# model = models.Word2Vec.load("model6.word2vec") # dictionary = load_doc_hashes("temp_mapper.txt") # dim = len(model[model.vocab.keys()[0]]) # d = np.zeros(shape=(10000,100)) questions = load_thread(16,os.getcwd()) qs = Questions(questions) with open("correct_questions_content.pickle","wb") as f: pickle.dump(qs,f) if __name__ == "__muin__": with open("pickle/questions_content.pickle") as f: questions = pickle.load(f) (M,b) = train(questions.q.values(),[]) doc_model = Doc_Model(M,b) with open("doc_model_content.pickle","wb") as f: pickle.dump(doc_model,f) # new_questions = merge_dicts(questions.q) # qs = Questions(new_questions) # with open("new_questions_content.pickle","wb") as f: # pickle.dump(qs,f) if __name__ == "__main__": rel = [line for line in open("rel4.txt")] hash = [line for line in open("hashes2.txt")] qid = [line for line in open("metadata2.txt")] dictionary = load_doc_hashes("doc_mapper.txt") model = models.Doc2Vec.load("model1.doc2vec") questions = load_questions(model,rel,hash,qid,dictionary)
'Triceps skin fold thickness (mm)', '2-Hour serum insulin (mu U/ml)', 'Body mass index (weight in kg/(height in m)^2)', 'Diabetes pedigree function', 'Age (years)', 'Class variable (0: no diabetes, 1: diabetes)'] # Load data and perform train test split. print('[INFO] Loading data.') data = load_data(file_name, columns) X_train, X_test, y_train, y_test = train_test_split(data, frac=0.8, seed=5) # Logistic Model print('\n[INFO] Training logistic regression model.') logreg = LogReg(args.lr_logreg, args.epochs, len(X_train[0])) bias_logreg, weights_logreg = logreg.train(X_train, y_train) y_logistic = [round(logreg.predict(example)) for example in X_test] # Perceptron Model print('[INFO] Training Perceptron model.') perceptron = Perceptron(args.lr_perceptron, args.epochs, len(X_train[0])) bias_perceptron, weights_perceptron = perceptron.train(X_train, y_train) y_perceptron = [round(perceptron.predict(example)) for example in X_test] # Compare accuracies accuracy_logistic = get_accuracy(y_logistic, y_test) accuracy_perceptron = get_accuracy(y_perceptron, y_test) print('\n[INFO] Logistic Regression Accuracy: {:0.3f}'.format( accuracy_logistic)) print('[INFO] Perceptron Accuracy: {:0.3f}'.format(accuracy_perceptron))
'Diastolic blood pressure (mm Hg)', 'Triceps skin fold thickness (mm)', '2-Hour serum insulin (mu U/ml)', 'Body mass index (weight in kg/(height in m)^2)', 'Diabetes pedigree function', 'Age (years)', 'Class variable (0: no diabetes, 1: diabetes)' ] # Load data and perform train test split. print('[INFO] Loading data.') data = load_data(file_name, columns) X_train, X_test, y_train, y_test = train_test_split(data, frac=0.8, seed=5) # Logistic Model print('\n[INFO] Training logistic regression model.') logreg = LogReg(args.lr_logreg, args.epochs, len(X_train[0])) bias_logreg, weights_logreg = logreg.train(X_train, y_train, args.decay) y_logistic = [round(logreg.predict(example)) for example in X_test] # Perceptron Model print('[INFO] Training Perceptron model.') perceptron = Perceptron(args.lr_perceptron, args.epochs, len(X_train[0])) bias_perceptron, weights_perceptron = perceptron.train( X_train, y_train, args.decay) y_perceptron = [round(perceptron.predict(example)) for example in X_test] # Compare accuracies accuracy_logistic = get_accuracy(y_logistic, y_test) accuracy_perceptron = get_accuracy(y_perceptron, y_test) print('\n[INFO] Logistic Regression Accuracy: {:0.3f}'.format( accuracy_logistic)) print('[INFO] Perceptron Accuracy: {:0.3f}'.format(accuracy_perceptron))
from model_simple import model from config_simple import * import logreg if __name__ == "__main__": logreg.train(model, dim_embed=dim_embed, class_num=class_num, learning_rate=learning_rate)
else: # io.mmread("R_new.mtx") # model = models.Word2Vec.load("model6.word2vec") # dictionary = load_doc_hashes("temp_mapper.txt") # dim = len(model[model.vocab.keys()[0]]) # d = np.zeros(shape=(10000,100)) questions = load_thread(16, os.getcwd()) qs = Questions(questions) with open("correct_questions_content.pickle", "wb") as f: pickle.dump(qs, f) if __name__ == "__muin__": with open("pickle/questions_content.pickle") as f: questions = pickle.load(f) (M, b) = train(questions.q.values(), []) doc_model = Doc_Model(M, b) with open("doc_model_content.pickle", "wb") as f: pickle.dump(doc_model, f) # new_questions = merge_dicts(questions.q) # qs = Questions(new_questions) # with open("new_questions_content.pickle","wb") as f: # pickle.dump(qs,f) if __name__ == "__main__": rel = [line for line in open("rel4.txt")] hash = [line for line in open("hashes2.txt")] qid = [line for line in open("metadata2.txt")] dictionary = load_doc_hashes("doc_mapper.txt") model = models.Doc2Vec.load("model1.doc2vec") questions = load_questions(model, rel, hash, qid, dictionary)
from sklearn.linear_model import LogisticRegression import dataset_mnist import logreg ''' Apply logistic regression with sklearn ''' def train_sclearn(X_train, y_train, X_test, y_test): clf = LogisticRegression(fit_intercept=True, C=1e15) print('Training with sklearn:') clf.fit(X_train, y_train) print('Train set accuracy: ' + str(clf.score(X_train, y_train))) print('Test set accuracy: ' + str(clf.score(X_test, y_test))) if __name__ == '__main__': X_train, y_train, X_test, y_test = dataset_mnist.load_mnist_bin() #train_sclearn(X_train, y_train, X_test, y_test) logreg.train(X_train, y_train, X_test, y_test, 30, 0.001, use_intercept=True, batch_size=-1)