Esempio n. 1
0
def SALVIA_P_light(name='SALVIA_P_verbal_guidance',
                   grammar_name='TCG_grammar_VB_main',
                   semantics_name='TCG_semantics_main',
                   grammar_path='./data/grammars/',
                   semantics_path='./data/semantics/'):
    """
    Creates and returns a light version of the SALVIA production model.
    It bypasses the VisualWM and the Conceptualizer
    """
    # Instantiating all the necessary system schemas
    scene_perception = ps.SCENE_PERCEPTION()

    conceptLTM = ls.CONCEPT_LTM()

    semanticWM = ls.SEMANTIC_WM()
    grammaticalWM_P = ls.GRAMMATICAL_WM_P()
    grammaticalLTM = ls.GRAMMATICAL_LTM()
    cxn_retrieval_P = ls.CXN_RETRIEVAL_P()
    phonWM_P = ls.PHON_WM_P()
    control = ls.CONTROL()
    utter = ls.UTTER()

    # Defining schema to brain mappings.
    brain_mappings = {
        'Scene_perception': ['Ventral stream'],
        'Concept_LTM': [''],
        'Semantic_WM': ['left_SFG', 'LIP', 'Hippocampus'],
        'Grammatical_WM_P': ['left_BA45', 'leftBA44'],
        'Grammatical_LTM': ['left_STG', 'left_MTG'],
        'Cxn_retrieval_P': [],
        'Phonological_WM_P': ['left_BA6'],
        'Utter': [''],
        'Control': ['DLPFC']
    }

    schemas = [
        scene_perception, conceptLTM, grammaticalLTM, cxn_retrieval_P,
        semanticWM, grammaticalWM_P, phonWM_P, utter, control
    ]

    # Creating model and adding system schemas
    model = st.MODEL(name)
    model.add_schemas(schemas)

    # Defining connections
    model.add_connection(scene_perception, 'to_semantic_WM', semanticWM,
                         'from_conceptualizer')
    model.add_connection(semanticWM, 'to_visual_WM', scene_perception,
                         'from_semantic_WM')

    model.add_connection(semanticWM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalLTM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_grammatical_LTM')
    model.add_connection(cxn_retrieval_P, 'to_grammatical_WM_P',
                         grammaticalWM_P, 'from_cxn_retrieval_P')
    model.add_connection(semanticWM, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalWM_P, 'to_semantic_WM', semanticWM,
                         'from_grammatical_WM_P')
    model.add_connection(grammaticalWM_P, 'to_phonological_WM_P', phonWM_P,
                         'from_grammatical_WM_P')
    model.add_connection(phonWM_P, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_phonological_WM_P')
    model.add_connection(semanticWM, 'to_control', control, 'from_semantic_WM')
    model.add_connection(phonWM_P, 'to_utter', utter, 'from_phonological_WM_P')
    model.add_connection(phonWM_P, 'to_control', control,
                         'from_phonological_WM_P')
    model.add_connection(control, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_control')
    model.add_connection(control, 'to_semantic_WM', semanticWM, 'from_control')

    model.set_input_ports([scene_perception.find_port('from_input')])
    model.set_output_ports([
        utter.find_port('to_output'),
        scene_perception.find_port('to_output')
    ])

    # Setting up schema to brain mappings
    description_brain_mapping = st.BRAIN_MAPPING()
    description_brain_mapping.schema_mapping = brain_mappings
    model.brain_mapping = description_brain_mapping

    # Parameters
    system_names = model.schemas.keys()
    model_params = parameters(system_names)
    model.update_params(model_params)

    grammaticalLTM.init_act = grammaticalWM_P.params['C2'][
        'confidence_threshold']
    # Loading data

    semantics_file = "%s.json" % semantics_name
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge(
        semantics_file, semantics_path)

    grammar_file = "%s.json" % grammar_name
    my_grammar = TCG_LOADER.load_grammar(grammar_file, grammar_path,
                                         my_conceptual_knowledge)

    # Initialize concept LTM content
    conceptLTM.initialize(my_conceptual_knowledge)

    # Initialize grammatical LTM content
    grammaticalLTM.initialize(my_grammar)

    return model
Esempio n. 2
0
#        Print the cxn with name cxn_name (STR) if it is found in the grammar.
#        """        
#        cxn = self.find_construction(cxn_name)
#        if not(cxn):
#            print "%s not found..." % cxn_name
#        else:
#            print cxn     
###############################################################################

if __name__=='__main__':
    from loader import TCG_LOADER
    
    # Loading data
    grammar_name = 'TCG_grammar_VB_main'
    
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge("TCG_semantics_main.json", "./data/semantics/")
    grammar_file = "%s.json" %grammar_name
    my_grammar = TCG_LOADER.load_grammar(grammar_file, "./data/grammars/", my_conceptual_knowledge)
    
    cxn = my_grammar.constructions[0]
    cxn2 = my_grammar.constructions[3]
    
    (cxn3, c, u_map) = CXN.unify(cxn, cxn.SynForm.form[0], cxn2)
#    cxn3.SemFrame.draw()
#    print [f.name for f in cxn3.SynForm.form]
#    print cxn3.SymLinks.SL
    
    cxn3.show()
    
    
    
Esempio n. 3
0
def TCG_language_system(name='language_system',
                        grammar_name='TCG_grammar_VB_main',
                        semantics_name='TCG_semantics_main',
                        grammar_path='./data/grammars/',
                        semantics_path='./data/semantics/'):
    """
    Creates and returns the TCG language model, including both production and comprehension.
    """
    # Instantiating all the necessary system schemas
    semanticWM = ls.SEMANTIC_WM()
    conceptLTM = ls.CONCEPT_LTM()
    grammaticalLTM = ls.GRAMMATICAL_LTM()
    grammaticalWM_P = ls.GRAMMATICAL_WM_P()
    cxn_retrieval_P = ls.CXN_RETRIEVAL_P()
    grammaticalWM_C = ls.GRAMMATICAL_WM_C()
    cxn_retrieval_C = ls.CXN_RETRIEVAL_C()
    phonWM_P = ls.PHON_WM_P()
    utter = ls.UTTER()
    phonWM_C = ls.PHON_WM_C()
    control = ls.CONTROL()

    # Defining schema to brain mappings.
    language_mapping = {
        'Semantic_WM': ['left_SFG', 'LIP', 'Hippocampus'],
        'Grammatical_WM_P': ['left_BA45', 'leftBA44'],
        'Grammatical_LTM': ['left_STG', 'left_MTG'],
        'Cxn_retrieval_P': [],
        'Phonological_WM_P': ['left_BA6'],
        'Utter': [''],
        'Cxn_retrieval_C': [],
        'Phonological_WM_C': ['Wernicke'],
        'Grammatical_WM_C': ['lBA44, lBA45'],
        'Control': ['DLPFC'],
        'Concept_LTM': ['']
    }

    # Initializing model
    model = st.MODEL(name)

    # Setting up schema to brain mappings
    language_brain_mapping = st.BRAIN_MAPPING()
    language_brain_mapping.schema_mapping = language_mapping
    model.brain_mapping = language_brain_mapping

    # Setting up language model.
    language_schemas = [
        semanticWM, conceptLTM, grammaticalLTM, cxn_retrieval_P,
        grammaticalWM_P, phonWM_P, utter, phonWM_C, grammaticalWM_C,
        cxn_retrieval_C, control
    ]

    model.add_schemas(language_schemas)
    model.add_connection(semanticWM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalLTM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_grammatical_LTM')
    model.add_connection(cxn_retrieval_P, 'to_grammatical_WM_P',
                         grammaticalWM_P, 'from_cxn_retrieval_P')
    model.add_connection(semanticWM, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalWM_P, 'to_semantic_WM', semanticWM,
                         'from_grammatical_WM_P')
    model.add_connection(grammaticalWM_P, 'to_phonological_WM_P', phonWM_P,
                         'from_grammatical_WM_P')
    model.add_connection(phonWM_P, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_phonological_WM_P')
    model.add_connection(semanticWM, 'to_control', control, 'from_semantic_WM')
    model.add_connection(phonWM_P, 'to_control', control,
                         'from_phonological_WM_P')
    model.add_connection(phonWM_P, 'to_utter', utter, 'from_phonological_WM_P')
    model.add_connection(control, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_control')

    model.add_connection(grammaticalLTM, 'to_cxn_retrieval_C', cxn_retrieval_C,
                         'from_grammatical_LTM')
    model.add_connection(phonWM_C, 'to_grammatical_WM_C', grammaticalWM_C,
                         'from_phonological_WM_C')
    model.add_connection(grammaticalWM_C, 'to_cxn_retrieval_C',
                         cxn_retrieval_C, 'from_grammatical_WM_C')
    model.add_connection(cxn_retrieval_C, 'to_grammatical_WM_C',
                         grammaticalWM_C, 'from_cxn_retrieval_C')
    model.add_connection(control, 'to_semantic_WM', semanticWM, 'from_control')
    model.add_connection(control, 'to_grammatical_WM_C', grammaticalWM_C,
                         'from_control')
    model.add_connection(grammaticalWM_C, 'to_semantic_WM', semanticWM,
                         'from_grammatical_WM_C')
    model.add_connection(conceptLTM, 'to_semantic_WM', semanticWM,
                         'from_concept_LTM')

    model.set_input_ports([phonWM_C.find_port('from_input')])
    model.set_output_ports([utter.find_port('to_output')])

    # Parameters
    system_names = model.schemas.keys()
    model_params = parameters(system_names)
    model.update_params(model_params)

    #    grammaticalLTM.init_act = grammaticalWM_P.params['C2']['confidence_threshold']*0.5

    # Loading data
    semantics_file = "%s.json" % semantics_name
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge(
        semantics_file, semantics_path)
    grammar_file = "%s.json" % grammar_name
    my_grammar = TCG_LOADER.load_grammar(grammar_file, grammar_path,
                                         my_conceptual_knowledge)

    # Initialize conceptual LTM content
    conceptLTM.initialize(my_conceptual_knowledge)

    # Initialize grammatical LTM content
    grammaticalLTM.initialize(my_grammar)

    return