# compare classes #class_names = cifar10.load_class_names() #my_class_names = ["0","1","2","3","4","5","6","7","8","9"] num_classes = 10 print num_classes #print ("class name type: ",type(my_class_names[0])) #print("hvass classes ",class_names) #print("my classes ",my_class_names) #raw_input("press key to continue...") # Load the training-set. This returns the images, the class-numbers as integers, and the class-numbers as One-Hot encoded arrays called labels. # In[10]: #images_train, cls_train, labels_train = cifar10.load_training_data() my_labels_train_cls, my_images_train = li.load_label_image_list( "/home/peter/tensorflow_scripts/triset_train/tags.csv", 0, 30000) #truncate label for testing with first number onls my_labels_train_onehot = [] for x in my_labels_train_cls: my_labels_train_onehot.append(li.getonehot(x)) # Load the test-set. #print("onehot : ",my_labels_train_onehot) my_labels_train_onehot = np.array(my_labels_train_onehot) print("onehot : ", my_labels_train_onehot.shape) # In[11]: print(my_labels_train_onehot) #raw_input("...") #images_test, cls_test, labels_test = cifar10.load_test_data()
# Fully-connected layer. fc_size = 128 # Number of neurons in fully-connected layer. # ## Load Data # The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. # In[6]: #from tensorflow.examples.tutorials.mnist import input_data #data = input_data.read_data_sets('data/MNIST/', one_hot=True) import loadimages as li my_datatraincls, my_datatrainimages= li.load_label_image_list("/home/peter/tensorflow_notes/lesson5_trinumber_cnn/data/tags.csv", 0, 50000) my_datatestcls, my_datatestimages= li.load_label_image_list("/home/peter/tensorflow_notes/lesson5_trinumber_cnn/data/tags.csv", 0, 10000) my_onehottestcls = [] my_onehottraincls=[] for x in my_datatraincls: my_onehottraincls.append(li.getonehot(int(x))) my_onehotraincls = np.array(my_onehottraincls) for x in my_datatestcls: my_onehottestcls.append(li.getonehot(int(x))) my_onehottestcls = np.array(my_onehottestcls)