Esempio n. 1
0
    def __init__(self, block_images, item_images, mob_images):
        """
        Construct a new ViewRouter with appropriate entity id to image file mappings.

        Parameters:
             block_images (dict<str: str>): A mapping of block ids to their respective images
             item_images (dict<str: str>): A mapping of item ids to their respective images
             mob_images (dict<str: str>): A mapping of mob ids to their respective images
        """
        super().__init__(block_images, item_images, mob_images)

        loader = SpriteSheetLoader()
        self._images = loader.load_all()

        self._mario_count = 0
        self._mario_speed = 8
        self._player_facing = 1

        self._mob_count = {}
        self._mob_speed = {}
        self._mob_death = {}

        self._bouncy_count = {}
        self._bouncy_speed = {}
        self._bouncy_activated = {}

        self._coin_count = {}
        self._coin_speed = {}
Esempio n. 2
0
 def setUpClass(self):
     print("This setUpClass() method only called once.")
     model = load_all()
     self.model_IfKnowDebtor = model['IfKnowDebtor']
     self.model_CutDebt = model['CutDebt']
     self.model_IDClassifier = model['IDClassifier']
     self.model_WillingToPay = model['WillingToPay']
     self.model_Installment = model['Installment']
     self.model_ConfirmLoan = model['ConfirmLoan']
     self.df = pd.read_excel('ConfirmLoan.xls')
import time
import json
import loader
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingClassifier


if __name__ == "__main__":

    # No randomness is introduced in HGBDT when `X_train` and `X_test`
    # are fixed.
    n_jobs = -1
    load_funcs = loader.load_all()
    config = json.load(open("config.json", "r"))
    records = []
    
    for dataset, func in load_funcs.items():

        if dataset in ("sector"):  # run out of memory on sector
            continue

        if dataset not in config:
            msg = "Missing configuration in json file for dataset = {}."
            raise RuntimeError(msg.format(dataset))

        X_train, y_train, X_test, y_test = func()
        n_classes = np.unique(y_train).shape[0]
        objective = ('categorical_crossentropy' if n_classes > 2
                     else 'binary_crossentropy')
Esempio n. 4
0
# Assign member ids to new members
#

import sys
import os
from pythoncivicrm.pythoncivicrm import CiviCRM
from pythoncivicrm.pythoncivicrm import CivicrmError
from pythoncivicrm.pythoncivicrm import matches_required
from loader import load_all

site_key = os.environ['CIVI_SITE_KEY']
api_key = os.environ['CIVI_API_KEY']
url = os.environ['CIVI_API_URL'] 
civicrm = CiviCRM(url, site_key, api_key, True)

members = load_all(civicrm, 1, 200)

#run through all contacts and determine the current highest member id
print('Determining highest current member id...');
high_member_id = 0
for member in members:
	print('Current member id ' + str(member.member_id))
	print('Highest member id ' + str(high_member_id))
	if member.member_id > high_member_id:
		high_member_id = member.member_id

print('Highest assigned member id is currently ' + str(high_member_id))

exit
#run through all contacts and assign new member ids where necessary
print('Assigning new member ids...');
Esempio n. 5
0
import sys,os
sys.path.append('../../MLModel/code/OneClickTraining/')
sys.path.append('../../MLModel/code/TreeModelV2/')

import sys,os
loader_path = '../../classifier/loader/'
sys.path.append(loader_path)
from loader import load_all
model_dict=load_all()

from MLModel.code.OneClickTraining.all_model_py import  *
from MLModel.code.TreeModelV2.chatbotv1 import *

class chatbot_engine(object):
    def __init__(self):
        models_list = ['IDClassifier', 'CutDebt', 'IfKnowDebtor', 'WillingToPay', 'Installment', 'ConfirmLoan']
        savedModel_path = '../../classifier/saved_Model/{}/main_flow/{}.pkl'
        model_dict = {}
        for each_model in models_list:
            model_dict[each_model] = pickle.load(open(savedModel_path.format(each_model, each_model), 'rb'))




    # model_dict[each_model].classify('再说一次')
# model_dict['StopClassifier'] = StopClassifier()
# model_dict['InitClassifier'] = InitClassifier()
# def models():
#     models_list = ['IDClassifier', 'CutDebt', 'IfKnowDebtor', 'WillingToPay', 'Installment', 'ConfirmLoan']
#     savedModel_path = '../../MLModel/saved_Model/{}/main_flow/{}.pickle'
#     model_dict = {}
Esempio n. 6
0
# from HRX.Test.chatbot_model import models
import sys, os

loader_path = '../../classifier/loader/'
sys.path.append(loader_path)
from loader import load_all
# model_dict=load_all()
import unittest
import HTMLTestRunner  # 导入HTMLTestRunner模块
import pandas as pd

all_error = []
columns = ['split_text', 'classifier', 'label', 'predict_label']
import re

model = load_all()

read_path = '../../MLModel/data/{}/mock_up_data_clean_new.csv'
save_path = '/Users/ozintel/Downloads/Tsl_work_file/Collect_project_file/chatbot/cmc/数据清洗2018_7_31/cleaned_data_2018_8_2/intersection_data_process/data_submit'


class chatBotModel(object):
    """Test chatbot_ttest_model.py"""
    def __init__(self):
        # print("This setUpClass() method only called once.")

        # self.model_IfKnowDebtor = model['IfKnowDebtor']
        # self.model_CutDebt = model['CutDebt']
        # self.model_IDClassifier = model['IDClassifier']
        # self.model_WillingToPay = model['WillingToPay']
        # self.model_Installment = model['Installment']