target - document text matches.xlsx',
         training_test_split_path='../data/Training and test set division.xlsx',
         documents_path='E:/documents3/',
         results_path='../results/',
         stemming=True,
         embedding_dimensionality=300,
         threads=10):
     print('--------------------------------------------------')
     print('Starting RIA experiments: embedding size ' +
           str(embedding_dimensionality) + ', stemming: ' +
           ('yes' if stemming else 'no'))
     print('--------------------------------------------------')
     self._stemming = stemming
     self._embedding_dims = embedding_dimensionality
     self._data_loader = DataLoader(sdg_target_definitions_path,
                                    sdg_target_document_matches_path,
                                    training_test_split_path, stemming)
     self._target_docs = None
     corpus = list(self._data_loader.read_corpus(path=documents_path))
     print('Creating word embeddings')
     self._w2v = CustomParVec(corpus,
                              workers=threads,
                              dimensions=embedding_dimensionality,
                              min_word_count=30,
                              context=30,
                              sg=0,
                              iterations=5,
                              downsampling=0,
                              tfidf=False,
                              target_docs=None)
     self._results_dir = results_path + str(embedding_dimensionality) + '/'
     if stemming:
         self._results_dir += 'stem/'
     else:
         self._results_dir += 'no_stem/'
     os.makedirs(self._results_dir, exist_ok=True)
     self._score_dict = None
     self._matches_by_sent = None
     self._avg_matches_by_sent = None
     self._avg_sdg_matches_by_sent = None
Esempio n. 9
0
    def __init__(self, config):
        self.data_path = r'F:\bma\project\data'
        self.result_path = r'F:\bma\project\FactorAnalysis\MB_quant\results'
        dataloader = DataLoader()
        datadict = dataloader.load_eval_data()
        self.tradeday = pd.read_csv(os.path.join(self.data_path,
                                                 'tradeday.csv'),
                                    parse_dates=['date'])
        self.tickers = pd.read_csv(os.path.join(self.data_path, 'tickers.csv'))
        self.start_date = self.tradeday.iloc[0].date.strftime("%Y/%m/%d")
        self.end_data = self.tradeday.iloc[-1].date.strftime("%Y/%m/%d")

        self.close = datadict['close']
        self.open = datadict['open']

        self.suspendFlag = datadict['suspend']
        self.upLimit = datadict['upperLimit']
        self.downLimit = datadict['downLimit']

        self.config = config
Esempio n. 10
0
 def __init__(self):
     self.data_index = 0
     self.min_count = 5  # 默认最低频次的单词
     self.batch_size = 200  # 每次迭代训练选取的样本数目
     self.embedding_size = 200  # 生成词向量的维度
     self.window_size = 1  # 考虑前后几个词,窗口大小
     self.num_steps = 100000  #定义最大迭代次数,创建并设置默认的session,开始实际训练
     self.num_sampled = 100  # Number of negative examples to sample.
     self.trainfilepath = './data/data'
     self.modelpath = './model/cbow_wordvec.bin'
     self.dataset = DataLoader().dataset
     self.words = self.read_data(self.dataset)
Esempio n. 11
0
 def __init__(self):
     self.data_index = 0
     self.trainpath = './data/data.txt'
     self.modelpath = './model/skipgram_wordvec.bin'
     self.min_count = 5#最低词频,保留模型中的词表
     self.batch_size = 200 # 每次迭代训练选取的样本数目
     self.embedding_size = 200  # 生成词向量的维度
     self.window_size = 5  # 考虑前后几个词,窗口大小, skipgram中的中心词-上下文pairs数目就是windowsize *2
     self.num_sampled = 100  # 负样本采样.
     self.num_steps = 100000#定义最大迭代次数,创建并设置默认的session,开始实际训练
     self.dataset = DataLoader().dataset
     self.words = self.read_data(self.dataset)
Esempio n. 12
0
class TrainSuperResolution(SuperResolution):
    def __init__(self, epochs=10):
        self.model = self.build_model()
        self.loader = DataLoader()
        self.epochs = epochs
        self.model_name = 'super_resolution_model'

    def train(self):
        train_gen, val_gen = self.loader.load_data()
        train_steps, val_steps = self.loader.pre_calculation()
        self._train(train_gen, train_steps, val_gen, val_steps)

    def _train(self, train_gen, train_steps, val_gen, val_steps):
        self.model.fit_generator(
            generator=train_gen,
            steps_per_epoch=train_steps,
            epochs=self.epochs,
            validation_data=val_gen,
            validation_steps=val_steps,
        )
        self.model.save_weights(
            os.path.join(settings.MODEL, f'{self.model_name}.h5'))
Esempio n. 13
0
    def readorg(self):
        dic = {}
        dishnames = DataLoader().load_dish_name()
        basicwords = self.readcorpus()
        regionnames = self.readregion()
        embedding_text = Word2VecKeyedVectors.load_word2vec_format(self.txtfilepath, binary=False)
        model = embedding_text

        for word in basicwords:
            if word in model.wv.vocab.keys():
                dic[word] = model[word]
                a = 0
                temp =[]
                #print(dic[word])
                #print(dic[word][a])
                while a < 200:
                    temp.append(float(dic[word][a]))
                    a +=1
                dic[word] = temp

        for dishname in dishnames:
            for name in dishname:
                if name in model.wv.vocab.keys():
                    dic[name] = model[name]
                    a = 0
                    temp = []
                    while a < 200:
                        temp.append(float(dic[name][a]))
                        a +=1
                    dic[name] = temp
        for regionname in regionnames:
            for name in regionname:
                if name in model.wv.vocab.keys():
                    dic[name] = model[name]
                    a = 0
                    temp = []
                    while a < 200:
                        temp.append(float(dic[name][a]))
                        a +=1
                    dic[name] = temp
        f = open('./data/ChineseFoodEmbedding.txt', 'w', encoding='utf-8')
        index=0
        while index < 10:
            print(dic[basicwords[index]])
            index += 1
        for key in dic.keys():
            pattern = re.compile(r'[\[\]\n\r\t]')
            f.write(key+" "+re.sub(pattern, "", str(dic[key]))+'\n')
        f.close()
Esempio n. 14
0
def main():
    dataDir = '/Users/Blair/PycharmProjects/CSE547/data'
    dataTypes = ["train2014", "val2014", "test2014"]
    for dataType in dataTypes[:2]:
        loader = DataLoader(dataDir, dataType)
        loader.load()
        if dataType == dataTypes[0]:
            train_dt = loader.feats
            train_lab = loader.label
            train_id = loader.id
        elif dataType == dataTypes[1]:
            val_dt = loader.feats
            val_lab = loader.label
        else:
            test_dt = loader.feats
            test_lab = loader.label

    model = LSH()
    search_time, avg_dist, mAP = model.nn_search(train_dt, train_lab, train_id,
                                                 val_dt, val_lab, 20, 5, 100,
                                                 20, 10, 1.5)
    print(search_time)
    print(avg_dist)
    print(mAP)
Esempio n. 15
0
 def __init__(self):
     self.dataset, self.cate_dict = DataLoader().load_data()
     self.cate_nums = len(self.cate_dict)
     self.catetype_dict = {
         '0': '汽车',
         '1': '财经',
         '2': 'IT',
         '3': '健康',
         '4': '体育',
         '5': '旅游',
         '6': '教育',
         '7': '招聘',
         '8': '文化',
         '9': '军事',
     }
Esempio n. 16
0
 def filterEnbedding(self):
     vocab_dict_word2vec = {}
     dishnames = DataLoader().load_dish_name()
     basicwords = self.readcorpus()
     regionnames = self.readregion()
     print("arrive position1!")
     fv = fast2Vec()
     fv.load_word2vec_format(word2vec_path=self.txtfilepath)
     print("arrive position2!")
     for dishname in dishnames:
         basicwords +=dishname
     for regionname in regionnames:
         basicwords += regionname
     print("arrive position3!")
     for word in basicwords:
         vocab_dict_word2vec[word] = fv.wordVec(word, min_n=1, max_n=3)
     print("arrive position4!")
     fv.wordvec_save2txt(vocab_dict_word2vec, save_path='./data/ChineseFoodEmbeddingModel.txt', encoding='utf-8-sig')
Esempio n. 17
0
class TrainStyleTransfer(ImageStore):

    def __init__(self, epochs=10):
        st = StyleTransfer()
        self.model = st.build_model()
        self.model_gen = st.build_encoder_decoder()
        self.loader = DataLoader()
        self.epochs = epochs

    def train(self):
        gen, image_path_list = self.loader.load_data()
        self._train(gen, image_path_list)

    def _train(self, gen, image_path_list):
        img_test = load_img(settings.TEST_IMAGE, target_size=settings.INPUT_SHAPE[:2])
        img_arr_test = np.expand_dims(img_to_array(img_test), axis=0)
        steps_per_epochs = math.ceil(len(image_path_list) / settings.BATCH_SIZE)
        iters_vobose = 1000
        iters_save_img = 1000
        iters_save_model = steps_per_epochs

        cur_epoch = 0
        losses = []
        path_tmp = 'epoch_{}_iters_{}_loss_{:.2f}{}'
        for i, (x_train, y_train) in enumerate(gen):
            if i % steps_per_epochs == 0:
                cur_epoch += 1
            loss = self.model.train_on_batch(x_train, y_train)
            losses.append(loss)
            if i % iters_vobose == 0:
                print('epoch:{}\titers:{}\tloss:{:.2f}'.format(cur_epoch, i, loss[0]))
            if i % iters_save_img == 0:
                pred = self.model_gen.predict(img_arr_test)
                img_pred = array_to_img(pred.squeeze())
                path_trs_img = path_tmp.format(cur_epoch, i, loss[0], '.jpg')
                img_pred.save(os.path.join(settings.DEBUG_IMG, path_trs_img))
                print('saved {}'.format(path_trs_img))
            if i % iters_save_model == 0:
                self.model.save(os.path.join(settings.MODEL, path_tmp.format(cur_epoch, i, loss[0], '.h5')))
                path_loss = os.path.join(settings.LOG, 'loss.pkl')
                with open(path_loss, 'wb') as f:
                    pickle.dump(losses, f)
Esempio n. 18
0
                                  simple_value=np.sqrt(im_loss_avg / 100.0))
                summary_writer.add_summary(summary, all_gif_num)

    summary_writer.flush()
    show_use_time(time.time() - start_time, head_str + ' use time:')

    return im_loss_avg


def valid_batch(*arg, **kwargs):
    return train_all_batch(*arg, **kwargs, training=False)


# Data Loader
train_dlr = DataLoader(_TRAIN_DATA,
                       img_size=cfg['image_height'],
                       load_num=20000)
valid_dlr = DataLoader(_VALID_DATA,
                       img_size=cfg['image_height'],
                       load_num=2000)

train_data = train_dlr.input_pipeline()
valid_data = valid_dlr.input_pipeline()
is_training = tf.placeholder(dtype=bool, shape=())
gif, fdb, cmd, name = tf.cond(is_training, lambda: (train_data), lambda:
                              (valid_data))

m = BehaviorClone()
m.set_network_property(drop_out=FLAGS.drop_out)
m.build_inputs_and_outputs(tf.squeeze(gif), tf.squeeze(fdb), tf.squeeze(cmd))
m.build_train_op()
def main(params):
    """ param config for param_search """
    args.alpha = params['alpha']
    args.beta = params['beta']
    args.sigma = params['sigma']
    args.batch_size = params['batch_size']
    args.semi_batchsize = params['semi_batch_size']
    args.seed = params['seed']
    args.output_name = params['output']
    args.epochs = params['epochs']
    args.data = params['data']
    args.train_ratio = params['train_ratio']
    args.gpu = params['gpu']
    if args.data == 'news':
        args.tfidf = params['tfidf']

    args.reg_decay = params['rd']

    print(args)

    use_cuda = not args.no_cuda and torch.cuda.is_available()
    torch.manual_seed(args.train_seed)
    torch.cuda.manual_seed(args.train_seed)
    np.random.seed(args.train_seed)
    random.seed(args.train_seed)
    torch.cuda.set_device(args.gpu)
    device = torch.device(args.gpu if use_cuda else "cpu")
    print('Seed: {}'.format(args.seed))
    print('Data type: {}'.format(args.data))

    Data = DataLoader(args=args)
    train_loader = Data.train_loader
    val_loader = Data.val_loader
    in_loader = Data.in_loader
    test_loader = Data.test_loader

    model = Model(stds=[Data.treat_std, Data.cont_std],
                  p=args.dp,
                  in_dim=Data.in_dim,
                  alpha=args.alpha,
                  beta=args.beta,
                  features=torch.Tensor(Data.X),
                  device=device,
                  out_dim=args.dim,
                  W=Data.W).to(device)
    weight_decay = 1e-8
    clipping_value = 1
    torch.nn.utils.clip_grad_norm_(model.parameters(), clipping_value)
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=weight_decay)

    trainer = Trainer(model=model,
                      device=device,
                      args=args,
                      optimizer=optimizer,
                      train_loader=train_loader,
                      validation_loader=val_loader,
                      in_loader=in_loader,
                      test_loader=test_loader,
                      D=Data)
    trainer.run()

    print('Min (out, in): {}, {}'.format(np.min(trainer.test_losses),
                                         np.min(trainer.in_losses)))
    print('Validated min (out, in): {}, {}'.format(
        trainer.test_losses[np.argsort(np.array(trainer.val_losses))[0]],
        trainer.in_losses[np.argsort(np.array(trainer.val_losses))[0]]))

    print('T mse: {}'.format(trainer.t_mse_losses[np.argsort(
        np.array(trainer.val_losses))[0]]))
    print('C mse: {}'.format(trainer.c_mse_losses[np.argsort(
        np.array(trainer.val_losses))[0]]))

    print('epoch: {}'.format(np.argsort(np.array(trainer.val_losses))[0] + 1))

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    f = open(args.output_dir + args.output_name, 'a')
    f.write(
        str(
            float(trainer.test_losses[np.argsort(np.array(trainer.val_losses))
                                      [0]])) + ',')
    f.write(
        str(
            float(trainer.in_losses[np.argsort(np.array(trainer.val_losses))
                                    [0]])) + ',')
    f.write(str(float(np.min(np.array(trainer.val_losses)))) + '\n')
    f.close()
Esempio n. 20
0
 def __init__(self):
     self.dataset = DataLoader().dataset
     self.min_count = 5
     self.window_size = 5
     self.word_demension = 200
     self.embedding_path = 'model/word2doc_wordvec.bin'
Esempio n. 21
0
import os
import argparse
import time
import gc
from pyspark.sql import SparkSession
from load_data import DataLoader
from pathlib import Path
from als_recommender import ALSRecommender

data_path = Path('data/ml-latest')
data_folder = Path('data/')
raw_file_path = Path('downloads/ml_latest.zip')
spark = SparkSession.builder.appName('Movie Recommender').master(
    'local[*]').getOrCreate()
data_loader = DataLoader(spark)
folders = ['data', 'downloads', 'best_model', 'user_recs', 'archive']
for folder in folders:
    if not os.path.exists(folder):
        os.mkdir(folder)

if not os.path.exists(data_path):
    if not os.path.exists(raw_file_path):
        url = 'http://files.grouplens.org/datasets/movielens/ml-latest.zip'
        data_loader.get_file(url, raw_file_path)
    data_loader.unzip_file(data_folder, raw_file_path)

dfs = data_loader.load_to_DF(data_path, '.csv', 'movies', 'ratings')
ratings_df = dfs['ratings'].drop('timestamp')
movies_df = dfs['movies']
print('ratings_df size: {}\nmovies_df size: {}'.format(ratings_df.count(),
                                                       movies_df.count()))
Esempio n. 22
0
 def __init__(self, epochs=10):
     self.model = self.build_model()
     self.loader = DataLoader()
     self.epochs = epochs
     self.model_name = 'super_resolution_model'
Esempio n. 23
0
    return super().__call__(y_true, y_pred, sample_weight=sample_weight)

def train_model(model, train_dataset, val_dataset, num_classes, loss_fn, epochs=10):
  sgd = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)
  model.compile(optimizer=sgd,loss=loss_fn(), weighted_metrics=["accuracy", MeanIoU(num_classes)])

  # verbose=2 gives 1 line per epcoh, which is good when logging to a file
  model.fit(x=train_dataset, verbose=1, epochs=epochs, validation_data=val_dataset, callbacks=[TensorBoard(), ModelCheckpoint("backup" + str(epochs)), DisplayCallback(model, train_dataset, saveimg=True)])

# Create dataset loader

# NOTE: A simple overfit-test can be made by loading only 1 image, but the generated 
# images will look bad. This is due to poor estimation of batch norm parameters, and 
# can be hotfixed by switching to training mode during image generation in display.py
loader = DataLoader('cityscapes', '50%', batch_size=8)

# Prepare all the data before usage. This includes:
# - Casting the images to float32.
# - Normalizing all the data according to the normalization strategy for ResNet50. 
# - Applying a random flip to the training data every time it is encountered.
# - Batching the data.
# - Prefetching 1 batch to improve the data throughput.

loader.prepareDatasets()

# Load the datasets
train_ds = loader.getTrainData()
val_ds = loader.getValData()

# Define model
Esempio n. 24
0
import numpy as np
from load_data import DataLoader


def loss_dec_test_BC(g, data_test, data_test_gt, size):
    diffs=[]
    for i in range(1,size):
        rec_imgs = g[i].predict(data_test)
        rec_imgs = np.reshape(rec_imgs,(rec_imgs.shape[0],32*32*3))
        data_test_c = np.reshape(data_test,(data_test.shape[0],32*32*3))
        diff = np.mean(np.square(rec_imgs- data_test_c), axis=-1)
        diffs.append(diff)
    return (diffs)


data_loader = DataLoader(img_res=(32, 32))

identities={}
g={}
NUM=34

# Load one-class classifiers of all users
for i in range(1,NUM):
	identities[i]='user_%d.npz'%(i)
	g[i] = load_model('SavedModels/%s/%s.h5'%(identities[i].split('.')[0],identities[i].split('.')[0]), compile=False)
	print('The model of {} is loaded'.format(identities[i]))


# Prediction 
positives=[]
for i in range(1,NUM):
Esempio n. 25
0
class Pix2Pix():
    def __init__(self):
        # Input shape
        self.img_rows = 256
        self.img_cols = 256
        self.channels = 3
        self.img_shape = (self.img_rows, self.img_cols, self.channels)

        # Configure data loader
        print("Reading...")
        filepath = [
            "./data/trainImage256.txt", "./data/trainLabel256.txt",
            "./data/testImage256.txt", "./data/testLabel256.txt"
        ]
        self.data_loader = DataLoader(filepath,
                                      img_res=(self.img_rows, self.img_cols))

        # Calculate output shape of D (PatchGAN)
        patch = int(self.img_rows / 2**4)
        self.disc_patch = (patch, patch, 1)

        # Number of filters in the first layer of G and D
        self.gf = 64
        self.df = 64

        optimizer = Adam(0.0002, 0.5)

        # Build and compile the discriminator
        print("Building discriminator")
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='mse',
                                   optimizer=optimizer,
                                   metrics=['accuracy'])

        #-------------------------
        # Construct Computational
        #   Graph of Generator
        #-------------------------

        # Build the generator
        self.generator = self.build_generator()

        # Input images and their conditioning images
        img_A = Input(shape=self.img_shape)
        img_B = Input(shape=self.img_shape)

        # By conditioning on B generate a fake version of A
        fake_A = self.generator(img_B)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # Discriminators determines validity of translated images / condition pairs
        valid = self.discriminator([fake_A, img_B])

        print("Building generator...")
        self.combined = Model(inputs=[img_A, img_B], outputs=[valid, fake_A])
        self.combined.compile(loss=['mse', 'mae'],
                              loss_weights=[1, 100],
                              optimizer=optimizer)

    def build_generator(self):
        """U-Net Generator"""

        # def conv2d(layer_input, filters, f_size=4, bn=True):
        #     """Layers used during downsampling"""
        #     d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
        #     d = LeakyReLU(alpha=0.2)(d)
        #     if bn:
        #         d = BatchNormalization(momentum=0.8)(d)
        #     return d

        # def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
        #     """Layers used during upsampling"""
        #     u = UpSampling2D(size=2)(layer_input)
        #     u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
        #     if dropout_rate:
        #         u = Dropout(dropout_rate)(u)
        #     u = BatchNormalization(momentum=0.8)(u)
        #     u = Concatenate()([u, skip_input])
        #     return u

        # Image input
        # d0 = Input(shape=self.img_shape)

        # # Downsampling
        # d1 = conv2d(d0, self.gf, bn=False)
        # d2 = conv2d(d1, self.gf*2)
        # d3 = conv2d(d2, self.gf*4)
        # d4 = conv2d(d3, self.gf*8)
        # d5 = conv2d(d4, self.gf*8)
        # d6 = conv2d(d5, self.gf*8)
        # d7 = conv2d(d6, self.gf*8)

        # # Upsampling
        # u1 = deconv2d(d7, d6, self.gf*8)
        # u2 = deconv2d(u1, d5, self.gf*8)
        # u3 = deconv2d(u2, d4, self.gf*8)
        # u4 = deconv2d(u3, d3, self.gf*4)
        # u5 = deconv2d(u4, d2, self.gf*2)
        # u6 = deconv2d(u5, d1, self.gf)

        # u7 = UpSampling2D(size=2)(u6)
        # output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u7)

        inputs = Input(shape=self.img_shape)

        # encoding ##############
        conv1_1 = Conv2D(64,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(inputs)
        conv1_2 = Conv2D(64,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv1_1)
        pool1 = MaxPooling2D(pool_size=(2, 2))(conv1_2)

        conv2_1 = Conv2D(128,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(pool1)
        conv2_2 = Conv2D(128,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv2_1)
        pool2 = MaxPooling2D(pool_size=(2, 2))(conv2_2)

        conv3_1 = Conv2D(256,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(pool2)
        conv3_2 = Conv2D(256,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv3_1)
        pool3 = MaxPooling2D(pool_size=(2, 2))(conv3_2)

        conv4_1 = Conv2D(512,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(pool3)
        conv4_2 = Conv2D(512,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv4_1)
        #drop4 = Dropout(0.5)(conv4_2)
        pool4 = MaxPooling2D(pool_size=(2, 2))(conv4_2)

        conv5_1 = Conv2D(1024,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(pool4)
        conv5_2 = Conv2D(1024,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv5_1)
        #drop5 = Dropout(0.5)(conv5_2)
        conv_up5 = Conv2D(512,
                          3,
                          activation="relu",
                          padding="same",
                          kernel_initializer="he_normal",
                          bias_initializer="zeros")(
                              UpSampling2D(size=(2, 2))(conv5_2))
        concated5 = concatenate([conv4_2, conv_up5], axis=3)

        # decoding ##############
        conv6_1 = Conv2D(512,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(concated5)
        conv6_2 = Conv2D(512,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv6_1)
        conv_up6 = Conv2D(256,
                          3,
                          activation="relu",
                          padding="same",
                          kernel_initializer="he_normal",
                          bias_initializer="zeros")(
                              UpSampling2D(size=(2, 2))(conv6_2))
        concated6 = concatenate([conv3_2, conv_up6], axis=3)

        conv7_1 = Conv2D(256,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(concated6)
        conv7_2 = Conv2D(256,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv7_1)
        conv_up7 = Conv2D(128,
                          3,
                          activation="relu",
                          padding="same",
                          kernel_initializer="he_normal",
                          bias_initializer="zeros")(
                              UpSampling2D(size=(2, 2))(conv7_2))
        concated7 = concatenate([conv2_2, conv_up7], axis=3)

        conv8_1 = Conv2D(128,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(concated7)
        conv8_2 = Conv2D(128,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv8_1)
        conv_up8 = Conv2D(64,
                          3,
                          activation="relu",
                          padding="same",
                          kernel_initializer="he_normal",
                          bias_initializer="zeros")(
                              UpSampling2D(size=(2, 2))(conv8_2))
        concated8 = concatenate([conv1_2, conv_up8], axis=3)

        conv9_1 = Conv2D(64,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(concated8)
        conv9_2 = Conv2D(64,
                         3,
                         activation="relu",
                         padding="same",
                         kernel_initializer="he_normal",
                         bias_initializer="zeros")(conv9_1)
        outputs = Conv2D(self.channels, 1, activation="tanh")(conv9_2)

        return Model(input=inputs, output=outputs)

    def build_discriminator(self):
        def d_layer(layer_input, filters, f_size=4, bn=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2,
                       padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if bn:
                d = BatchNormalization(momentum=0.8)(d)
            return d

        img_A = Input(shape=self.img_shape)
        img_B = Input(shape=self.img_shape)

        # Concatenate image and conditioning image by channels to produce input
        combined_imgs = Concatenate(axis=-1)([img_A, img_B])

        d1 = d_layer(combined_imgs, self.df, bn=False)
        d2 = d_layer(d1, self.df * 2)
        d3 = d_layer(d2, self.df * 4)
        d4 = d_layer(d3, self.df * 8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model([img_A, img_B], validity)

    def train(self, epochs, batch_size=1, sample_interval=50):

        start_time = datetime.datetime.now()

        # Adversarial loss ground truths
        valid = np.ones((batch_size, ) + self.disc_patch)
        fake = np.zeros((batch_size, ) + self.disc_patch)

        for epoch in range(epochs):
            batchs = self.defineBatchComtents(batch_size)
            for batch_i in range(
                    len(batchs)
            ):  #, (imgs_A, imgs_B) in enumerate(self.data_loader.load_batch(batch_size)):
                batch_sorted = sorted(batchs[batch_i])
                imgs_A, imgs_B = self.data_loader.load_batch(batch_sorted)
                # ---------------------
                #  Train Discriminator
                # ---------------------

                # Condition on B and generate a translated version
                fake_A = self.generator.predict(imgs_B)

                # Train the discriminators (original images = real / generated = Fake)
                d_loss_real = self.discriminator.train_on_batch(
                    [imgs_A, imgs_B], valid)
                d_loss_fake = self.discriminator.train_on_batch(
                    [fake_A, imgs_B], fake)
                d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

                # -----------------
                #  Train Generator
                # -----------------

                # Train the generators
                g_loss = self.combined.train_on_batch([imgs_A, imgs_B],
                                                      [valid, imgs_A])

                elapsed_time = datetime.datetime.now() - start_time
                # Plot the progress
                string = "[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %3d%%] [G loss: %f] time: %s" % (
                    epoch, epochs, batch_i, len(batchs), d_loss[0],
                    100 * d_loss[1], g_loss[0], elapsed_time)
                print(string)
                with open("./training.LOG", "a") as f:
                    f.write(string + "\n")

                # If at save interval => save generated image samples
                if batch_i % sample_interval == 0:
                    self.sample_images(epoch, batch_i)

    def sample_images(self, epoch, batch_i):
        os.makedirs('images/test', exist_ok=True)
        r, c = 3, 3

        imgs_A, imgs_B = self.data_loader.load_test_data(batch_size=3)
        fake_A = self.generator.predict(imgs_B)

        gen_imgs = np.concatenate([imgs_B, fake_A, imgs_A])

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        titles = ['Condition', 'Generated', 'Original']
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i, j].imshow(gen_imgs[cnt])
                axs[i, j].set_title(titles[i])
                axs[i, j].axis('off')
                cnt += 1
        fig.savefig("images/test/%d_%d.png" % (epoch, batch_i))
        plt.close()

    def save(self, output_filename):
        self.generator.save(output_filename[0])
        self.discriminator.save(output_filename[1])

    def defineBatchComtents(self, batch_size):
        num = np.linspace(0, c.TRAIN_DATA_SIZE - 1, c.TRAIN_DATA_SIZE)
        num = num.tolist()
        COMPONENT = []
        total_batch = int(c.TRAIN_DATA_SIZE / batch_size)
        for i in range(total_batch):
            component = random.sample(num, batch_size)
            COMPONENT.append(component)
            for j in range(batch_size):
                cnt = 0
                while True:
                    if (num[cnt] == component[j]):
                        num.pop(cnt)
                        break
                    else:
                        cnt += 1
        return COMPONENT
Esempio n. 26
0
class RAN():
    def __init__(self, identity):
        self.identity = identity
        self.img_rows = 32
        self.img_cols = 32
        self.channels = 3
        self.img_shape = (self.img_rows, self.img_cols, self.channels)

        # Configure data loader
        self.dataset_name = self.identity
        self.data_loader = DataLoader(img_res=(self.img_rows, self.img_cols))

        # Calculate output shape of D (PatchRAN)
        patch = int(self.img_rows / 2**4)
        self.disc_patch = (patch, patch, 1)

        optimizer = Adam(0.0002, 0.5)

        # Number of filters in the first layer of G and D
        self.gf = 32
        self.df = 64

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='mse',
                                   optimizer=optimizer,
                                   metrics=['accuracy'])

        # Build and compile the reconstructor
        self.reconstructor = self.build_reconstructor()
        print(self.reconstructor.summary())
        self.reconstructor.compile(loss='mse', optimizer=optimizer)

        # The reconstructor takes noise as input and generated imgs
        img = Input(shape=self.img_shape)
        reconstr = self.reconstructor(img)

        # For the combined model we will only train the reconstructor
        self.discriminator.trainable = False

        # The valid takes generated images as input and determines validity
        valid = self.discriminator(reconstr)

        # The combined model  (stacked reconstructor and discriminator) takes
        # images as input => reconstruct images => determines validity
        self.combined = Model(img, [reconstr, valid])
        self.combined.compile(loss=['mse', 'mse'],
                              loss_weights=[0.999, 0.001],
                              optimizer=optimizer)

    def build_reconstructor(self):
        """reconstructor"""
        def conv2d(layer_input, filters, f_size=4):
            """Layers used during downsampling"""
            d = Conv2D(filters, kernel_size=f_size, strides=2,
                       padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            d = InstanceNormalization()(d)
            return d

        def deconv2d(layer_input, filters, f_size=4, dropout_rate=0):
            """Layers used during upsampling"""
            u = UpSampling2D(size=2)(layer_input)
            u = Conv2D(filters,
                       kernel_size=f_size,
                       strides=1,
                       padding='same',
                       activation='relu')(u)
            if dropout_rate:
                u = Dropout(dropout_rate)(u)
            u = InstanceNormalization()(u)
            return u

        # Image input
        d0 = Input(shape=self.img_shape)

        # Downsampling
        d1 = conv2d(d0, self.gf)
        d2 = conv2d(d1, self.gf * 2)
        d3 = conv2d(d2, self.gf * 4)
        d4 = conv2d(d3, self.gf * 4)
        d5 = conv2d(d4, self.gf * 8)

        # Upsampling
        u1 = deconv2d(d5, self.gf * 8)
        u2 = deconv2d(u1, self.gf * 8)
        u3 = deconv2d(u2, self.gf * 8)
        u4 = deconv2d(u3, self.gf * 4)
        u5 = deconv2d(u4, self.gf * 2)

        output_img = Conv2D(self.channels,
                            kernel_size=4,
                            strides=1,
                            padding='same',
                            activation='tanh')(u5)
        return Model(d0, output_img)

    def build_discriminator(self):
        def d_layer(layer_input, filters, f_size=4, normalization=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2,
                       padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        d1 = d_layer(img, self.df, normalization=False)
        d2 = d_layer(d1, self.df * 2)
        d3 = d_layer(d2, self.df * 4)
        d4 = d_layer(d3, self.df * 8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model(img, validity)

    def train(self, epochs, batch_size=128, save_interval=50):

        half_batch = int(batch_size / 2)

        start_time = datetime.datetime.now()

        imgsVal = self.data_loader.load_data(self.identity,
                                             batch_size=half_batch,
                                             is_testing=True)
        TrainLoss = np.zeros(epochs)
        ValLoss = np.ones(epochs)
        for epoch in range(epochs):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Sample reconstructor input
            img = self.data_loader.load_data(self.identity,
                                             batch_size=half_batch)

            # Reconstruct a batch of new images
            reconstr = self.reconstructor.predict(img)

            # Adversarial loss ground truths
            valid = np.ones((half_batch, ) + self.disc_patch)
            fake = np.zeros((half_batch, ) + self.disc_patch)

            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(img, valid)
            d_loss_fake = self.discriminator.train_on_batch(reconstr, fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

            # ---------------------
            #  Train reconstructor
            # ---------------------

            # Sample reconstructor input
            img = self.data_loader.load_data(self.identity,
                                             batch_size=half_batch)

            # Train the reconstructor
            r_loss = self.combined.train_on_batch(img, [img, valid])
            r_loss_val = self.combined.test_on_batch(imgsVal, [imgsVal, valid])
            TrainLoss[epoch] = r_loss[0]
            MinValLoss = ValLoss.min()
            ValLoss[epoch] = r_loss_val[0]

            # Plot the progress
            print(
                "%d [D loss: %f, acc.: %.2f%%] [R loss: %f] [R loss Val: %f] [Minimum: %f]"
                % (epoch, d_loss[0], 100 * d_loss[1], r_loss[0], r_loss_val[0],
                   MinValLoss))

            # If at save interval => save generated image samples
            if ValLoss[epoch] < MinValLoss and MinValLoss < 0.04:
                self.save_imgs(epoch)
                self.reconstructor.save('SavedModel/%s/%s.h5' %
                                        (self.identity, self.identity))
        np.savez('loss/Loss_%s' % (self.dataset_name),
                 TrLoss=TrainLoss,
                 TeLoss=ValLoss)

    def save_imgs(self, epoch):
        r, c = 2, 2

        imgs = self.data_loader.load_data(self.identity,
                                          batch_size=1,
                                          is_testing=False)
        imgs_val = self.data_loader.load_data(self.identity,
                                              batch_size=1,
                                              is_testing=True)

        # Translate images to the other domain
        reconstr = self.reconstructor.predict(imgs)
        reconstr_val = self.reconstructor.predict(imgs_val)

        gen_imgs = np.concatenate([imgs, imgs_val, reconstr, reconstr_val])

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        titles = ['Train', 'Val', 'Reconstructed']
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i, j].imshow(gen_imgs[cnt])
                axs[i, j].set_title(titles[j])
                axs[i, j].axis('off')
                cnt += 1
        fig.savefig("ReconstructedImages/%s/TrainValSamples_E%d.png" %
                    (self.dataset_name, epoch))
        plt.close()
Esempio n. 27
0
        Conv2D(32, (3, 3),
               padding='same',
               kernel_regularizer=l2(),
               activation='relu'))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(1024, kernel_regularizer=l2(), activation='relu'))
    model.add(Dropout(0.1))
    model.add(Dense(7, activation='softmax'))
    return model


if __name__ == '__main__':

    # Load Data, default csv path is data/fer2013.csv
    train_x, train_y, test_x, test_y = DataLoader().load_data()

    # data pre-processing
    # we can subtract the mean image
    # mean = train_x.mean(axis=0)
    # or we can subtract the mean color
    mean = np.mean(np.mean(np.mean(train_x, 2), 1), 0)
    train_x = train_x - mean
    test_x = test_x - mean

    # get user choice
    message = "Create model from scratch? [1]\nLoad a pre-trained model? [2]\n>>Please enter your choice: "
    choice = input(message)
    while not choice.isnumeric() or int(choice) < 1 or int(choice) > 2:
        choice = input(">>Please enter a valid choice: ")
    choice = int(choice)
Esempio n. 28
0
 def __init__(self, epochs=100):
     self.autoencoder = self.build_model()
     self.loader = DataLoader()
     self.epochs = epochs
Esempio n. 29
0
 def __init__(self, epochs=10):
     st = StyleTransfer()
     self.model = st.build_model()
     self.model_gen = st.build_encoder_decoder()
     self.loader = DataLoader()
     self.epochs = epochs
Esempio n. 30
0
def run_vitc(params, x_data_train, y_data_train, x_data_val, y_data_val, x_data_test, y_data_test, y_data_test_noisefree, save_dir, truth_test, bounds, fixed_vals, bilby_samples, snrs_test=None):

    epochs = params['num_iterations']
    train_size = params['load_chunk_size']
    batch_size = params['batch_size']
    val_size = params['val_dataset_size']
    test_size = params['r']
    plot_dir = params['plot_dir']
    plot_cadence = int(0.5*params['plot_interval'])
    # Include the epoch in the file name (uses `str.format`)
    checkpoint_path = "inverse_model_%s/model.ckpt" % params['run_label']
    checkpoint_dir = os.path.dirname(checkpoint_path)
    make_paper_plots = params['make_paper_plots']
    hyper_par_tune = False

    # if doing hour angle, use hour angle bounds on RA
    bounds['ra_min'] = convert_ra_to_hour_angle(bounds['ra_min'],params,None,single=True)
    bounds['ra_max'] = convert_ra_to_hour_angle(bounds['ra_max'],params,None,single=True)
    print('... converted RA bounds to hour angle')

    # load the training data
    if not make_paper_plots:
        train_dataset = DataLoader(params["train_set_dir"],params = params,bounds = bounds, masks = masks,fixed_vals = fixed_vals, chunk_batch = 40) 
        validation_dataset = DataLoader(params["val_set_dir"],params = params,bounds = bounds, masks = masks,fixed_vals = fixed_vals, chunk_batch = 2)

    x_data_test, y_data_test_noisefree, y_data_test, snrs_test = load_data(params,bounds,fixed_vals,params['test_set_dir'],params['inf_pars'],test_data=True)
    y_data_test = y_data_test[:params['r'],:,:]; x_data_test = x_data_test[:params['r'],:]

    # load precomputed samples
    bilby_samples = []
    for sampler in params['samplers'][1:]:
        bilby_samples.append(load_samples(params,sampler, bounds = bounds))
    bilby_samples = np.array(bilby_samples)
    #bilby_samples = np.array([load_samples(params,'dynesty'),load_samples(params,'ptemcee'),load_samples(params,'cpnest')])

    test_dataset = (tf.data.Dataset.from_tensor_slices((x_data_test,y_data_test))
                    .batch(1))

    train_loss_metric = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
    train_summary_writer = tf.summary.create_file_writer(train_log_dir)

    if params['resume_training']:
        model = CVAE(x_data_train.shape[1], params['ndata'],
                     y_data_train.shape[2], params['z_dimension'], params['n_modes'], params, bounds = bounds, masks = masks)
        # Load the previously saved weights
        latest = tf.train.latest_checkpoint(checkpoint_dir)
        model.load_weights(latest)
        print('... loading in previous model %s' % checkpoint_path)
    else:
        model = CVAE(x_data_test.shape[1], params['ndata'],
                     y_data_test.shape[2], params['z_dimension'], params['n_modes'], params, bounds, masks)


    # Make publication plots
    if make_paper_plots:
        print('... Making plots for publication.')
        # Load the previously saved weights
        latest = tf.train.latest_checkpoint(checkpoint_dir)
        model.load_weights(latest)
        print('... loading in previous model %s' % checkpoint_path)
        paper_plots(test_dataset, y_data_test, x_data_test, model, params, plot_dir, run, bilby_samples)
        return

    # start the training loop
    train_loss = np.zeros((epochs,3))
    val_loss = np.zeros((epochs,3))
    ramp_start = params['ramp_start']
    ramp_length = params['ramp_end']
    ramp_cycles = 1
    KL_samples = []


    optimizer = tf.keras.optimizers.Adam(1e-5)

    # Keras hyperparameter optimization
    if hyper_par_tune:
        import keras_hyper_optim
        del model
        keras_hyper_optim.main(train_dataset, val_dataset)
        exit()

    # log params used for this run
    path = params['plot_dir']
    shutil.copy('./vitamin_c_new.py',path)
    shutil.copy('./params_files/params.json',path)

    print("Loading intitial data....")
    train_dataset.load_next_chunk()
    validation_dataset.load_next_chunk()
    
    model.compile()

    for epoch in range(1, epochs + 1):

        train_loss_kl_q = 0.0
        train_loss_kl_r1 = 0.0
        start_time_train = time.time()
        if params['resume_training']:
            ramp = ramp = tf.convert_to_tensor(1.0)
            print('... Not using ramp.')
        else:
            ramp = tf.convert_to_tensor(ramp_func(epoch,ramp_start,ramp_length,ramp_cycles), dtype=tf.float32)

        for step in range(len(train_dataset)):
            y_batch_train, x_batch_train = train_dataset[step]
            if len(y_batch_train) == 0:
                print("NO data: ", train_dataset.chunk_iter, np.shape(y_batch_train))
            #print(step, np.shape(y_batch_train),np.shape(x_batch_train))
            temp_train_r_loss, temp_train_kl_loss = model.train_step(x_batch_train, y_batch_train, optimizer, ramp=ramp)
            train_loss[epoch-1,0] += temp_train_r_loss
            train_loss[epoch-1,1] += temp_train_kl_loss
        train_loss[epoch-1,2] = train_loss[epoch-1,0] + ramp*train_loss[epoch-1,1]
        train_loss[epoch-1,:] /= float(step+1)
        end_time_train = time.time()
        with train_summary_writer.as_default():
            tf.summary.scalar('loss', train_loss_metric.result(), step=epoch)
        train_loss_metric.reset_states()

        start_time_val = time.time()
        for step in range(len(validation_dataset)):
            y_batch_val, x_batch_val = validation_dataset[step]
            temp_val_r_loss, temp_val_kl_loss = model.compute_loss(x_batch_val, y_batch_val)
            val_loss[epoch-1,0] += temp_val_r_loss
            val_loss[epoch-1,1] += temp_val_kl_loss
        val_loss[epoch-1,2] = val_loss[epoch-1,0] + ramp*val_loss[epoch-1,1]
        val_loss[epoch-1,:] /= float(step+1)
        end_time_val = time.time()

        print('Epoch: {}, Run {}, Training RECON: {}, KL: {}, TOTAL: {}, time elapsed: {}'
            .format(epoch, run, train_loss[epoch-1,0], train_loss[epoch-1,1], train_loss[epoch-1,2], end_time_train - start_time_train))
        print('Epoch: {}, Run {}, Validation RECON: {}, KL: {}, TOTAL: {}, time elapsed {}'
            .format(epoch, run, val_loss[epoch-1,0], val_loss[epoch-1,1], val_loss[epoch-1,2], end_time_val - start_time_val))

        if epoch % params['save_interval'] == 0:
            # Save the weights using the `checkpoint_path` format
            model.save_weights(checkpoint_path)
            print('... Saved model %s ' % checkpoint_path)

        # update loss plot
        plot_losses(train_loss, val_loss, epoch, run=plot_dir)
        if epoch > ramp_start + ramp_length + 2:
            plot_losses_zoom(train_loss, val_loss, epoch, run=plot_dir, ind_start = ramp_start + ramp_length)

        # generate and plot posterior samples for the latent space and the parameter space 
        if epoch % plot_cadence == 0:
            for step, (x_batch_test, y_batch_test) in test_dataset.enumerate():             
                mu_r1, z_r1, mu_q, z_q = model.gen_z_samples(x_batch_test, y_batch_test, nsamples=1000)
                plot_latent(mu_r1,z_r1,mu_q,z_q,epoch,step,run=plot_dir)
                start_time_test = time.time()
                samples = model.gen_samples(y_batch_test, ramp=ramp, nsamples=params['n_samples'])
                end_time_test = time.time()
                if np.any(np.isnan(samples)):
                    print('Epoch: {}, found nans in samples. Not making plots'.format(epoch))
                    for k,s in enumerate(samples):
                        if np.any(np.isnan(s)):
                            print(k,s)
                    KL_est = [-1,-1,-1]
                else:
                    print('Epoch: {}, run {} Testing time elapsed for {} samples: {}'.format(epoch,run,params['n_samples'],end_time_test - start_time_test))
                    KL_est = plot_posterior(samples,x_batch_test[0,:],epoch,step,all_other_samples=bilby_samples[:,step,:],run=plot_dir)
                    _ = plot_posterior(samples,x_batch_test[0,:],epoch,step,run=plot_dir)
                KL_samples.append(KL_est)

            # plot KL evolution
            #plot_KL(np.reshape(np.array(KL_samples),[-1,params['r'],len(params['samplers'])]),plot_cadence,run=plot_dir)

        # iterate the chunk, i.e. load more noisefree data in
        if epoch % 10 == 0:
            print("Loading the next Chunk ...")
            train_dataset.load_next_chunk()