Esempio n. 1
0
def main(opt):
    if opt.useAE == 1:
        useAE = True
    else:
        useAE = False
    if opt.seed != -1:
        random.seed(opt.seed)
    ctx = mx.gpu() if opt.use_gpu else mx.cpu()
    inclasspaths, inclasses = dload.loadPaths(opt.dataset, opt.datapath,
                                              opt.expname, opt.batch_size + 1,
                                              opt.classes)
    train_data, val_data = load_image.load_image(inclasspaths, opt.batch_size,
                                                 opt.img_wd, opt.img_ht,
                                                 opt.noisevar)
    print('Data loading done.')

    if opt.istest:
        testclasspaths = []
        testclasslabels = []
        if opt.istest:
            filename = '_testlist.txt'
        elif opt.isvalidation:
            filename = '_trainlist.txt'
        else:
            filename = '_validationlist.txt'
        filename = '_trainlist.txt'
        with open(opt.dataset + "_" + opt.expname + filename, 'r') as f:
            for line in f:
                testclasspaths.append(line.split(' ')[0])
                if int(line.split(' ')[1]) == -1:
                    testclasslabels.append(0)
                else:
                    testclasslabels.append(1)

        test_data = load_image.load_test_images(testclasspaths,
                                                testclasslabels,
                                                opt.batch_size, opt.img_wd,
                                                opt.img_ht, ctx, opt.noisevar)
        netG, netD, trainerG, trainerD = set_network(opt.depth, ctx, 0, 0,
                                                     opt.ndf, opt.ngf,
                                                     opt.append)
        netG.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                         '_G.params',
                         ctx=ctx)
        netD.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                         '_D.params',
                         ctx=ctx)
        lbllist = []
        scorelist1 = []
        scorelist2 = []
        scorelist3 = []
        scorelist4 = []
        test_data.reset()
        count = 0

        for batch in (test_data):
            count += 1
            real_in = batch.data[0].as_in_context(ctx)
            real_out = batch.data[1].as_in_context(ctx)
            lbls = batch.label[0].as_in_context(ctx)
            outnn = (netG(real_out))
            out_concat = nd.concat(real_out, outnn,
                                   dim=1) if opt.append else outnn
            output4 = nd.mean((netD(out_concat)), (1, 3, 2)).asnumpy()
            out = (netG(real_in))
            out_concat = nd.concat(real_in, out, dim=1) if opt.append else out
            output = netD(out_concat)  #Denoised image
            output3 = nd.mean(out - real_out,
                              (1, 3, 2)).asnumpy()  #denoised-real
            output = nd.mean(output, (1, 3, 2)).asnumpy()
            out_concat = nd.concat(real_out, real_out,
                                   dim=1) if opt.append else real_out
            output2 = netD(out_concat)  #Image with no noise
            output2 = nd.mean(output2, (1, 3, 2)).asnumpy()
            lbllist = lbllist + list(lbls.asnumpy())
            scorelist1 = scorelist1 + list(output)
            scorelist2 = scorelist2 + list(output2)
            scorelist3 = scorelist3 + list(output3)
            scorelist4 = scorelist4 + list(output4)

        fake_img1 = nd.concat(real_in[0], real_out[0], out[0], outnn[0], dim=1)
        fake_img2 = nd.concat(real_in[1], real_out[1], out[1], outnn[1], dim=1)
        fake_img3 = nd.concat(real_in[2], real_out[2], out[2], outnn[2], dim=1)
        fake_img4 = nd.concat(real_in[3], real_out[3], out[3], outnn[3], dim=1)
        fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
        #print(np.shape(fake_img))
        visual.visualize(fake_img)
        plt.savefig('outputs/T_' + opt.expname + '_' + str(count) + '.png')
        '''
            fpr, tpr, _ = roc_curve(lbllist, scorelist1, 1)
            roc_auc1 = auc(fpr, tpr)
            fpr, tpr, _ = roc_curve(lbllist, scorelist2, 1)
            roc_auc2 = auc(fpr, tpr)
            fpr, tpr, _ = roc_curve(lbllist, scorelist3, 1)
            roc_auc3 = auc(fpr, tpr)
            fpr, tpr, _ = roc_curve(lbllist, scorelist4, 1)
            roc_auc4 = auc(fpr, tpr)
            return([roc_auc1, roc_auc2, roc_auc3, roc_auc4])
            '''

        return ([0, 0, 0, 0])

    else:
        netG, netD, trainerG, trainerD = set_network(opt.depth, ctx, opt.lr,
                                                     opt.beta1, opt.ndf,
                                                     opt.ngf, opt.append)
        if opt.graphvis:
            print(netG)
        print('training')
        print(opt.epochs)
        loss_vec = train(opt.pool_size,
                         opt.epochs,
                         train_data,
                         val_data,
                         ctx,
                         netG,
                         netD,
                         trainerG,
                         trainerD,
                         opt.lambda1,
                         opt.batch_size,
                         opt.expname,
                         opt.append,
                         useAE=useAE)
        plt.gcf().clear()
        plt.plot(loss_vec[0], label="D", alpha=0.7)
        plt.plot(loss_vec[1], label="G", alpha=0.7)
        plt.plot(loss_vec[2], label="R", alpha=0.7)
        plt.plot(loss_vec[3], label="Acc", alpha=0.7)
        plt.legend()
        plt.savefig('outputs/' + opt.expname + '_loss.png')
        return inclasses
Esempio n. 2
0
def mainEvaluation(opt):
    ctx = mx.gpu() if opt.use_gpu else mx.cpu()
    testclasspaths = []
    testclasslabels = []
    print('loading test files')
    filename = '_testlist.txt'
    with open(opt.dataset + "_" + opt.expname + filename, 'r') as f:
        for line in f:
            testclasspaths.append(line.split(' ')[0])
            if int(line.split(' ')[1]) == -1:
                testclasslabels.append(0)
            else:
                testclasslabels.append(1)
    neworder = range(len(testclasslabels))
    c = list(zip(testclasslabels, testclasspaths))
    print('shuffling')
    random.shuffle(c)
    testclasslabels, testclasspaths = zip(*c)
    print('loading pictures')
    test_data = load_image.load_test_images(testclasspaths, testclasslabels,
                                            opt.batch_size, opt.img_wd,
                                            opt.img_ht, ctx, opt.noisevar)
    print('picture loading done')
    opt.istest = True
    networks = models.set_network(opt, ctx, True)
    netEn = networks[0]
    netDe = networks[1]
    netD = networks[2]
    netD2 = networks[3]
    load_epoch = opt.epochs - 1
    netEn.load_params('checkpoints/' + opt.expname + '_' + str(load_epoch) +
                      '_En.params',
                      ctx=ctx)
    netDe.load_params('checkpoints/' + opt.expname + '_' + str(load_epoch) +
                      '_De.params',
                      ctx=ctx)
    if opt.ntype > 1:
        netD.load_params('checkpoints/' + opt.expname + '_' + str(load_epoch) +
                         '_D.params',
                         ctx=ctx)
    if opt.ntype > 2:
        netD2.load_params('checkpoints/' + opt.expname + '_' +
                          str(load_epoch) + '_D2.params',
                          ctx=ctx)

    print('Model loading done')
    lbllist = []
    scorelist1 = []
    scorelist2 = []
    scorelist3 = []
    scorelist4 = []
    test_data.reset()
    count = 0

    for batch in (test_data):
        count = count + 1
        output1 = np.zeros(opt.batch_size)
        output2 = np.zeros(opt.batch_size)
        output3 = np.zeros(opt.batch_size)
        output4 = np.zeros(opt.batch_size)
        real_in = batch.data[0].as_in_context(ctx)
        real_out = batch.data[1].as_in_context(ctx)
        lbls = batch.label[0].as_in_context(ctx)
        outnn = (netDe(netEn((real_in))))
        out = outnn
        output3 = -1 * nd.mean((outnn - real_out)**2, (1, 3, 2)).asnumpy()
        if opt.ntype > 1:  #AE
            out_concat = nd.concat(real_in, outnn,
                                   dim=1) if opt.append else outnn
            output1 = nd.mean((netD(out_concat)), (1, 3, 2)).asnumpy()
            out_concat = nd.concat(real_in, real_in,
                                   dim=1) if opt.append else real_in
            output2 = netD((out_concat))  # Image with no noise
            output2 = nd.mean(output2, (1, 3, 2)).asnumpy()
            out = netDe(netEn(real_out))
            out_concat = nd.concat(real_in, out, dim=1) if opt.append else out
            output = netD(out_concat)  #Denoised image
            output4 = nd.mean(output, (1, 3, 2)).asnumpy()
        lbllist = lbllist + list(lbls.asnumpy())
        scorelist1 = scorelist1 + list(output1)
        scorelist2 = scorelist2 + list(output2)
        scorelist3 = scorelist3 + list(output3)
        scorelist4 = scorelist4 + list(output4)
        out = netDe(netEn(real_in))

        # Save some sample results
        fake_img1 = nd.concat(real_in[0], real_out[0], out[0], outnn[0], dim=1)
        fake_img2 = nd.concat(real_in[1], real_out[1], out[1], outnn[1], dim=1)
        fake_img3 = nd.concat(real_in[2], real_out[2], out[2], outnn[2], dim=1)
        fake_img4 = nd.concat(real_in[3], real_out[3], out[3], outnn[3], dim=1)
        fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
        visual.visualize(fake_img)
        plt.savefig('outputs/T_' + opt.expname + '_' + str(count) + '.png')

    print("Positives" + str(np.sum(lbllist)))
    print("Negatives" + str(np.shape(lbllist) - np.sum(lbllist)))
    fpr, tpr, _ = roc_curve(lbllist, scorelist3, 1)
    roc_auc1 = 0
    roc_auc2 = 0
    roc_auc4 = 0
    roc_auc3 = auc(fpr, tpr)
    if int(opt.ntype) > 1:  #AE
        fpr, tpr, _ = roc_curve(lbllist, scorelist1, 1)
        roc_auc1 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist2, 1)
        roc_auc2 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist4, 1)
        roc_auc4 = auc(fpr, tpr)

    return [roc_auc1, roc_auc2, roc_auc3, roc_auc4]
Esempio n. 3
0
def main(opt):
    ctx = mx.gpu() if opt.use_gpu else mx.cpu()
    testclasspaths = []
    testclasslabels = []
    print('loading test files')
    filename = '_testlist.txt'
    with open(opt.dataset + "_" + opt.expname + filename, 'r') as f:
        for line in f:
            testclasspaths.append(line.split(' ')[0])
            if int(line.split(' ')[1]) == -1:
                testclasslabels.append(0)
            else:
                testclasslabels.append(1)
    neworder = range(len(testclasslabels))
    neworder = shuffle(neworder)

    c = list(zip(testclasslabels, testclasspaths))
    print('shuffling')
    random.shuffle(c)

    #testclasslabels, testclasspaths = zip(*c)
    #testclasslabels = testclasslabels[1:5000]
    #testclasspaths = testclasspaths[1:5000]
    ltnt = 512
    print('loading pictures')
    test_data = load_image.load_test_images(testclasspaths, testclasslabels,
                                            opt.batch_size, opt.img_wd,
                                            opt.img_ht, ctx, opt.noisevar)
    print('picture loading done')
    netEn, netDe, netD, netD2, netDS = set_network(opt.depth, ctx, 0, 0,
                                                   opt.ndf, opt.ngf,
                                                   opt.append)
    netEn.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_En.params',
                      ctx=ctx)
    netDe.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_De.params',
                      ctx=ctx)
    netD.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                     '_D.params',
                     ctx=ctx)
    netD2.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_D2.params',
                      ctx=ctx)
    netDS.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_SD.params',
                      ctx=ctx)
    print('Model loading done')
    lbllist = []
    scorelist1 = []
    scorelist2 = []
    scorelist3 = []
    scorelist4 = []
    test_data.reset()
    count = 0
    for batch in (test_data):
        count += 1
        print(str(count))  #, end="\r")
        real_in = batch.data[0].as_in_context(ctx)
        real_out = batch.data[1].as_in_context(ctx)
        lbls = batch.label[0].as_in_context(ctx)
        code = netEn((real_out))
        code = code + nd.random.normal(
            loc=0, scale=0.002, shape=code.shape, ctx=ctx)
        outnn = (netDe(code))
        out_concat = nd.concat(real_out, outnn, dim=1) if opt.append else outnn
        output4 = nd.mean((netD(out_concat)), (1, 3, 2)).asnumpy()
        code = netEn(real_in)
        #code=codet+nd.random.normal(loc=0, scale=0.0000001, shape=code.shape,ctx=ctx)
        #code2=codet+nd.random.normal(loc=0, scale=0.000001, shape=code.shape,ctx=ctx)
        #eq_code = heq(code.asnumpy(),2)
        #code = nd.array(eq_code, ctx=ctx)
        out = netDe(code)
        #out2 = netDe(code2)
        out_concat = nd.concat(real_in, out, dim=1) if opt.append else out
        output = netD(out_concat)  #Denoised image
        output3 = nd.mean((out - real_out)**2,
                          (1, 3, 2)).asnumpy()  #denoised-real
        output = nd.mean(output, (1, 3, 2)).asnumpy()
        out_concat = nd.concat(real_out, real_out,
                               dim=1) if opt.append else real_out

        output2 = netDS(netDe(code))  #Image with no noise
        output2 = nd.mean(output2, (1, 3, 2)).asnumpy()
        lbllist = lbllist + list(lbls.asnumpy())
        scorelist1 = scorelist1 + list(output)
        scorelist2 = scorelist2 + list(output2)
        scorelist3 = scorelist3 + list(output3)
        scorelist4 = scorelist4 + list(output4)

        fake_img1 = nd.concat(real_in[0], real_out[0], out[0], outnn[0], dim=1)
        fake_img2 = nd.concat(real_in[1], real_out[1], out[1], outnn[1], dim=1)
        fake_img3 = nd.concat(real_in[2], real_out[2], out[2], outnn[2], dim=1)
        fake_img4 = nd.concat(real_in[3], real_out[3], out[3], outnn[3], dim=1)
        fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
        #print(np.shape(fake_img))
        visual.visualize(fake_img)
        plt.savefig('outputs/T_' + opt.expname + '_' + str(count) + '.png')
    if not opt.isvalidation:

        fpr, tpr, _ = roc_curve(lbllist, scorelist1, 1)
        roc_auc1 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist2, 1)
        roc_auc2 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist3, 1)
        roc_auc3 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist4, 1)
        roc_auc4 = auc(fpr, tpr)
        plt.gcf().clear()
        plt.clf()
        sns.set(color_codes=True)
        posscores = [
            scorelist3[i] for i, v in enumerate(lbllist) if int(v) == 1
        ]
        negscores = [
            scorelist3[i] for i, v in enumerate(lbllist) if int(v) == 0
        ]
        #sns.distplot(posscores, hist=False, label="Known Classes" ,rug=True)
        sns.kdeplot(posscores, label="Known Classes")
        sns.kdeplot(negscores, label="Unnown Classes")
        #plt.hold()
        #sns.distplot(negscores, hist=False, label = "Unknown Classes", rug=True);
        plt.legend()
        plt.savefig('outputs/matdist_' + opt.expname + '_.png')

        plt.gcf().clear()
        inputT = nd.zeros((ltnt, ltnt, 1, 1), ctx=ctx)
        for i in range(0, ltnt):
            inputT[i, i, :, :] = -1
        out = netDe(inputT)
        count = 0
        for i in range(int(math.ceil(math.sqrt(ltnt)))):
            for j in range(int(math.ceil(math.sqrt(ltnt)))):
                if count < ltnt:
                    plt.subplot(math.ceil(math.sqrt(ltnt)),
                                math.ceil(math.sqrt(ltnt)), count + 1)
                    plt.imshow(
                        ((out[count].asnumpy().transpose(1, 2, 0) + 1.0) *
                         127.5).astype(np.uint8))
                    plt.axis('off')
                count += 1
        plt.savefig('outputs/atoms_' + opt.expname + '_.png')
        plt.gcf().clear()
        plt.clf()
        return ([roc_auc1, roc_auc2, roc_auc3, roc_auc4])
    else:
        return ([0, 0, 0, 0])
    fakecode = nd.random_normal(loc=0,
                                scale=1,
                                shape=(16, 4096, 1, 1),
                                ctx=ctx)
    out = netDe(fakecode)
    fake_img1 = nd.concat(out[0], out[1], out[2], out[3], dim=1)
    fake_img2 = nd.concat(out[7], out[6], out[5], out[4], dim=1)
    fake_img3 = nd.concat(out[8], out[9], out[10], out[11], dim=1)
    fake_img4 = nd.concat(out[15], out[14], out[13], out[12], dim=1)
    fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
    #print(np.shape(fake_img))
    visual.visualize(fake_img)
    plt.savefig('outputs/fakes_' + opt.expname + '_.png')
Esempio n. 4
0
ctx = mx.gpu() if opt.use_gpu else mx.cpu()

testclasspaths = []
testclasslabels = []
filename = '_trainlist.txt'
with open(opt.dataset+"_"+opt.expname+filename , 'r') as f:
        for line in f:
            testclasspaths.append(line.split(' ')[0])
            if int(line.split(' ')[1])==-1:
                testclasslabels.append(0)
            else:
                testclasslabels.append(1)
#testclasspaths = testclasspaths[0:1]
#testclasslabels = testclasslabels[0:1]
test_data = load_image.load_test_images(testclasspaths,testclasslabels,opt.batch_size, opt.img_wd, opt.img_ht, ctx, opt.noisevar)

print(ctx)





follist = range(0,201,10)
folders = range(0,10)
for classname in [0]: #folders:

    	#ctx = mx.gpu() if opt.use_gpu else mx.cpu()
	
	
Esempio n. 5
0
def main(opt):
    ctx = mx.gpu() if opt.use_gpu else mx.cpu()
    testclasspaths = []
    testclasslabels = []
    if opt.istest:
        filename = '_testlist.txt'
    else:
        filename = '_validationlist.txt'
    with open(opt.dataset + "_" + opt.expname + filename, 'r') as f:
        for line in f:
            testclasspaths.append(line.split(' ')[0])
            if int(line.split(' ')[1]) == -1:
                testclasslabels.append(0)
            else:
                testclasslabels.append(1)

    test_data = load_image.load_test_images(testclasspaths, testclasslabels,
                                            opt.batch_size, opt.img_wd,
                                            opt.img_ht, ctx, opt.noisevar)
    netEn, netDe, netD, netD2 = set_network(opt.depth, ctx, opt.ngf)
    netEn.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_En.params',
                      ctx=ctx)
    netDe.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_De.params',
                      ctx=ctx)
    netD.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                     '_D.params',
                     ctx=ctx)
    netD2.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_D2.params',
                      ctx=ctx)

    lbllist = []
    scorelist1 = []
    scorelist2 = []
    scorelist3 = []
    scorelist4 = []
    test_data.reset()
    count = 0
    for batch in (test_data):
        count += 1
        real_in = batch.data[0].as_in_context(ctx)
        real_out = batch.data[1].as_in_context(ctx)
        lbls = batch.label[0].as_in_context(ctx)
        out = netDe(netEn(real_out))
        output4 = nd.mean((netD2(out)), (1, 3, 2)).asnumpy()
        out = netDe(netEn(real_in))

        #real_concat = nd.concat(out, out, dim=1)
        output = netD2(out)  #Denoised image

        output3 = nd.mean(out - real_out, (1, 3, 2)).asnumpy()  #denoised-real
        output = nd.mean(output, (1, 3, 2)).asnumpy()
        print(output)
        print(lbls)
        output2 = netD2(real_out)  #Image with no noise
        output2 = nd.mean(output2, (1, 3, 2)).asnumpy()
        lbllist = lbllist + list(lbls.asnumpy())
        scorelist1 = scorelist1 + list(output)
        scorelist2 = scorelist2 + list(output2)
        scorelist3 = scorelist3 + list(output3)
        scorelist4 = scorelist4 + list(output4)
    fpr, tpr, _ = roc_curve(lbllist, scorelist1, 1)
    roc_auc1 = auc(fpr, tpr)
    fpr, tpr, _ = roc_curve(lbllist, scorelist2, 1)
    roc_auc2 = auc(fpr, tpr)
    fpr, tpr, _ = roc_curve(lbllist, scorelist3, 1)
    roc_auc3 = auc(fpr, tpr)
    fpr, tpr, _ = roc_curve(lbllist, scorelist4, 1)
    roc_auc4 = auc(fpr, tpr)
    return ([roc_auc1, roc_auc2, roc_auc3, roc_auc4])
Esempio n. 6
0
def main(opt):
    ctx = mx.gpu() if opt.use_gpu else mx.cpu()
    testclasspaths = []
    testclasslabels = []
    print('loading test files')
    if opt.istest:
        filename = '_testlist.txt'
    elif opt.isvalidation:
        filename = '_trainlist.txt'
    else:
        filename = '_validationlist.txt'
    with open(opt.dataset + "_" + opt.expname + filename, 'r') as f:
        for line in f:
            testclasspaths.append(line.split(' ')[0])
            if int(line.split(' ')[1]) == -1:
                testclasslabels.append(0)
            else:
                testclasslabels.append(1)
    neworder = range(len(testclasslabels))
    neworder = shuffle(neworder)

    c = list(zip(testclasslabels, testclasspaths))
    print('shuffling')
    random.shuffle(c)

    testclasslabels, testclasspaths = zip(*c)
    testclasslabels = testclasslabels[1:5000]
    testclasspaths = testclasspaths[1:5000]

    print('loading pictures')
    test_data = load_image.load_test_images(testclasspaths, testclasslabels,
                                            opt.batch_size, opt.img_wd,
                                            opt.img_ht, ctx, opt.noisevar)
    print('picture loading done')
    netG, netD, trainerG, trainerD = set_network(opt.depth, ctx, 0, 0, opt.ndf,
                                                 opt.ngf, opt.append)
    netG.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                     '_G.params',
                     ctx=ctx)
    netD.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                     '_D.params',
                     ctx=ctx)
    print('Model loading done')
    lbllist = []
    scorelist1 = []
    scorelist2 = []
    scorelist3 = []
    scorelist4 = []
    test_data.reset()
    count = 0
    for batch in (test_data):
        count += 1
        print(str(count))  #, end="\r")
        real_in = batch.data[0].as_in_context(ctx)
        real_out = batch.data[1].as_in_context(ctx)
        lbls = batch.label[0].as_in_context(ctx)
        outnn = (netG(real_out))
        out_concat = nd.concat(real_out, outnn, dim=1) if opt.append else outnn
        output4 = nd.mean((netD(out_concat)), (1, 3, 2)).asnumpy()
        out = (netG(real_in))
        out_concat = nd.concat(real_in, out, dim=1) if opt.append else out
        output = netD(out_concat)  #Denoised image
        output3 = nd.mean(out - real_out, (1, 3, 2)).asnumpy()  #denoised-real
        output = nd.mean(output, (1, 3, 2)).asnumpy()
        out_concat = nd.concat(real_out, real_out,
                               dim=1) if opt.append else real_out
        output2 = netD(out_concat)  #Image with no noise
        output2 = nd.mean(output2, (1, 3, 2)).asnumpy()
        lbllist = lbllist + list(lbls.asnumpy())
        scorelist1 = scorelist1 + list(output)
        scorelist2 = scorelist2 + list(output2)
        scorelist3 = scorelist3 + list(output3)
        scorelist4 = scorelist4 + list(output4)

        fake_img1 = nd.concat(real_in[0], real_out[0], out[0], outnn[0], dim=1)
        fake_img2 = nd.concat(real_in[1], real_out[1], out[1], outnn[1], dim=1)
        fake_img3 = nd.concat(real_in[2], real_out[2], out[2], outnn[2], dim=1)
        fake_img4 = nd.concat(real_in[3], real_out[3], out[3], outnn[3], dim=1)
        fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
        #print(np.shape(fake_img))
        visual.visualize(fake_img)
        plt.savefig('outputs/T_' + opt.expname + '_' + str(count) + '.png')

    if not opt.isvalidation:

        fpr, tpr, _ = roc_curve(lbllist, scorelist1, 1)
        roc_auc1 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist2, 1)
        roc_auc2 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist3, 1)
        roc_auc3 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist4, 1)
        roc_auc4 = auc(fpr, tpr)
        return ([roc_auc1, roc_auc2, roc_auc3, roc_auc4])
    else:
        return ([0, 0, 0, 0])
Esempio n. 7
0

with open(dataset + "_" + expname + "_testlist.txt", 'r') as f:
    for line in f:
        testclasspaths.append(line.split(' ')[0])
        if int(line.split(' ')[1]) == -1:
            testclasslabels.append(0)
        else:
            testclasslabels.append(1)
print(np.shape(testclasslabels))
print(batch_size)
print(np.shape(testclasspaths))
print('Loading data')
test_data = load_image.load_test_images(testclasspaths,
                                        testclasslabels,
                                        batch_size,
                                        img_wd,
                                        img_ht,
                                        ctx=ctx)
print('Loading Done')

# Loss
GAN_loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
L1_loss = gluon.loss.L1Loss()
netG, netD, trainerG, trainerD = set_network()
netG.load_params("checkpoints/" + expname + "_" + str(epoch) + "_G.params",
                 ctx=ctx)
netD.load_params("checkpoints/" + expname + "_" + str(epoch) + "_D.params",
                 ctx=ctx)
print('Loading model done')

lbllist = []