prediction = []

	for r in reviews_bigramtest:
		test_labels.append(r[1])
		prediction.append(classifier.classify(r[0]))

	print("Results....")
	print(accuracy_score(test_labels, prediction))
	print(classification_report(test_labels, prediction))

#load reviews
reviews = loadReviews("imdbMovieReviews3.txt")

#bigram NV without title
processedReviews = textProcessing(reviews, False, 3)
result = generateTrainingTestSet(processedReviews, False)
reviews_training = result[0]
reviews_test = result[1]
ngramNaiveBayesClassifier(reviews_training, reviews_test)

#bigram NV with title
processedReviews = textProcessing(reviews, False, 3)
result = generateTrainingTestSet(processedReviews, True)
reviews_training = result[0]
reviews_test = result[1]
ngramNaiveBayesClassifier(reviews_training, reviews_test)




    t0 = time.time()
    classifier_liblinear.fit(train_vectors, train_labels)
    t1 = time.time()
    prediction_liblinear = classifier_liblinear.predict(test_vectors)
    t2 = time.time()
    time_liblinear_train = t1-t0
    time_liblinear_predict = t2-t1


    # Print results in tabular format
    print("Results for LinearSVC()")
    print("Training time: %fs; Prediction time: %fs" % (time_liblinear_train, time_liblinear_predict))
    print(accuracy_score(test_labels, prediction_liblinear))
    print(classification_report(test_labels, prediction_liblinear))

#load reviews
reviews = loadReviews("imdbMovieReviews3.txt")

#SVM without title
result = generateTrainingTestSet(reviews, False)
reviews_training = result[0]
reviews_test = result[1]
print("SVM without Review title....")
linearSVMClassifier(reviews_training, reviews_test)
    
#SVM with title
result = generateTrainingTestSet(reviews, True)
reviews_training = result[0]
reviews_test = result[1]
print("SVM with Review title....")
linearSVMClassifier(reviews_training, reviews_test)