Esempio n. 1
0
def tower_loss(scope):
    reader = read.Reader(path=FLAGS.buckets + 'wavFile_train_frame_60.tfr', batch_size=FLAGS.batch_size,
                         window_size=FLAGS.frequency // FLAGS.frame_count, kwidth=FLAGS.kwidth)
    logits = inference.Inference(reader.wav_raw, FLAGS.kwidth, 2, FLAGS.isTrain, scope=scope).build_model()
    loss.loss(logits=logits, labels=reader.label)
    losses = tf.get_collection('losses', scope)
    total_loss = tf.add_n(losses, name='total_loss')
    tf.add_to_collection('summary', tf.summary.scalar(scope + 'loss', losses[0]))
    return total_loss
Esempio n. 2
0
    def load(self):
        myModel = model(self.args).getModel()
        trainable = filter(lambda x: x.requires_grad, myModel.parameters())

        if self.args.optimizer == 'SGD':
            myOptimizer = optim.SGD(trainable,
                                    lr=self.args.lr,
                                    momentum=self.args.momentum)
        elif self.args.optimizer == 'ADAM':
            myOptimizer = optim.Adam(trainable,
                                     lr=self.args.lr,
                                     betas=(self.args.beta1, self.args.beta2),
                                     eps=self.args.epsilon)
        elif self.args.optimizer == 'RMSprop':
            myOptimizer = optim.RMSprop(trainable,
                                        lr=self.args.lr,
                                        eps=self.args.epsilon)
        if self.args.load == '.':
            myLoss = loss(self.args).getLoss()
            self.trainingLog = torch.Tensor()
            self.testLog = torch.Tensor()
        else:
            myModel.load_state_dict(
                torch.load(self.dir + '/model/model_lastest.pt'))
            myLoss = torch.load(self.dir + '/loss.pt')
            myOptimizer.load_state_dict(torch.load(self.dir + '/optimizer.pt'))
            self.trainingLog = torch.load(self.dir + '/trainingLog.pt')
            self.testLog = torch.load(self.dir + '/testLog.pt')
            print('Load loss function from checkpoint...')
            print('Continue from epoch {}...'.format(len(self.testLog)))

        return myModel, myLoss, myOptimizer
Esempio n. 3
0
def main(args):
    net = model()
    if torch.cuda.is_available():
        net = net.cuda()
    criterion = loss()

    opt = torch.optim.Adam(net.parameters(), lr=args.lr)
    sch = torch.optim.lr_scheduler.MultiStepLR(opt,
                                               args.lr_milestone,
                                               gamma=0.5)

    train_set = Dataset(train=True)
    test_set = Dataset(train=False)
    train_loader = DataLoader(train_set,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers,
                              pin_memory=True)
    test_loader = DataLoader(test_set,
                             batch_size=args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers,
                             pin_memory=True)

    train(net, train_loader, test_loader, opt, sch, criterion, args)
def main(arg=None):
    images, labels = image_loader.read_batch()
    logits = inference.inference(images)
    loss = ls.loss(logits, labels)

    saver = tf.train.Saver()

    summary_opt = tf.summary.merge_all()

    init = tf.global_variables_initializer()

    sess = tf.InteractiveSession()

    sess.run(init)
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.summary.FileWriter(flag.log_dir, graph=sess.graph)

    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    for i in xrange(5001):
        if i % 100 == 0:
            print 'step {0}, loss: {1}'.format(i, sess.run(ls.get_loss()))
        sess.run(train_step)
        if i % 50 == 0:
            summary_str = sess.run(summary_opt)
            summary_writer.add_summary(summary_str, i)

    saver.save(sess=sess, save_path=flag.save_dir)
    summary_writer.close()
Esempio n. 5
0
    def load(self):
        my_model = model(self.args).get_model()
        trainable = filter(lambda x: x.requires_grad, my_model.parameters())

        if self.args.optimizer == 'SGD':
            optimizer_function = optim.SGD
            kwargs = {'momentum': self.args.momentum}
        elif self.args.optimizer == 'ADAM':
            optimizer_function = optim.Adam
            kwargs = {
                'betas': (self.args.beta1, self.args.beta2),
                'eps': self.args.epsilon
            }
        elif self.args.optimizer == 'RMSprop':
            optimizer_function = optim.RMSprop
            kwargs = {'eps': self.args.epsilon}

        kwargs['lr'] = self.args.lr
        kwargs['weight_decay'] = 0
        my_optimizer = optimizer_function(trainable, **kwargs)

        if self.args.decay_type == 'step':
            my_scheduler = lrs.StepLR(my_optimizer,
                                      step_size=self.args.lr_decay,
                                      gamma=self.args.gamma)

        elif self.args.decay_type.find('step') >= 0:
            milestones = self.args.decay_type.split('_')
            milestones.pop(0)
            milestones = list(map(lambda x: int(x), milestones))
            my_scheduler = lrs.MultiStepLR(my_optimizer,
                                           milestones=milestones,
                                           gamma=self.args.gamma)

        self.log_training = torch.Tensor()
        self.log_test = torch.Tensor()
        if self.args.load == '.':
            my_loss = loss(self.args).get_loss()
        else:
            if not self.args.test_only:
                self.log_training = torch.load(self.dir + '/log_training.pt')
                self.log_test = torch.load(self.dir + '/log_test.pt')

            resume = self.args.resume
            if resume == -1:
                my_model.load_state_dict(
                    torch.load(self.dir + '/model/model_lastest.pt'))
                resume = len(self.log_test)
            else:
                my_model.load_state_dict(
                    torch.load(self.dir + '/model/model_{}.pt'.format(resume)))

            my_loss = torch.load(self.dir + '/loss.pt')
            my_optimizer.load_state_dict(torch.load(self.dir +
                                                    '/optimizer.pt'))

            print('Load loss function from checkpoint...')
            print('Continue from epoch {}...'.format(resume))

        return my_model, my_loss, my_optimizer, my_scheduler
def gradient_descent(A, b, w, sigma, T):
    for i in range(T):
        w = gradient_descent_step(A, b, w, sigma)
        if i % 5000 == 0:
            print("Fraction wrong:", fraction_wrong(A, b, w))
            print("Loss:", loss(A, b, w))
    return w
Esempio n. 7
0
def train_discriminator(discriminator, loss, optimizer, real_data, fake_data):
    N = real_data.size(0)

    optimizer.zero_grad()

    prediction_real = discriminator(real_data)

    error_real = loss(prediction_real, ones_target(N).cuda())
    error_real.backward()

    prediction_fake = discriminator(fake_data)

    error_fake = loss(prediction_fake, zeros_target(N).cuda())
    error_fake.backward()

    optimizer.step()

    return error_real + error_fake
Esempio n. 8
0
def test(data_loader, Hnet, Rnet):
    print_log("---------- test begin ---------", opt.test_log)
    print_log(time.asctime(time.localtime(time.time())), opt.test_log, False)
    Hnet.eval()
    Rnet.eval()
    for i, data in enumerate(data_loader):
        all_pics = data  # allpics contains cover images and secret images
        this_batch_size = int(all_pics.size()[0] /
                              2)  # get true batch size of this step

        # first half of images will become cover images, the rest are treated as secret images
        cover_img = all_pics[0:this_batch_size, :, :, :]  # batchsize,3,256,256
        secret_img = all_pics[this_batch_size:this_batch_size * 2, :, :, :]

        # concat cover images and secret images as input of H-net
        concat_img = torch.cat([cover_img, secret_img], dim=1)

        if opt.use_gpu:
            cover_img = cover_img.cuda()
            secret_img = secret_img.cuda()
            concat_img = concat_img.cuda()

        concat_imgv = Variable(concat_img, requires_grad=False)
        cover_imgv = Variable(cover_img, requires_grad=False)
        secret_imgv = Variable(secret_img, requires_grad=False)

        with torch.no_grad():
            stego = Hnet(concat_imgv)
            secret_rev = Rnet(stego)

            errH = loss(stego, cover_imgv)  # loss between cover and container
            errR = loss(secret_rev,
                        secret_imgv)  # loss between secret and revealed secret
            err_sum = errH + opt.beta * errR

        save_pic2('test', cover_img, stego, secret_img, secret_rev,
                  opt.test_pics, opt.batch_size, i)

    log = 'test: loss is %.6f' % (err_sum.item()) + '\n'
    print_log(log, opt.test_log)
    print_log("---------- test end ----------", opt.test_log)
Esempio n. 9
0
def train_epoch(epoch, model, optimizer, args):
    losses = 0.0
    for i, (x, y) in enumerate(
            data.train_batches(args.batch_size, use_cuda=args.use_cuda), 1):
        optimizer.zero_grad()
        y_pred = model(x)
        l = loss(y_pred, y, use_cuda=args.use_cuda)
        l.backward()
        optimizer.step()
        losses += l.data[0]
    print("Epoch: {}, Ave loss: {}".format(epoch, losses / i))
    return losses / i
Esempio n. 10
0
def train_generator(discriminator, loss, optimizer, fake_data):
    N = fake_data.size(0)
    # Reset gradients
    optimizer.zero_grad()

    # Sample noise and generate fake data
    pred_fake = discriminator(fake_data)

    error = loss(pred_fake, ones_target(N).cuda())
    error.backward()

    optimizer.step()
    # Return error
    return error
Esempio n. 11
0
    def _BuildGraph(self):
        """Builds computational graph using pretrained VGG16"""

        putils.Log_and_print("Building computational graph ...")

        # restrict GPU usage
        putils.AllocateGPU(self.N_GPUs)

        tf.reset_default_graph()

        # Load and apply pretrained network
        vgg = fcn8_vgg.FCN8VGG()

        # Placeholders and feed data
        vgg.images = tf.placeholder("float")
        vgg.labels = tf.placeholder("float")
        vgg.cumloss = tf.placeholder(
            "float")  # cumulative loss from previous sub-batches

        # AUGMENTATION
        if (not self.IS_TESTING) and self.AUGMENT:
            # Random brightness and contrast adjustment
            vgg.images = tf.image.random_brightness(vgg.images, max_delta=63)
            vgg.images = tf.image.random_contrast(vgg.images,
                                                  lower=0.2,
                                                  upper=1.8)

        with tf.name_scope("content_vgg"):
            vgg.build(vgg.images, train = (not self.IS_TESTING), \
                      num_classes = self.Model.NUM_CLASSES, \
                      random_init_fc8 = (not self.IS_TESTING), debug = False)

        # define loss and optimizer
        vgg.cost = loss.loss(vgg.upscore32, vgg.labels, \
                             num_classes = self.Model.NUM_CLASSES, \
                             head = self.Model.CLASSWEIGHTS)

        vgg.cumLoss = vgg.cost + vgg.cumloss
        vgg.optimizer = tf.train.AdamOptimizer(self.LEARN_RATE).minimize(
            vgg.cumLoss)

        putils.Log_and_print('Finished building Network.')

        # check trinable variables
        # tf.trainable_variables()

        # Assign graph as a class attribute
        self.vgg = vgg
Esempio n. 12
0
	def __init__(self, COMdataset, Model, optimizer, checkpoint_dir, batch_size):
		self.COMdataset = COMdataset
		self.model = self.Model
		# optimizer to perform backpropagation
		self.optimizer = optimizer
		# directory to save the model
		self.checkpoint_dir = checkpoint_dir
		# gpu or cpu
		self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
		self.model.to(self.device)
		# split the dataset into training, validating, and testing sets
		self.train_val_test = [0.7,0.1,0.2]
		self.batch_size = batch_size
		# loss
		self.criterion = loss()
		self.save_per_epochs = 1
Esempio n. 13
0
def test(batch_size, cuda, path):
    """
    Test performance of testing dataset on trainined model.
    Input:
        batch_size: int
            testing batch size.
        cuda: bool
            running on GPU or CPU.
        path: str
            path to trained model.    
    Return:
    """
    print "testing..."
    print "cuda: ", cuda
    test_data = generate_dataset(train="test")
    print "len of image: ", len(test_data[0])
    test_dataset = SVHNDataset(test_data[0], test_data[1])
    kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {}
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=batch_size,
                                              **kwargs)
    model = MultiDigitsNet()
    if cuda:
        model.cuda()
    model.eval()
    model.load_state_dict(torch.load(path))
    batch_losses = []
    batch_accuracy = []
    for batch_idx, (data, target) in enumerate(test_loader):
        if cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        data = data.float()
        output = model(data)
        losses = loss(output, target, cuda)
        batch_losses.append(losses.data[0])
        accuracy = accu(output, target, cuda)
        batch_accuracy.append(accuracy.data[0])
        if batch_idx % 100 == 0:
            print "[{} / {}]: testing loss: {}, testing accuracy: {}".format(
                batch_idx * batch_size, len(test_dataset), losses.data[0],
                accuracy.data[0])
    test_loss = np.mean(np.array(batch_losses))
    test_accuracy = np.mean(np.array(batch_accuracy))
    print "testing loss: {}, testing accuracy: {}".format(
        test_loss, test_accuracy)
Esempio n. 14
0
def tower_loss(images, label_maps, training_masks, reuse_variables=None):
    # Build inference graph
    with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
        f_score, f_geometry = model.model(images, is_training=True)
    score_maps, geo_maps = tf.split(label_maps, num_or_size_splits=[1, 5], axis=-1)
    model_loss = loss.loss(score_maps, f_score, geo_maps, f_geometry, training_masks)
    total_loss = tf.add_n([model_loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))

    # add summary
    if reuse_variables is None:
        tf.summary.image('input', images)
        tf.summary.image('score_map', score_maps)
        tf.summary.image('score_map_pred', f_score)
        tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:4] * score_maps)
        tf.summary.image('geo_map_0_pred', f_geometry[:, :, :, 0:4] * score_maps)
        tf.summary.image('training_masks', training_masks)
        tf.summary.scalar('model_loss', model_loss)
        tf.summary.scalar('total_loss', total_loss)

    return total_loss, model_loss
Esempio n. 15
0
    def train(self):
        thresd = 100
        # if self.args.load_model:
        #     print('load model')
        #     self.model.d = util.load_mdoel(self.args.result_dir,'discriminator')
        #     self.model.g = util.load_mdoel(self.args.result_dir,'best_generator')
        #     self.save_d_loss = util.load_loss(self.args.result_dir,'discriminator')
        #     self.save_g_loss = util.load_loss(self.args.result_dir,'generator')
        for epoch in range(self.args.epochs):
            start_time = time.time()
            d_cnt = 0
            for n_batch, (lr, hr, _) in enumerate(self.data.loader_train):
                if not self.args.cpu:
                    lr = lr.cuda()
                    hr = hr.cuda()

                lr = Variable(lr, requires_grad=True)
                hr = Variable(hr, requires_grad=True)
                loss_ = loss(self.args, lr, hr, self.model)

                # if d_cnt < self.args.d_count:
                #     self.update_d(loss_)
                #     a = [self.d_r_loss.cpu().view(-1),self.d_f_loss.cpu().view(-1),self.d_cost.cpu().view(-1),self.wasserstein.cpu().view(-1)]
                #     a = np.array([[l.detach().numpy()[0] for l in a]])
                #     self.save_d_loss = util.add_loss(self.save_d_loss,a)
                #     #print(
                #     #    'batch:{}/{}--d_real_loss = {:0.6f}, d_fake_loss = {:0.6f},d_cost = {:0.6f}, wasserstein = {:0.6f}\n' \
                #     #        .format(n_batch, self.args.n_train // self.args.batch_size + 1, self.d_r_loss,
                #     #                self.d_f_loss, self.d_cost, self.wasserstein)
                #     #)
                # else:
                #     d_cnt = 0
                self.update_g(loss_)
                # a=self.g_cost.cpu().view(-1).detach().numpy()
                # self.save_g_loss = util.add_loss(self.save_g_loss,a)
                # self.save_g_loss = torch.cat([self.save_g_loss, a], 0)
                # del(a)
                print('p_loss={:0.6f}'.format(self.p_loss))
                # d_cnt += 1
            util.save_mdoel(self.args.result_dir, self.model.g,
                            'single_generator')
    def train_on_epoch(self):
        self.model.train()
        lr = self.adjust_lr()

        train_loader = torch.utils.data.DataLoader(
            self.datasets['train'],
            batch_size=self.args.train_bs,
            shuffle=True,
            num_workers=1,
            drop_last=True)
        # train_loader = torch.utils.data.DataLoader(self.datasets['train'], batch_size=self.args.train_bs, sampler = Sampler(self.datasets['train'],self.epoch),
        #                                                                                       num_workers=1, drop_last=True)
        p_bar = tqdm(train_loader,
                     desc='Train (task {}, lr {}, epoch {}, device {})'.format(
                         self.task_id, lr, self.epoch, self.device),
                     ncols=120,
                     leave=True)
        p_bar.L = 0
        for bi, (x, y) in enumerate(p_bar):
            x = x.to(self.device)
            y = y.to(self.device)

            # if bi == 0:
            #     self.print_('{}'.format(y))

            output = self.model(x)

            l = loss(output, y, self.args.M, self.theta)

            self.optim.zero_grad()
            l.backward()
            self.optim.step()

            p_bar.L = (p_bar.L * bi + l.item()) / (bi + 1)
            p_bar.set_postfix_str('loss={:.4f}'.format(p_bar.L))
        self.print_(
            'Train (task {}, lr {}, epoch {}, device {}, loss {})'.format(
                self.task_id, lr, self.epoch, self.device, p_bar.L))
def tower_loss(scope, images, labels):

    labelclasses = np.arange(2)
    labelclasses = np.append(labelclasses, [0])
    upscore32_pred = fcn8.inference(rgb=images)

    _ = cost.loss(upscore32_pred, labels, labelclasses)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
def testModel(args, inputLoader):
    print("Testing saved model")

    os.system("rm -rf " + args.imagesOutDir)
    os.system("mkdir " + args.imagesOutDir)

    args.imageHeight = 500
    args.imageWidth = 500

    # Now we make sure the variable is now a constant, and that the graph still produces the expected result.
    with tf.Session() as session:
        with tf.variable_scope('FCN8_VGG'):
            batchInputImages = tf.placeholder(dtype=tf.float32,
                                              shape=[None, args.imageHeight, args.imageWidth, args.imageChannels],
                                              name="batchInputImages")
            batchInputLabels = tf.placeholder(dtype=tf.float32,
                                              shape=[None, args.imageHeight, args.imageWidth, 1],
                                              name="batchInputLabels")
            keepProb = tf.placeholder(dtype=tf.float32, name="keepProb")

        vgg_fcn = fcn8.FCN8VGG(batchSize=args.batchSize, enableTensorboard=args.tensorboard,
                               vgg16_npy_path=args.pretrained)

        with tf.name_scope('Model'):
            vgg_fcn.build(rgb=batchInputImages, keepProb=keepProb, num_classes=args.numClasses,
                          random_init_fc8=True, debug=(args.verbose > 0))

        with tf.name_scope('Loss'):
            # weights = tf.cast(batchInputLabels != args.ignoreLabel, dtype=tf.float32)
            loss = cost.loss(vgg_fcn.upscore32_pred, batchInputLabels, inputLoader.getAnnotationClasses())

        with tf.name_scope('Optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate=args.learningRate)

            gradients = tf.gradients(loss, tf.trainable_variables())
            gradients = list(zip(gradients, tf.trainable_variables()))
            applyGradients = optimizer.apply_gradients(grads_and_vars=gradients)

        # saver = tf.train.import_meta_graph(args.modelDir + args.modelName + ".meta")
        saver = tf.train.Saver()
        saver.restore(session, args.modelDir + args.modelName)

        # Get reference to placeholders
        # outputNode = session.graph.get_tensor_by_name("Model/probabilities:0")
        # inputBatchImages = session.graph.get_tensor_by_name("FCN8_VGG/batchInputImages:0")
        # inputKeepProbability = session.graph.get_tensor_by_name("FCN8_VGG/keepProb:0")

        # Sample 50 test batches
        args.batchSize = 1  # 50
        numBatch = 8
        for i in tqdm(range(1, numBatch), desc='Testing'):
            # print("Processing batch # %d" % i)
            batchImagesTest, _ = inputLoader.getTestBatch(readMask=False)  # For testing without GT mask
            imagesProbabilityMap = session.run(vgg_fcn.probabilities,
                                               feed_dict={batchInputImages: batchImagesTest, keepProb: 1.0})
            # Save image results
            print("Saving images...")
            inputLoader.saveLastBatchResults(imagesProbabilityMap, isTrain=False)

    print("Model tested!")
    return
def trainModel(args, inputLoader):
    step = 1
    print('Train mode')
    with tf.variable_scope('FCN8_VGG'):
        batchInputImages = tf.placeholder(dtype=tf.float32,
                                          shape=[None, args.imageHeight, args.imageWidth, args.imageChannels],
                                          name="batchInputImages")
        batchInputLabels = tf.placeholder(dtype=tf.float32,
                                          shape=[None, args.imageHeight, args.imageWidth, 1],
                                          name="batchInputLabels")
        keepProb = tf.placeholder(dtype=tf.float32, name="keepProb")

    vgg_fcn = fcn8.FCN8VGG(enableTensorboard=args.tensorboard,
                           vgg16_npy_path=args.pretrained)

    with tf.name_scope('Model'):
        vgg_fcn.build(rgb=batchInputImages, keepProb=keepProb, num_classes=args.numClasses,
                      random_init_fc8=True, debug=(args.verbose > 0))

    with tf.name_scope('Loss'):
        # weights = tf.cast(batchInputLabels != args.ignoreLabel, dtype=tf.float32)
        loss = cost.loss(vgg_fcn.upscore32_pred, batchInputLabels, inputLoader.getAnnotationClasses())

    with tf.name_scope('Optimizer'):
        optimizer = tf.train.AdamOptimizer(learning_rate=args.learningRate)

        gradients = tf.gradients(loss, tf.trainable_variables())
        gradients = list(zip(gradients, tf.trainable_variables()))
        applyGradients = optimizer.apply_gradients(grads_and_vars=gradients)

    init = tf.global_variables_initializer()

    if args.tensorboard:
        tf.summary.scalar("loss", loss)
        for var in tf.trainable_variables():
            tf.summary.histogram(var.name, var)
        for grad, var in gradients:
            tf.summary.histogram(var.name + '/gradient', grad)
        mergedSummaryOp = tf.summary.merge_all()

    saver = tf.train.Saver()

    ###

    with tf.Session() as sess:

        sess.run(init)

        if args.clean:
            print("Removing previous checkpoints and logs")
            os.system("rm -rf " + args.logsDir)
            os.system("rm -rf " + args.imagesOutDir)
            os.system("rm -rf " + args.modelDir)
            os.system("mkdir " + args.imagesOutDir)
            os.system("mkdir " + args.modelDir)
        else:
            # Restore checkpoint
            print("Restoring from checkpoint")
            # saver = tf.train.import_meta_graph(args.modelDir + args.modelName + ".meta")
            saver.restore(sess, args.modelDir + args.modelName)

        if args.tensorboard:
            # Op for writing logs to Tensorboard
            summaryWriter = tf.summary.FileWriter(args.logsDir, graph=tf.get_default_graph())

        print("Starting network training")

        # Keep training until reach max iterations
        while True:
            batchImagesTrain, batchLabelsTrain = inputLoader.getTrainBatch()

            if batchImagesTrain is None:
                print("Training completed!")
                break

            # Run optimization op (backprop)
            if args.tensorboard:
                _, summary = sess.run([applyGradients, mergedSummaryOp],
                                      feed_dict={batchInputImages: batchImagesTrain,
                                                 batchInputLabels: batchLabelsTrain,
                                                 keepProb: args.keepProb})
                summaryWriter.add_summary(summary, step)
            else:
                [trainLoss, _] = sess.run([loss, applyGradients], feed_dict={batchInputImages: batchImagesTrain,
                                                                             batchInputLabels: batchLabelsTrain,
                                                                             keepProb: args.keepProb})
                print("Iteration: %d, Minibatch Loss: %f" % (step, trainLoss))

                if (np.isnan(trainLoss)):
                    print("Nan reached. Terminating training.")
                    break

            if step % args.displayStep == 0:
                [trainLoss, trainImagesProbabilityMap] = sess.run([loss, vgg_fcn.probabilities],
                                                                  feed_dict={batchInputImages: batchImagesTrain,
                                                                             batchInputLabels: batchLabelsTrain,
                                                                             keepProb: 1.0})

                # Save image results
                print("Saving images...")
                inputLoader.saveLastBatchResults(trainImagesProbabilityMap, isTrain=True)
                print("Saved images.")
            print('step: ' + str(step))
            step += 1

            if step % args.saveStep == 0:
                # Save model weights to disk
                saver.save(sess, args.modelDir + args.modelName + str(step))
                print("Model saved: %s" % (args.modelDir + args.modelName))

            # Check the accuracy on test data
            if step % args.evaluateStep == 0:
                batchImagesTest, batchLabelsTest = inputLoader.getTestBatch()

                if args.evaluateStepDontSaveImages:
                    [testLoss] = sess.run([loss], feed_dict={batchInputImages: batchImagesTest,
                                                             batchInputLabels: batchLabelsTest,
                                                             keepProb: 1.0})
                    print("Test loss: %f" % testLoss)

                else:
                    [testLoss, testImagesProbabilityMap] = sess.run([loss, vgg_fcn.probabilities],
                                                                    feed_dict={batchInputImages: batchImagesTest,
                                                                               batchInputLabels: batchLabelsTest,
                                                                               keepProb: 1.0})
                    print("Test loss: %f" % testLoss)

                    # Save image results
                    print("Saving images")
                    inputLoader.saveLastBatchResults(testImagesProbabilityMap, isTrain=False)

        # Save final model weights to disk
        saver.save(sess, args.modelDir + args.modelName)
        print("Model saved: %s" % (args.modelDir + args.modelName))

        # Report loss on test data
        batchImagesTest, batchLabelsTest = inputLoader.getTestBatch()
        testLoss = sess.run(loss, feed_dict={batchInputImages: batchImagesTest, batchInputLabels: batchLabelsTest,
                                             keepProb: 1.0})
        print("Test loss (current): %f" % testLoss)

        print("Optimization Finished!")

    return
Esempio n. 20
0
input_shape = (423, 512, 3)
embedding_size = 100

batch_size = 16
train_steps_per_epoch = int(train.shape[0] / batch_size)
validation_steps_per_epoch = int(validation.shape[0] / batch_size)

train_generator = DataGenerator(train,
                                input_shape,
                                embedding_size,
                                train_steps_per_epoch,
                                images_dir,
                                augmentations,
                                batch_size=batch_size)
validation_generator = DataGenerator(validation,
                                     input_shape,
                                     embedding_size,
                                     validation_steps_per_epoch,
                                     images_dir,
                                     batch_size=batch_size)
num_classes = train_generator.num_classes

model = siamese_model(input_shape, num_classes, embedding_size).siamese
model.compile(loss=loss(num_classes, embedding_size),
              optimizer=optimizers.SGD(lr=0.001))

model.fit(train_generator,
          validation_data=validation_generator,
          callbacks=callbacks_list,
          epochs=100)
def trainModel(args, inputLoader):
    bestLoss = 1e9
    step = 1
    print('Train mode')
    train_file_name = args.imagesInDir + 'train.txt'
    val_file_name = args.imagesInDir + 'val.txt'

    with tf.variable_scope('FCN8_VGG'):
        batchInputImages = tf.placeholder(dtype=tf.float32,
                                          shape=[
                                              None, args.imageHeight,
                                              args.imageWidth,
                                              args.imageChannels
                                          ],
                                          name="batchInputImages")
        batchInputLabels = tf.placeholder(
            dtype=tf.float32,
            shape=[None, args.imageHeight, args.imageWidth, 1],
            name="batchInputLabels")
        # keepProb = tf.placeholder(dtype=tf.float32, name="keepProb")

        trainDataGen = ImageDataGenerator(args,
                                          train_file_name,
                                          args.numClasses,
                                          'training',
                                          args.batchSize,
                                          num_preprocess_threads=5,
                                          shuffle=True,
                                          min_queue_examples=1000)

        validationDataGen = ImageDataGenerator(args,
                                               val_file_name,
                                               args.numClasses,
                                               'validation',
                                               args.batchSize,
                                               num_preprocess_threads=5,
                                               shuffle=False,
                                               min_queue_examples=50)

        train_imgBatch = trainDataGen.img_batch
        train_labelBatch = trainDataGen.label_batch

        val_imgBatch = validationDataGen.img_batch
        val_labelBatch = validationDataGen.label_batch

    vgg_fcn = fcn8.FCN8VGG(batchSize=args.batchSize,
                           keepProb=0.5,
                           num_classes=args.numClasses,
                           random_init_fc8=True,
                           debug=(args.verbose > 0),
                           enableTensorboard=args.tensorboard,
                           vgg16_npy_path=args.pretrained)

    # with tf.name_scope('Model'):

    with tf.name_scope('Loss'):
        upscore32_pred = vgg_fcn.inference(rgb=batchInputImages)

        # weights = tf.cast(batchInputLabels != args.ignoreLabel, dtype=tf.float32)
        loss = cost.loss(upscore32_pred, batchInputLabels,
                         trainDataGen.getAnnotationClasses())

    with tf.name_scope('Optimizer'):
        optimizer = tf.train.AdamOptimizer(learning_rate=args.learningRate)

        gradients = tf.gradients(loss, tf.trainable_variables())
        gradients = list(zip(gradients, tf.trainable_variables()))
        applyGradients = optimizer.apply_gradients(grads_and_vars=gradients)

    init = tf.global_variables_initializer()

    # tf.summary.scalar("loss", loss)

    training_summary = tf.summary.scalar("training_loss", loss)
    validation_summary = tf.summary.scalar("validation_loss", loss)

    mergedSummaryOp = tf.summary.merge_all()

    saver = tf.train.Saver()

    with tf.Session() as sess:

        sess.run(init)

        if args.clean:
            print("Removing previous checkpoints and logs")
            os.system("rm -rf " + args.logsDir)
            os.system("rm -rf " + args.imagesOutDir)
            # os.system("rm -rf " + args.modelDir)
            os.system("mkdir " + args.imagesOutDir)
            # os.system("mkdir " + args.modelDir)
        else:
            # Restore checkpoint
            print("Restoring from checkpoint")
            #saver = tf.train.import_meta_graph(args.modelDir + args.modelName + ".meta")
            saver.restore(sess, args.modelDir + args.modelName)

        if args.tensorboard:
            # Op for writing logs to Tensorboard
            summaryWriter = tf.summary.FileWriter(args.logsDir,
                                                  graph=tf.get_default_graph())

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        print("Starting network training")

        # Keep training until reach max iterations
        while True:
            # batchImagesTrain, batchLabelsTrain = inputLoader.getTrainBatch()
            imagesNpyBatch, labelsNpyBatch = sess.run(
                [train_imgBatch, train_labelBatch])

            if imagesNpyBatch is None:
                print("Training completed!")
                break

            # Run optimization op (backprop)
            else:
                [trainLoss, _, train_summ] = sess.run(
                    [loss, applyGradients, training_summary],
                    feed_dict={
                        batchInputImages: imagesNpyBatch,
                        batchInputLabels: labelsNpyBatch
                    })
                summaryWriter.add_summary(train_summ, step)

                print("Iteration: %d, Minibatch Loss: %f" % (step, trainLoss))

            # if (np.isnan(trainLoss)):
            #     print("Nan reached. Terminating training.")
            #     break
            #

            # Check the accuracy on test data
            if step % args.evaluateStep == 0:
                imagesNpyBatch, labelsNpyBatch = sess.run(
                    [val_imgBatch, val_labelBatch])

                [validationLoss, valid_summ] = sess.run(
                    [loss, validation_summary],
                    feed_dict={
                        batchInputImages: imagesNpyBatch,
                        batchInputLabels: labelsNpyBatch
                    })
                summaryWriter.add_summary(valid_summ, step)

                print("Validation loss: %f" % validationLoss)

            if step % args.displayStep == 0:
                _, summary = sess.run(
                    [applyGradients, mergedSummaryOp],
                    feed_dict={
                        batchInputImages: imagesNpyBatch,
                        batchInputLabels: labelsNpyBatch
                    })
                summaryWriter.add_summary(summary, step)

            print('step: ' + str(step))
            step += 1
            #
            if step % args.saveStep == 0:
                # Save model weights to disk
                saver.save(sess, args.modelDir + args.modelName + str(step))
                print("Model saved: %s" % (args.modelDir + args.modelName))

        # Save final model weights to disk
        saver.save(sess, args.modelDir + args.modelName)
        print("Model saved: %s" % (args.modelDir + args.modelName))

        # Report loss on test data
        # batchImagesTest, batchLabelsTest = inputLoader.getTestBatch()
        testLoss = sess.run(loss,
                            feed_dict={
                                batchInputImages: imagesNpyBatch,
                                batchInputLabels: labelsNpyBatch
                            })
        print("Test loss (current): %f" % testLoss)

        print("Optimization Finished!")

    return
Esempio n. 22
0
    def __init__(self, FLAGS):
        """
        create the network and training, validation reader functions
        Input:
            FLAGS:
                gpu_number: int; the gpu number
                positive_size: int; the positive pair size to be random chosen in each batch
                total_batch_number: int; batches to create in reader file
                tolerance_margin: float; how much negative distance should be greater than positive distance
                batch_size: int; training and validation batch size
                feature_size: int; size of feature output from the network
                data_dir: string; data set directory
                training_data_filename: string; training data filename, e.g. CG_train.txt
                validation_data_filename: string; validation data filename, e.g. CG_test.txt
        """
        gpu_number = FLAGS.gpu_number
        self.positive_size = FLAGS.positive_size
        total_batch_number = FLAGS.total_batch_number
        tolerance_margin = FLAGS.tolerance_margin
        pick_same_room = True  # when validating, should we pick same room to generate negative pair?
        batch_size = FLAGS.batch_size
        feature_size = FLAGS.feature_size
        data_dir = FLAGS.data_dir
        training_data_filename = FLAGS.training_data_filename
        validation_data_filename = FLAGS.validation_data_filename
        self.control_distances = [(0, 0.5), (0.5, 1.0), (1.0, 1.5), (1.5, 2.0),
                                  (2.0, 2.5), (2.5, 3.0), (3.0, 4.0),
                                  (4.0, float('inf'))]

        self.sigma_R = 30
        self.margin = 1.0

        # imagenet mean
        #images_mean = tf.constant([104./127.5 - 1.0, 117./127.5 -1.0, 123./127.5 - 1.0])
        # place365 mean
        images_mean = tf.constant(
            [104. / 127.5 - 1.0, 113. / 127.5 - 1.0, 117. / 127.5 - 1.0])
        self.images_placeholder = tf.placeholder(tf.float32,
                                                 shape=(batch_size, 384, 640,
                                                        3))
        images = self.images_placeholder / 127.5 - 1.0 - images_mean
        # the positions
        self.position_placeholder = tf.placeholder(tf.float32,
                                                   shape=(batch_size, 2))
        # rotational gauss placeholder
        self.rot_gauss_placeholder = tf.placeholder(tf.float32,
                                                    shape=(batch_size,
                                                           batch_size, 20))
        # positive pair index placeholder (chosen randomly using numpy)
        self.pospair_index_placeholder = tf.placeholder(
            tf.int32, shape=(self.positive_size, 2))

        print('Building graph...')
        with tf.device('/gpu:' + str(gpu_number)):
            self.net = CaffeNet({'data': images})
            # before dropout
            conv_features = self.net.get_output()
            B, H, W, C = conv_features.get_shape().as_list()
            F = feature_size
            self.B = B
            self.W = W
            self.C = C
            conv_features = tf.reshape(conv_features, [B, H * W, C])
            t_list = tf.split(conv_features, num_or_size_splits=W, axis=1)
            indices = np.arange(W)
            self.out_branches = []
            for _ in range(W):
                # form a branch
                br = [t_list[idx] for idx in indices]
                br = tf.concat(br, axis=1)
                # append new branch into branch list
                self.out_branches.append(br)
                # update indices, this uses numpy
                indices = np.roll(indices, -1)
            self.rolling_features_list = self.out_branches
            self.lifted_loss = loss.loss(self.rolling_features_list,
                                         self.position_placeholder,
                                         self.rot_gauss_placeholder,
                                         self.pospair_index_placeholder,
                                         self.margin, self.sigma_R,
                                         tolerance_margin)

            reg_loss = 0
            for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
                #print var.name
                reg_loss += tf.nn.l2_loss(var)

            self.total_loss = 0.0008 * reg_loss + self.lifted_loss
            self.training_summary = tf.summary.scalar('training_loss',
                                                      self.total_loss)
            self.validation_summary = tf.summary.scalar(
                'validation_loss', self.total_loss)

            self.validation_accuracy_placeholder = tf.placeholder(tf.float32,
                                                                  shape=())
            self.training_accuracy_placeholder = tf.placeholder(tf.float32,
                                                                shape=())
            validation_accuracy = tf.get_variable('validation_accuracy', [],
                                                  trainable=False)
            training_accuracy = tf.get_variable('training_accuracy', [],
                                                trainable=False)
            self.validation_assign_op = tf.assign(
                validation_accuracy, self.validation_accuracy_placeholder)
            self.training_assign_op = tf.assign(
                training_accuracy, self.training_accuracy_placeholder)
            self.validation_accuracy_summary = tf.summary.scalar(
                'validation_accuracy', validation_accuracy)
            self.training_accuracy_summary = tf.summary.scalar(
                'training_accuracy', training_accuracy)

            # Adam optimizer
            global_step = tf.get_variable(
                'global_step', [],
                initializer=tf.constant_initializer(0),
                trainable=False)
            opt = tf.train.MomentumOptimizer(0.00001, 0.9)
            grads_and_vars = opt.compute_gradients(self.total_loss)
            self.train_op = opt.apply_gradients(grads_and_vars,
                                                global_step=global_step)
            print('Finish building graph')

        print("start creating reader objects")
        #create training batch reader object
        parser = argparse.ArgumentParser()
        train_FLAGS, _ = parser.parse_known_args()
        train_FLAGS.data_dir = data_dir
        train_FLAGS.batch_size = batch_size
        train_FLAGS.total_batch_number = total_batch_number
        train_FLAGS.tolerance_margin = tolerance_margin
        train_FLAGS.pick_same_room = pick_same_room
        train_FLAGS.data_filename = training_data_filename
        self.training_reader = Reader(train_FLAGS)
        self.training_triplet_reader = Triplet_Reader(train_FLAGS,
                                                      self.control_distances)

        # create validation batch reader object
        parser = argparse.ArgumentParser()
        validation_FLAGS, _ = parser.parse_known_args()
        validation_FLAGS.data_dir = data_dir
        validation_FLAGS.batch_size = batch_size
        validation_FLAGS.total_batch_number = total_batch_number
        validation_FLAGS.tolerance_margin = tolerance_margin
        validation_FLAGS.pick_same_room = pick_same_room
        validation_FLAGS.data_filename = validation_data_filename
        self.validation_reader = Reader(validation_FLAGS)
        self.validation_triplet_reader = Triplet_Reader(
            validation_FLAGS, self.control_distances)
        print("Finish creating reader objects")
                size_index = randint(0, len(cfg.multi_scale_inp_size) - 1)
                print('new scale is {}'.format(cfg.multi_scale_inp_size[size_index]))

            batch = dataset.fetch_parse(batch_of_index, size_index)
            im = batch['images']
            gt_boxes = batch['gt_boxes']
            gt_classes = batch['gt_classes']
            dontcare = batch['dontcare']
            origin_im = ['origin_im']

            # sending images onto gpu after turning them into torch variable
            im = net_utils.np_to_variable(im, is_cuda=True, volatile=False).permute(0, 3, 1, 2)

            bbox_pred, iou_pred, prob_pred = net(im)

            bbox_loss_i, iou_loss_i, cls_loss_i = loss(gt_boxes, gt_classes, dontcare, size_index, bbox_pred, iou_pred, prob_pred)

            # accumulating mini-batch loss
            loss = bbox_loss_i + iou_loss_i + cls_loss_i
            bbox_loss += bbox_loss_i.data.cpu().numpy()[0]
            iou_loss += iou_loss_i.data.cpu().numpy()[0]
            cls_loss += cls_loss_i.data.cpu().numpy()[0]
            train_loss += loss.data.cpu().numpy()[0]

            # clearing grads before calculating new ones and then updating wts
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            cnt += 1
            step_cnt += 1
            j += 1
Esempio n. 24
0
                          dtype=tf.bool)

#setting up the network
model = Deeplab_v3(dataset.classes,
                   batch_norm_decay=args.batch_norm_decay,
                   is_training=is_training)
logits = model.forward_pass(train_images)
predicts = tf.argmax(logits, axis=-1, name='predicts')

variables_to_restore = tf.trainable_variables(scope='resnet_v2_50')

# finetune resnet_v2_50的参数(block1到block4)
restorer = tf.train.Saver(variables_to_restore)

cross_entropy = loss(logits,
                     train_annotations,
                     dataset.classes,
                     ignore_label=dataset.ignore_label)
# l2_norm l2正则化
l2_loss = args.weight_decay * tf.add_n(
    [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()])
loss = cross_entropy + l2_loss
tf.summary.scalar("loss", loss)

lr = tf.Variable(initial_value=0.,
                 trainable=False,
                 name='lr',
                 dtype=tf.float32)
train_op = train(loss, model, lr)

#train benchmark
out = tf.reshape(tf.argmax(logits, axis=3), shape=[-1])  #[B,H,W]
Esempio n. 25
0
    def __init__(self, FLAGS):
        """
        create the network and training, validation reader functions
        Input:
            FLAGS:
                gpu_number: int; the gpu number
                positive_size: int; the positive pair size to be random chosen in each batch
                total_batch_number: int; batches to create in reader file
                tolerance_margin: float; how much negative distance should be greater than positive distance
                batch_size: int; training and validation batch size
                feature_size: int; size of feature output from the network
                data_dir: string; data set directory
                training_data_filename: string; training data filename, e.g. CG_train.txt
                validation_data_filename: string; validation data filename, e.g. CG_test.txt
        """
        gpu_number = FLAGS.gpu_number
        self.positive_size = FLAGS.positive_size
        total_batch_number = FLAGS.total_batch_number
        tolerance_margin = FLAGS.tolerance_margin
        pick_same_room = True # when validating, should we pick same room to generate negative pair?
        batch_size = FLAGS.batch_size
        feature_size = FLAGS.feature_size
        data_dir = FLAGS.data_dir
        training_data_filename = FLAGS.training_data_filename
        validation_data_filename = FLAGS.validation_data_filename
        self.control_distances = [(0,0.5), (0.5, 1.0), (1.0, 1.5), (1.5,2.0), (2.0,2.5), (2.5,3.0),(3.0,4.0),(4.0,float('inf'))]

        self.sigma_R = 30
        self.margin = 1.0

        # imagenet mean
        #images_mean = tf.constant([104./127.5 - 1.0, 117./127.5 -1.0, 123./127.5 - 1.0])
        # place365 mean
        images_mean = tf.constant([104./127.5 - 1.0, 113./127.5 -1.0, 117./127.5 - 1.0])
        self.images_placeholder = tf.placeholder(tf.float32,
                                         shape=(batch_size,384,640,3))
        images = self.images_placeholder/127.5 - 1.0 - images_mean
        # the positions
        self.position_placeholder = tf.placeholder(tf.float32,
                                         shape=(batch_size, 2))
        # rotational gauss placeholder
        self.rot_gauss_placeholder = tf.placeholder(tf.float32,
                                         shape=(batch_size, batch_size, 20))
        # positive pair index placeholder (chosen randomly using numpy)
        self.pospair_index_placeholder = tf.placeholder(tf.int32,
                                         shape=(self.positive_size, 2))

        print('Building graph...')
        with tf.device('/gpu:'+str(gpu_number)):
            self.net = CaffeNet({'data': images})
            # before dropout
            conv_features = self.net.get_output()
            B, H, W, C = conv_features.get_shape().as_list()
            F = feature_size
            self.B = B
            self.W = W
            self.C = C
            conv_features = tf.reshape(conv_features, [B, H*W, C])
            t_list = tf.split(conv_features, num_or_size_splits=W, axis=1)
            indices = np.arange(W)
            self.out_branches = []
            for _ in range(W):
                # form a branch
                br = [t_list[idx] for idx in indices]
                br = tf.concat(br, axis = 1)
                # append new branch into branch list
                self.out_branches.append(br)
                # update indices, this uses numpy
                indices = np.roll(indices, -1)
            self.rolling_features_list = self.out_branches
            self.lifted_loss = loss.loss(self.rolling_features_list, self.position_placeholder,
                    self.rot_gauss_placeholder, self.pospair_index_placeholder,
                    self.margin, self.sigma_R, tolerance_margin)

            reg_loss = 0
            for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
                #print var.name
                reg_loss += tf.nn.l2_loss(var)

            self.total_loss = 0.0008 * reg_loss + self.lifted_loss
            self.training_summary = tf.summary.scalar('training_loss', self.total_loss)
            self.validation_summary = tf.summary.scalar('validation_loss', self.total_loss)

            self.validation_accuracy_placeholder = tf.placeholder(tf.float32, shape=())
            self.training_accuracy_placeholder = tf.placeholder(tf.float32, shape=())
            validation_accuracy = tf.get_variable('validation_accuracy', [], trainable=False)
            training_accuracy = tf.get_variable('training_accuracy', [], trainable=False)
            self.validation_assign_op = tf.assign(validation_accuracy, self.validation_accuracy_placeholder)
            self.training_assign_op = tf.assign(training_accuracy, self.training_accuracy_placeholder)
            self.validation_accuracy_summary = tf.summary.scalar('validation_accuracy', validation_accuracy)
            self.training_accuracy_summary = tf.summary.scalar('training_accuracy', training_accuracy)

            # Adam optimizer
            global_step = tf.get_variable('global_step', [],
                                             initializer = tf.constant_initializer(0), trainable = False)
            opt = tf.train.MomentumOptimizer(0.00001, 0.9)
            grads_and_vars = opt.compute_gradients(self.total_loss)
            self.train_op = opt.apply_gradients(grads_and_vars, global_step = global_step)
            print('Finish building graph')

        print("start creating reader objects")
        #create training batch reader object
        parser = argparse.ArgumentParser()
        train_FLAGS, _ = parser.parse_known_args()
        train_FLAGS.data_dir = data_dir
        train_FLAGS.batch_size = batch_size
        train_FLAGS.total_batch_number = total_batch_number
        train_FLAGS.tolerance_margin = tolerance_margin
        train_FLAGS.pick_same_room = pick_same_room
        train_FLAGS.data_filename = training_data_filename
        self.training_reader = Reader(train_FLAGS)
        self.training_triplet_reader = Triplet_Reader(train_FLAGS, self.control_distances)

        # create validation batch reader object
        parser = argparse.ArgumentParser()
        validation_FLAGS, _ = parser.parse_known_args()
        validation_FLAGS.data_dir = data_dir
        validation_FLAGS.batch_size = batch_size
        validation_FLAGS.total_batch_number = total_batch_number
        validation_FLAGS.tolerance_margin = tolerance_margin
        validation_FLAGS.pick_same_room = pick_same_room
        validation_FLAGS.data_filename = validation_data_filename
        self.validation_reader = Reader(validation_FLAGS)
        self.validation_triplet_reader = Triplet_Reader(validation_FLAGS, self.control_distances)
        print("Finish creating reader objects")
Esempio n. 26
0
def main_worker(gpu, ngpus_per_node, cfg):
    cfg['GPU'] = gpu
    if gpu != 0:

        def print_pass(*args):
            pass

        builtins.print = print_pass
    cfg['RANK'] = cfg['RANK'] * ngpus_per_node + gpu
    dist.init_process_group(backend=cfg['DIST_BACKEND'],
                            init_method=cfg["DIST_URL"],
                            world_size=cfg['WORLD_SIZE'],
                            rank=cfg['RANK'])

    # Data loading code
    batch_size = int(cfg['BATCH_SIZE'])
    per_batch_size = int(batch_size / ngpus_per_node)
    #workers = int((cfg['NUM_WORKERS'] + ngpus_per_node - 1) / ngpus_per_node) # dataload threads
    workers = int(cfg['NUM_WORKERS'])
    DATA_ROOT = cfg[
        'DATA_ROOT']  # the parent root where your train/val/test data are stored
    VAL_DATA_ROOT = cfg['VAL_DATA_ROOT']
    RECORD_DIR = cfg['RECORD_DIR']
    RGB_MEAN = cfg['RGB_MEAN']  # for normalize inputs
    RGB_STD = cfg['RGB_STD']
    DROP_LAST = cfg['DROP_LAST']
    LR_SCHEDULER = cfg['LR_SCHEDULER']
    LR_STEP_SIZE = cfg['LR_STEP_SIZE']
    LR_DECAY_EPOCH = cfg['LR_DECAY_EPOCH']
    LR_DECAT_GAMMA = cfg['LR_DECAT_GAMMA']
    LR_END = cfg['LR_END']
    WARMUP_EPOCH = cfg['WARMUP_EPOCH']
    WARMUP_LR = cfg['WARMUP_LR']
    NUM_EPOCH = cfg['NUM_EPOCH']
    USE_APEX = cfg['USE_APEX']
    EVAL_FREQ = cfg['EVAL_FREQ']
    SYNC_BN = cfg['SYNC_BN']
    print("=" * 60)
    print("Overall Configurations:")
    print(cfg)
    print("=" * 60)
    transform_list = [
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=RGB_MEAN, std=RGB_STD),
    ]
    if cfg['RANDOM_ERASING']:
        transform_list.append(RandomErasing())
    if cfg['CUTOUT']:
        transform_list.append(Cutout())
    train_transform = transforms.Compose(transform_list)
    if cfg['RANDAUGMENT']:
        train_transform.transforms.insert(
            0, RandAugment(n=cfg['RANDAUGMENT_N'], m=cfg['RANDAUGMENT_M']))
    dataset_train = FaceDataset(DATA_ROOT, RECORD_DIR, train_transform)
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        dataset_train)
    train_loader = torch.utils.data.DataLoader(dataset_train,
                                               batch_size=per_batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=DROP_LAST)
    SAMPLE_NUMS = dataset_train.get_sample_num_of_each_class()
    NUM_CLASS = len(train_loader.dataset.classes)
    print("Number of Training Classes: {}".format(NUM_CLASS))

    lfw, cfp_fp, agedb_30, vgg2_fp, lfw_issame, cfp_fp_issame, agedb_30_issame, vgg2_fp_issame = get_val_data(
        VAL_DATA_ROOT)

    #======= model & loss & optimizer =======#
    BACKBONE_DICT = {
        'MobileFaceNet': MobileFaceNet,
        'ResNet_50': ResNet_50,
        'ResNet_101': ResNet_101,
        'ResNet_152': ResNet_152,
        'IR_50': IR_50,
        'IR_100': IR_100,
        'IR_101': IR_101,
        'IR_152': IR_152,
        'IR_185': IR_185,
        'IR_200': IR_200,
        'IR_SE_50': IR_SE_50,
        'IR_SE_100': IR_SE_100,
        'IR_SE_101': IR_SE_101,
        'IR_SE_152': IR_SE_152,
        'IR_SE_185': IR_SE_185,
        'IR_SE_200': IR_SE_200,
        'AttentionNet_IR_56': AttentionNet_IR_56,
        'AttentionNet_IRSE_56': AttentionNet_IRSE_56,
        'AttentionNet_IR_92': AttentionNet_IR_92,
        'AttentionNet_IRSE_92': AttentionNet_IRSE_92,
        'PolyNet': PolyNet,
        'PolyFace': PolyFace,
        'EfficientPolyFace': EfficientPolyFace,
        'ResNeSt_50': resnest50,
        'ResNeSt_101': resnest101,
        'ResNeSt_100': resnest100,
        'GhostNet': GhostNet
    }  #'HRNet_W30': HRNet_W30, 'HRNet_W32': HRNet_W32, 'HRNet_W40': HRNet_W40, 'HRNet_W44': HRNet_W44, 'HRNet_W48': HRNet_W48, 'HRNet_W64': HRNet_W64

    BACKBONE_NAME = cfg['BACKBONE_NAME']
    INPUT_SIZE = cfg['INPUT_SIZE']
    assert INPUT_SIZE == [112, 112]
    backbone = BACKBONE_DICT[BACKBONE_NAME](INPUT_SIZE)
    print("=" * 60)
    print(backbone)
    print("{} Backbone Generated".format(BACKBONE_NAME))
    print("=" * 60)
    HEAD_DICT = {
        'Softmax': Softmax,
        'ArcFace': ArcFace,
        'Combined': Combined,
        'CosFace': CosFace,
        'SphereFace': SphereFace,
        'Am_softmax': Am_softmax,
        'CurricularFace': CurricularFace,
        'ArcNegFace': ArcNegFace,
        'SVX': SVXSoftmax,
        'AirFace': AirFace,
        'QAMFace': QAMFace,
        'CircleLoss': CircleLoss
    }
    HEAD_NAME = cfg['HEAD_NAME']
    EMBEDDING_SIZE = cfg['EMBEDDING_SIZE']  # feature dimension
    head = HEAD_DICT[HEAD_NAME](in_features=EMBEDDING_SIZE,
                                out_features=NUM_CLASS)
    print("Params: ", count_model_params(backbone))
    print("Flops:", count_model_flops(backbone))
    #backbone = backbone.eval()
    #print("Flops: ", flops_to_string(2*float(profile_macs(backbone.eval(), torch.randn(1, 3, 112, 112)))))
    #backbone = backbone.train()
    print("=" * 60)
    print(head)
    print("{} Head Generated".format(HEAD_NAME))
    print("=" * 60)

    #--------------------optimizer-----------------------------
    if BACKBONE_NAME.find("IR") >= 0:
        backbone_paras_only_bn, backbone_paras_wo_bn = separate_irse_bn_paras(
            backbone
        )  # separate batch_norm parameters from others; do not do weight decay for batch_norm parameters to improve the generalizability
    else:
        backbone_paras_only_bn, backbone_paras_wo_bn = separate_resnet_bn_paras(
            backbone
        )  # separate batch_norm parameters from others; do not do weight decay for batch_norm parameters to improve the generalizability

    LR = cfg['LR']  # initial LR
    WEIGHT_DECAY = cfg['WEIGHT_DECAY']
    MOMENTUM = cfg['MOMENTUM']
    optimizer = optim.SGD(
        [{
            'params': backbone_paras_wo_bn + list(head.parameters()),
            'weight_decay': WEIGHT_DECAY
        }, {
            'params': backbone_paras_only_bn
        }],
        lr=LR,
        momentum=MOMENTUM)
    if LR_SCHEDULER == 'step':
        scheduler = StepLR(optimizer,
                           step_size=LR_STEP_SIZE,
                           gamma=LR_DECAT_GAMMA)
    elif LR_SCHEDULER == 'multi_step':
        scheduler = MultiStepLR(optimizer,
                                milestones=LR_DECAY_EPOCH,
                                gamma=LR_DECAT_GAMMA)
    elif LR_SCHEDULER == 'cosine':
        scheduler = CosineWarmupLR(optimizer,
                                   batches=len(train_loader),
                                   epochs=NUM_EPOCH,
                                   base_lr=LR,
                                   target_lr=LR_END,
                                   warmup_epochs=WARMUP_EPOCH,
                                   warmup_lr=WARMUP_LR)

    print("=" * 60)
    print(optimizer)
    print("Optimizer Generated")
    print("=" * 60)

    # loss
    LOSS_NAME = cfg['LOSS_NAME']
    LOSS_DICT = {
        'Softmax': nn.CrossEntropyLoss(),
        'LabelSmooth': LabelSmoothCrossEntropyLoss(classes=NUM_CLASS),
        'Focal': FocalLoss(),
        'HM': HardMining(),
        'Softplus': nn.Softplus()
    }
    loss = LOSS_DICT[LOSS_NAME].cuda(gpu)
    print("=" * 60)
    print(loss)
    print("{} Loss Generated".format(loss))
    print("=" * 60)

    torch.cuda.set_device(cfg['GPU'])
    backbone.cuda(cfg['GPU'])
    head.cuda(cfg['GPU'])

    #optionally resume from a checkpoint
    BACKBONE_RESUME_ROOT = cfg[
        'BACKBONE_RESUME_ROOT']  # the root to resume training from a saved checkpoint
    HEAD_RESUME_ROOT = cfg[
        'HEAD_RESUME_ROOT']  # the root to resume training from a saved checkpoint
    IS_RESUME = cfg['IS_RESUME']
    if IS_RESUME:
        print("=" * 60)
        if os.path.isfile(BACKBONE_RESUME_ROOT):
            print("Loading Backbone Checkpoint '{}'".format(
                BACKBONE_RESUME_ROOT))
            loc = 'cuda:{}'.format(cfg['GPU'])
            backbone.load_state_dict(
                torch.load(BACKBONE_RESUME_ROOT, map_location=loc))
            if os.path.isfile(HEAD_RESUME_ROOT):
                print("Loading Head Checkpoint '{}'".format(HEAD_RESUME_ROOT))
                checkpoint = torch.load(HEAD_RESUME_ROOT, map_location=loc)
                cfg['START_EPOCH'] = checkpoint['EPOCH']
                head.load_state_dict(checkpoint['HEAD'])
                optimizer.load_state_dict(checkpoint['OPTIMIZER'])
                del (checkpoint)
        else:
            print(
                "No Checkpoint Found at '{}' and '{}'. Please Have a Check or Continue to Train from Scratch"
                .format(BACKBONE_RESUME_ROOT, HEAD_RESUME_ROOT))
        print("=" * 60)
    ori_backbone = copy.deepcopy(backbone)
    if SYNC_BN:
        backbone = apex.parallel.convert_syncbn_model(backbone)
    if USE_APEX:
        [backbone, head], optimizer = amp.initialize([backbone, head],
                                                     optimizer,
                                                     opt_level='O2')
        backbone = DDP(backbone)
        head = DDP(head)
    else:
        backbone = torch.nn.parallel.DistributedDataParallel(
            backbone, device_ids=[cfg['GPU']])
        head = torch.nn.parallel.DistributedDataParallel(
            head, device_ids=[cfg['GPU']])

    # checkpoint and tensorboard dir
    MODEL_ROOT = cfg['MODEL_ROOT']  # the root to buffer your checkpoints
    LOG_ROOT = cfg['LOG_ROOT']  # the root to log your train/val status

    os.makedirs(MODEL_ROOT, exist_ok=True)
    os.makedirs(LOG_ROOT, exist_ok=True)

    writer = SummaryWriter(
        LOG_ROOT)  # writer for buffering intermedium results
    # train
    for epoch in range(cfg['START_EPOCH'], cfg['NUM_EPOCH']):
        train_sampler.set_epoch(epoch)
        if LR_SCHEDULER != 'cosine':
            scheduler.step()
        #train for one epoch
        DISP_FREQ = 100  # 100 batch
        batch = 0  # batch index
        backbone.train()  # set to training mode
        head.train()
        losses = AverageMeter()
        top1 = AverageMeter()
        top5 = AverageMeter()
        for inputs, labels in tqdm(iter(train_loader)):
            if LR_SCHEDULER == 'cosine':
                scheduler.step()
            # compute output
            start_time = time.time()
            inputs = inputs.cuda(cfg['GPU'], non_blocking=True)
            labels = labels.cuda(cfg['GPU'], non_blocking=True)

            if cfg['MIXUP']:
                inputs, labels_a, labels_b, lam = mixup_data(
                    inputs, labels, cfg['GPU'], cfg['MIXUP_PROB'],
                    cfg['MIXUP_ALPHA'])
                inputs, labels_a, labels_b = map(Variable,
                                                 (inputs, labels_a, labels_b))
            elif cfg['CUTMIX']:
                inputs, labels_a, labels_b, lam = cutmix_data(
                    inputs, labels, cfg['GPU'], cfg['CUTMIX_PROB'],
                    cfg['MIXUP_ALPHA'])
                inputs, labels_a, labels_b = map(Variable,
                                                 (inputs, labels_a, labels_b))
            features = backbone(inputs)
            outputs = head(features, labels)

            if cfg['MIXUP'] or cfg['CUTMIX']:
                lossx = mixup_criterion(loss, outputs, labels_a, labels_b, lam)
            else:
                lossx = loss(outputs,
                             labels) if HEAD_NAME != 'CircleLoss' else loss(
                                 outputs).mean()
            end_time = time.time()
            duration = end_time - start_time
            if ((batch + 1) % DISP_FREQ == 0) and batch != 0:
                print("batch inference time", duration)

            # compute gradient and do SGD step
            optimizer.zero_grad()
            if USE_APEX:
                with amp.scale_loss(lossx, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                lossx.backward()
            optimizer.step()

            # measure accuracy and record loss
            prec1, prec5 = accuracy(outputs.data, labels, topk=(
                1, 5)) if HEAD_NAME != 'CircleLoss' else accuracy(
                    features.data, labels, topk=(1, 5))
            losses.update(lossx.data.item(), inputs.size(0))
            top1.update(prec1.data.item(), inputs.size(0))
            top5.update(prec5.data.item(), inputs.size(0))
            # dispaly training loss & acc every DISP_FREQ
            if ((batch + 1) % DISP_FREQ == 0) or batch == 0:
                print("=" * 60)
                print('Epoch {}/{} Batch {}/{}\t'
                      'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                      'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                          epoch + 1,
                          cfg['NUM_EPOCH'],
                          batch + 1,
                          len(train_loader),
                          loss=losses,
                          top1=top1,
                          top5=top5))
                print("=" * 60)

            # perform validation & save checkpoints per epoch
            # validation statistics per epoch (buffer for visualization)
            if (batch + 1) % EVAL_FREQ == 0:
                #lr = scheduler.get_last_lr()
                lr = optimizer.param_groups[0]['lr']
                print("Current lr", lr)
                print("=" * 60)
                print(
                    "Perform Evaluation on LFW, CFP_FP, AgeD and VGG2_FP, and Save Checkpoints..."
                )
                accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(
                    EMBEDDING_SIZE, per_batch_size, backbone, lfw, lfw_issame)
                buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw,
                           roc_curve_lfw, epoch + 1)
                accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(
                    EMBEDDING_SIZE, per_batch_size, backbone, cfp_fp,
                    cfp_fp_issame)
                buffer_val(writer, "CFP_FP", accuracy_cfp_fp,
                           best_threshold_cfp_fp, roc_curve_cfp_fp, epoch + 1)
                accuracy_agedb_30, best_threshold_agedb_30, roc_curve_agedb_30 = perform_val(
                    EMBEDDING_SIZE, per_batch_size, backbone, agedb_30,
                    agedb_30_issame)
                buffer_val(writer, "AgeDB", accuracy_agedb_30,
                           best_threshold_agedb_30, roc_curve_agedb_30,
                           epoch + 1)
                accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp = perform_val(
                    EMBEDDING_SIZE, per_batch_size, backbone, vgg2_fp,
                    vgg2_fp_issame)
                buffer_val(writer, "VGGFace2_FP", accuracy_vgg2_fp,
                           best_threshold_vgg2_fp, roc_curve_vgg2_fp,
                           epoch + 1)
                print(
                    "Epoch {}/{}, Evaluation: LFW Acc: {}, CFP_FP Acc: {}, AgeDB Acc: {}, VGG2_FP Acc: {}"
                    .format(epoch + 1, NUM_EPOCH, accuracy_lfw,
                            accuracy_cfp_fp, accuracy_agedb_30,
                            accuracy_vgg2_fp))
                print("=" * 60)

                print("=" * 60)
                print("Save Checkpoint...")
                if cfg['RANK'] % ngpus_per_node == 0:
                    #torch.save(backbone.module.state_dict(), os.path.join(MODEL_ROOT, "Backbone_{}_Epoch_{}_Time_{}_checkpoint.pth".format(BACKBONE_NAME, epoch + 1, get_time())))
                    #save_dict = {'EPOCH': epoch+1,
                    #            'HEAD': head.module.state_dict(),
                    #            'OPTIMIZER': optimizer.state_dict()}
                    #torch.save(save_dict, os.path.join(MODEL_ROOT, "Head_{}_Epoch_{}_Time_{}_checkpoint.pth".format(HEAD_NAME, epoch + 1, get_time())))
                    ori_backbone.load_state_dict(backbone.module.state_dict())
                    ori_backbone.eval()
                    x = torch.randn(1, 3, 112, 112).cuda()
                    traced_cell = torch.jit.trace(ori_backbone, (x))
                    #torch.save(ori_backbone, os.path.join(MODEL_ROOT, "model.pth"))
                    torch.jit.save(
                        traced_cell,
                        os.path.join(
                            MODEL_ROOT,
                            "Epoch_{}_Time_{}_checkpoint.pth".format(
                                epoch + 1, get_time())))
            sys.stdout.flush()
            batch += 1  # batch index
        epoch_loss = losses.avg
        epoch_acc = top1.avg
        print("=" * 60)
        print('Epoch: {}/{}\t'
              'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
              'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
              'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                  epoch + 1,
                  cfg['NUM_EPOCH'],
                  loss=losses,
                  top1=top1,
                  top5=top5))
        sys.stdout.flush()
        print("=" * 60)
        if cfg['RANK'] % ngpus_per_node == 0:
            writer.add_scalar("Training_Loss", epoch_loss, epoch + 1)
            writer.add_scalar("Training_Accuracy", epoch_acc, epoch + 1)
            writer.add_scalar("Top1", top1.avg, epoch + 1)
            writer.add_scalar("Top5", top5.avg, epoch + 1)
Esempio n. 27
0
def train():
	'''Do training
	'''
	# Create queue coordinator.
	coord = tf.train.Coordinator()
	h, w = INPUT_SIZE
	sess = tf.Session()
	
	# Load reader.
	# print ('Load reader.......................................')
	with tf.name_scope("create_inputs"):
		reader = LIP_reader.ImageReader(TRAIN_IMAGE_PATH, TRAIN_LABEL_PATH, TRAIN_ID_LIST, 
										INPUT_SIZE, N_CLASSES, RANDOM_SCALE, RANDOM_MIRROR, SHUFFLE, coord)
		image_batch, label_batch = reader.dequeue(BATCH_SIZE)

	# # Set image_batch and label_batch as placeholder
	# # logits = tf.placeholder(tf.float32, shape = [BATCH_SIZE, w, h, N_CLASSES])
	# image_batch = tf.placeholder(tf.float32, shape = [BATCH_SIZE, w, h, 3])
	# label_batch = tf.placeholder(tf.float32, shape = [BATCH_SIZE, w, h, N_CLASSES])
	
	# Build FCN network
	fcn = fcn8_vgg.FCN8VGG()
	# fcn.build(image_batch, train=True, num_classes=N_CLASSES, random_init_fc8=True, debug=True)

	# fcn.build(image_batch, train=True, num_classes=N_CLASSES, random_init_fc8=False, debug=True)
	with tf.name_scope("content_vgg"):
		fcn.build(image_batch, num_classes=N_CLASSES, random_init_fc8=False, debug=True)
	
	print('Finished building Network.')

	# Define loss and optimisation parameters.
	with tf.name_scope('loss'):
		logits = fcn.upscore32
		labels = label_batch
		# print (logits)
		# print (labels)
		loss_ = loss.loss(logits, labels, num_classes=N_CLASSES)
		# total_loss = tf.get_collection('losses')	
		loss_summary = tf.summary.scalar("loss", loss_)

	# Summary
	merged = tf.summary.merge_all()
	summary_writer = tf.summary.FileWriter(LOG_DIR, sess.graph)

	train_op = tf.train.AdamOptimizer(ADAM_OPT_RATE).minimize(loss_)

	# Saver for storing checkpoints of the model.
	saver = tf.train.Saver(max_to_keep=5)

	# Start queue threads.
	threads = tf.train.start_queue_runners(coord=coord, sess=sess)

	# Initialize
	logging.info("Start Initializing Variables.")
	init = tf.global_variables_initializer()
	sess.run(init)
	
	# print ('Getting para.................')
	# tvars = tf.trainable_variables()
	# root_dir = '/versa/alexissanchez/LIP-FCN-hair-mask/layer_para/'
	# print (tvars)
	# for i in range(1,6):
	# 	for j in range(1,3):
	# 		conv_name = 'conv{:d}_{:d}'.format(i,j)
			
	# 		if not os.path.exists(root_dir+conv_name):
	# 			os.makedirs(root_dir+conv_name)

	# 		filter_name = conv_name + '/filter:0'
	# 		filter_var = sess.run(filter_name)
	# 		print (filter_name)
	# 		print (filter_var.shape)
	# 		for x in range(3):
	# 			for y in range(3):
	# 				np.savetxt('./layer_para/' + filter_name + '_{:d}_{:d}.txt'.format(x,y), filter_var[x,y,:,:] , fmt = '%.3f')

	# 		bias_name = conv_name + '/biases:0'
	# 		bias_var = sess.run(bias_name)
	# 		print (bias_name)
	# 		print (bias_var.shape)
	# 		np.savetxt('./layer_para/' + bias_name + '.txt', bias_var , fmt = '%.3f')

	# var_name = 'score_fr/biases:0'
	# var = sess.run(var_name)
	# print (var_name + '.................')
	# print (var.shape)
	# np.savetxt('./layer_para/'+var_name+'.txt', var , fmt = '%.3f')

	# Checking demo save path 
	demo_dir = os.getcwd() + '/train_demo/train_2/'
	shutil.rmtree(demo_dir)
	subdir_list = ['image','label','predict']
	for subdir in subdir_list:
		if not os.path.exists(demo_dir+subdir):
			os.makedirs(demo_dir+subdir)

	# Iterate over training steps.
	print ('Start training......')	
	for step in range(NUM_STEPS):
		start_time = time.time()
		loss_value = 0

		# Do training process
		tensors = [merged, loss_, train_op, image_batch, label_batch, fcn.pred_up]
		merged_summary, loss_value, _, origin_image, origin_label, pred_up= sess.run(tensors)
		# merged_summary, loss_value, _, pred_up, bgr = sess.run([merged, loss_, train_op, fcn.pred_up, fcn.bgr])
		summary_writer.add_summary(merged_summary, step)

		if step % PRINT_PRED_EVERY == 0:
			duration = time.time() - start_time
			print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format(step, loss_value, duration))

		if step % PREDICT_EVERY == 0:
			print ('	Doing Demo......')

			origin_image = np.array(origin_image, np.int32)
			origin_label = np.array(origin_label, np.int32)
			# print (origin_image.shape)
			# print (origin_label.shape)

			for im in range(BATCH_SIZE):
				# print (origin_image[im].shape)
				image_color = convert_RGB_TO_BGR(origin_image[im])
				label_color = color_label(origin_label[im])
				pred_result = color_image(pred_up[im])
				cv2.imwrite('{:s}/image/image_{:d}_{:d}.png'.format(demo_dir, step,im), image_color)
				cv2.imwrite('{:s}/label/label_{:d}_{:d}.png'.format(demo_dir, step,im), label_color)
				cv2.imwrite('{:s}/predict/predict_{:d}_{:d}.png'.format(demo_dir, step,im), pred_result)

			duration = time.time() - start_time
			print ('	Done. {:.3f} sec'.format(duration))
		

		if step % SAVE_PRED_EVERY == 0:
			print ('	Saving Model......')

			save_path = SNAPSHOT_DIR + '/model.ckpt'
			saver.save(sess,save_path, global_step = step)

			duration = time.time() - start_time
			print ('	Done. {:.3f} sec'.format(duration))

		
		
	coord.request_stop()
	coord.join(threads)
Esempio n. 28
0
with tf.device('/cpu:0'):
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:

        input_placeholder = tf.placeholder(tf.float32, [None, height, width, num_classes])
        output_placeholder = tf.placeholder(tf.float32, [None, height, width, num_classes])

        vgg_fcn = fcn16_vgg.FCN16VGG('./vgg16.npy')

        with tf.name_scope('content_vgg'):
            vgg_fcn.build(input_placeholder, train=True, num_classes=num_classes, debug=True)

        with tf.name_scope('loss'):
            loss = loss.loss(vgg_fcn.upscore32, output_placeholder, num_classes)
            optimizer = tf.train.AdamOptimizer(0.0001).minimize(loss)

        print('Finished building Network.')

        # Initializing the variables.
        init = tf.global_variables_initializer()

        # Run initialized variables.
        sess.run(init)

        print('Running the Network')
        print('Training the Network')
        for step in range(num_steps):
            offset = (step * batch_size) % size
            batch_input = input_set[offset:(offset + batch_size), :]
Esempio n. 29
0
def main(argv=None):

    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32,
                           shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3],
                           name="input_image")
    annotation = tf.placeholder(tf.int32,
                                shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1],
                                name="annotation")
    FM_pl = tf.placeholder(tf.float32, [])
    total_acc_pl = tf.placeholder(tf.float32, [])
    acc_pl = tf.placeholder(tf.float32, [])
    iu_pl = tf.placeholder(tf.float32, [])
    fwavacc_pl = tf.placeholder(tf.float32, [])
    # is_traing = tf.placeholder('bool')

    vgg_fcn = fcn32_vgg.FCN32VGG()
    vgg_fcn.build(image,
                  num_classes=num_classes,
                  keep_probability=keep_probability,
                  random_init_fc8=True)

    logits = vgg_fcn.upscore
    pred_annotation = vgg_fcn.pred_up
    # loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
    #                                                                       labels=tf.squeeze(annotation, squeeze_dims=[3]),
    #                                                                       name="entropy")))
    # loss_summary = tf.summary.scalar("entropy", loss)

    # trainable_var = tf.trainable_variables()
    # S_vars = [svar for svar in tf.trainable_variables() if 'weight' in svar.name]
    # l2 = tf.add_n([tf.nn.l2_loss(var) for var in S_vars])
    # # loss = loss + l2 * FLAGS.weight_decay
    # # train_op = tf.train.MomentumOptimizer(FLAGS.learning_rate, 0.9).minimize(loss + l2 * FLAGS.weight_decay)
    # train_op = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(loss + l2 * FLAGS.weight_decay)
    # # train_op = train(loss, trainable_var)
    """ median-frequency re-weighting """
    # class_weights = np.array([
    #     0.5501,
    #     5.4915
    # ])
    # loss = tf.reduce_mean((tf.nn.weighted_cross_entropy_with_logits(logits=logits,
    #                                                                 targets=tf.one_hot(tf.squeeze(annotation, squeeze_dims=[3]), depth=num_classes),
    #                                                                 pos_weight=class_weights,
    #                                                                 name="entropy")))
    loss = LOSS.loss(
        logits,
        tf.one_hot(tf.squeeze(annotation, squeeze_dims=[3]),
                   depth=num_classes))
    regularization_loss = tf.add_n(
        tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
    t_loss = loss + regularization_loss

    loss_summary = tf.summary.scalar("entropy", loss)
    FM_summary = tf.summary.scalar('FM', FM_pl)
    acc_total_summary = tf.summary.scalar("total_acc", total_acc_pl)
    acc_summary = tf.summary.scalar("acc", acc_pl)
    iu_summary = tf.summary.scalar("iu", iu_pl)
    fwavacc_summary = tf.summary.scalar("fwavacc", fwavacc_pl)

    train_op = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(loss)
    #train_op = tf.train.MomentumOptimizer(FLAGS.learning_rate, 0.9).minimize(t_loss)
    # train_op = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(t_loss)
    summary_op = tf.summary.merge_all()

    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))

    print("Setting up dataset reader")
    image_options = {'resize': False, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records,
                                                   image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records,
                                                    image_options)

    sess = tf.Session(config=config)
    saver = tf.train.Saver(max_to_keep=3)

    # create two summary writers to show training loss and validation loss in the same graph
    # need to create two folders 'train' and 'validation' inside FLAGS.logs_dir
    praph_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/graph', sess.graph)
    train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train')
    validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    if FLAGS.mode == "train":
        for itr in range(1, MAX_ITERATION):
            train_images, train_annotations = train_dataset_reader.next_batch(
                FLAGS.batch_size)
            feed_dict = {
                image: train_images,
                annotation: train_annotations,
                keep_probability: 0.5
            }

            sess.run(train_op, feed_dict=feed_dict)

            if itr % 10 == 0:
                train_loss, summary_str = sess.run([loss, loss_summary],
                                                   feed_dict=feed_dict)
                print("Step: %d, Train_loss:%g" % (itr, train_loss))
                train_writer.add_summary(summary_str, itr)

            if itr % 210 == 0:
                valid_iamges, valid_annotations = validation_dataset_reader.get_records(
                )
                val_count = 0
                total_loss = 0
                hist = np.zeros((num_classes, num_classes))
                fm = 0
                for i in range(1, 21):
                    val_images = valid_iamges[val_count:val_count +
                                              val_batch_size]
                    val_annotations = valid_annotations[val_count:val_count +
                                                        val_batch_size]
                    val_loss, val_pred_dense = sess.run(
                        [loss, logits],
                        feed_dict={
                            image: val_images,
                            annotation: val_annotations,
                            keep_probability: 1.0
                        })
                    total_loss = total_loss + val_loss
                    val_count = val_count + val_batch_size
                    hist += get_hist(val_pred_dense, val_annotations)
                    fm += get_FM(val_pred_dense, val_annotations)

                valid_loss = total_loss / 20
                FM = fm / (20 * val_batch_size)
                acc_total = np.diag(hist).sum() / hist.sum()
                acc = np.diag(hist) / hist.sum(1)
                iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) -
                                      np.diag(hist))
                freq = hist.sum(1) / hist.sum()

                # summary_st = sess.run(summary_op,feed_dict=feed_dict)

                summary_sva = sess.run(loss_summary,
                                       feed_dict={loss: valid_loss})
                summary_FM = sess.run(FM_summary, feed_dict={FM_pl: FM})
                summary_acc_total = sess.run(
                    acc_total_summary, feed_dict={total_acc_pl: acc_total})
                summary_acc = sess.run(acc_summary,
                                       feed_dict={acc_pl: np.nanmean(acc)})
                summary_iu = sess.run(iu_summary,
                                      feed_dict={iu_pl: np.nanmean(iu)})
                summary_fwavacc = sess.run(
                    fwavacc_summary,
                    feed_dict={
                        fwavacc_pl: (freq[freq > 0] * iu[freq > 0]).sum()
                    })
                print("Step: %d, Valid_loss:%g" % (itr, valid_loss))
                print(" >>> Step: %d, f1_score:%g" % (itr, FM))
                # overall accuracy
                print(" >>> Step: %d, overall accuracy:%g" % (itr, acc_total))
                print(" >>> Step: %d, mean accuracy:%g" %
                      (itr, np.nanmean(acc)))
                print(" >>> Step: %d, mean IU:%g" % (itr, np.nanmean(iu)))
                print(" >>> Step: %d, fwavacc:%g" %
                      (itr, (freq[freq > 0] * iu[freq > 0]).sum()))

                # validation_writer.add_summary(summary_st, step)
                validation_writer.add_summary(summary_sva, itr)
                validation_writer.add_summary(summary_FM, itr)
                validation_writer.add_summary(summary_acc_total, itr)
                validation_writer.add_summary(summary_acc, itr)
                validation_writer.add_summary(summary_iu, itr)
                validation_writer.add_summary(summary_fwavacc, itr)

                saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)

                va_images, va_annotations = validation_dataset_reader.get_random_batch(
                    20)

                pred = sess.run(pred_annotation,
                                feed_dict={
                                    image: va_images,
                                    annotation: va_annotations,
                                    keep_probability: 1.0
                                })
                va_annotations = np.squeeze(va_annotations, axis=3)
                # pred = np.squeeze(pred, axis=3)
                pred = pred * 255
                va_annotations = va_annotations * 255
                for it in range(20):
                    utils.save_image(va_images[it].astype(np.uint8),
                                     FLAGS.logs_dir,
                                     name="inp_" + str(5 + it))
                    utils.save_image(va_annotations[it].astype(np.uint8),
                                     FLAGS.logs_dir,
                                     name="gt_" + str(5 + it))
                    utils.save_image(pred[it].astype(np.uint8),
                                     FLAGS.logs_dir,
                                     name="pred_" + str(5 + it))

    elif FLAGS.mode == "visualize":
        it = 0
        valid_iamge, val_annotation = validation_dataset_reader.get_records()
        val_annotation = np.squeeze(val_annotation, axis=3)
        val_annotation = val_annotation * 255
        for filename in valid_records:
            val_image = np.array(misc.imread(filename['image']))
            val_image = np.reshape(val_image, (1, 256, 256, 3))
            pred = sess.run(pred_annotation,
                            feed_dict={
                                image: val_image,
                                keep_probability: 1.0
                            })
            pred = pred * 255
            # pred = sess.run(pred_annotation, feed_dict={image: val_image,
            #                                         keep_probability:1.0})
            utils.save_image(pred[0].astype(np.uint8),
                             FLAGS.logs_dir + 'pred01',
                             name=os.path.splitext(
                                 filename['image'].split("/")[-1])[0])
            utils.save_image(val_annotation[it].astype(np.uint8),
                             FLAGS.logs_dir + 'gt01',
                             name=os.path.splitext(
                                 filename['annotation'].split("/")[-1])[0])
            it = it + 1
Esempio n. 30
0
def train():
  """Train ring_net for a number of steps."""
  with tf.Graph().as_default():
    # make inputs
    x = tf.placeholder(tf.float32, [FLAGS.batch_size, 32, 32, 1])

    # possible dropout inside (default is 1.0)
    keep_prob = tf.placeholder("float")

    # make model
    if FLAGS.model=="fully_connected":
      mean, stddev, y_sampled, x_prime = arc.fully_connected_model(x, keep_prob)
    elif FLAGS.model=="conv":
      mean, stddev, y_sampled, x_prime = arc.conv_model(x, keep_prob)
    elif FLAGS.model=="all_conv":
      mean, stddev, y_sampled, x_prime = arc.all_conv_model(x, keep_prob)
    else:
      print("model requested not found, now some error!")

    # calc loss stuff
    loss_vae, loss_reconstruction, loss, train_op = ls.loss(mean, stddev, x, x_prime)

    # List of all Variables
    variables = tf.all_variables()

    # Build a saver
    saver = tf.train.Saver(tf.all_variables())   

    # Summary op
    summary_op = tf.merge_all_summaries()
 
    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()

    # Start running operations on the Graph.
    sess = tf.Session()

    # init if this is the very time training
    print("init network from scratch")
    sess.run(init)

    # Summary op
    graph_def = sess.graph.as_graph_def(add_shapes=True)
    summary_writer = tf.train.SummaryWriter(train_dir_save, graph_def=graph_def)

    for step in xrange(FLAGS.max_step):
      dat = b.bounce_vec(32, FLAGS.num_balls, FLAGS.batch_size)
      t = time.time()
      _, loss_r = sess.run([train_op, loss],feed_dict={x:dat, keep_prob:FLAGS.keep_prob})
      elapsed = time.time() - t

      if step%2000 == 0:
        _ , loss_vae_r, loss_reconstruction_r, y_sampled_r, x_prime_r, stddev_r = sess.run([train_op, loss_vae, loss_reconstruction, y_sampled, x_prime, stddev],feed_dict={x:dat, keep_prob:FLAGS.keep_prob})
        summary_str = sess.run(summary_op, feed_dict={x:dat, keep_prob:FLAGS.keep_prob})
        summary_writer.add_summary(summary_str, step) 
        print("loss vae value at " + str(loss_vae_r))
        print("loss reconstruction value at " + str(loss_reconstruction_r))
        print("time per batch is " + str(elapsed))
        cv2.imwrite("real_balls.jpg", np.uint8(dat[0, :, :, :]*255))
        cv2.imwrite("generated_balls.jpg", np.uint8(x_prime_r[0, :, :, :]*255))
        stddev_r = np.sort(np.sum(stddev_r, axis=0))
        plt.plot(stddev_r/FLAGS.batch_size, label="step " + str(step))
        plt.legend()
        plt.savefig('stddev_num_balls_' + str(FLAGS.num_balls) + '_beta_' + str(FLAGS.beta) + '.png')
      
      assert not np.isnan(loss_r), 'Model diverged with loss = NaN'

      if step%1000 == 0:
        checkpoint_path = os.path.join(train_dir_save, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)  
        print("saved to " + train_dir_save)
        print("step " + str(step))
Esempio n. 31
0
		# Data placeholders
		inputBatchImages = tf.placeholder(dtype=tf.float32, shape=[None, 512, 640, 3], name="inputBatchImages")
		inputBatchLabels = tf.placeholder(dtype=tf.float32, shape=[None, 512, 640, options.numClasses], name="inputBatchLabels")
		inputKeepProbability = tf.placeholder(dtype=tf.float32, name="inputKeepProbability")

	vgg_fcn = fcn8_vgg_imp.FCN2VGG(batchSize = options.batchSize, statsFile=options.statsFileName, enableTensorboardVisualization=options.tensorboardVisualization)

	with tf.name_scope('Model'):
		# Construct model
		vgg_fcn.build(inputBatchImages, inputKeepProbability, num_classes=options.numClasses, 
						random_init_fc8=True, debug=(options.verbose > 0))

	with tf.name_scope('Loss'):
		# Define loss
		weights = tf.cast(inputBatchLabels != options.ignoreLabel, dtype=tf.float32)
		loss = loss.loss(vgg_fcn.softmax, inputBatchLabels, options.numClasses, weights)

	with tf.name_scope('Optimizer'):
		# Define Optimizer
		#optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
		optimizer = tf.train.AdamOptimizer(learning_rate=options.learningRate)

		# Op to calculate every variable gradient
		gradients = tf.gradients(loss, tf.trainable_variables())
		gradients = list(zip(gradients, tf.trainable_variables()))
		# Op to update all variables according to their gradient
		applyGradients = optimizer.apply_gradients(grads_and_vars=gradients)

	# Initializing the variables
	# init = tf.initialize_all_variables()
	init = tf.global_variables_initializer() # TensorFlow v0.11
tf.flags.DEFINE_integer('batch_size', 1, '批大小')
tf.flags.DEFINE_integer('frame_count', 60, "帧数")
tf.flags.DEFINE_integer('frequency', 16000, "采样率")
tf.flags.DEFINE_integer('kwidth', 18, '窗格大小')
tf.flags.DEFINE_integer('num_train', 1000, "训练次数")
tf.flags.DEFINE_float('learning_rate', 3e-4, "学习速率")
tf.flags.DEFINE_float('beta1', 0.5, "Adam动量")

sess = tf.InteractiveSession()
coord = tf.train.Coordinator()
reader = read.Reader(path=FLAGS.test_file, batch_size=FLAGS.batch_size,
                     window_size=FLAGS.frequency // FLAGS.frame_count, kwidth=FLAGS.kwidth)
tf.train.start_queue_runners(sess=sess, coord=coord)

logits = inference.Inference(reader.wav_raw, FLAGS.kwidth, 2, isTrain=False).build_model()
loss_val = loss.loss(logits=logits, labels=reader.label)

saver = tf.train.Saver()

tf.global_variables_initializer().run()

saver.restore(sess, os.path.join(FLAGS.checkpointDir))

tf.train.start_queue_runners(sess=sess, coord=coord)
labels = tf.reshape(reader.label, [-1])
logits_predict, ground_truth = sess.run([logits, labels])

plt.figure(1, [20, 12])
plt.subplot(411)
plt.title('predict')
plt.plot(logits_predict)
Esempio n. 33
0
images_iter = dataset.make_initializable_iterator()
images = images_iter.get_next()

# Build the graph
wrecked_images = tf.placeholder(tf.float32, shape=(None, 218, 178, 3))
real_images = tf.placeholder(tf.float32, shape=(None, 218, 178, 3))

l1_ratio = 0.3

# Build the graph
with tf.variable_scope('') as scope:
    fake_images = build_generator(wrecked_images)
    fake_logits = build_discriminator(fake_images)
    scope.reuse_variables()
    real_logits = build_discriminator(real_images)
    G_loss, D_loss = loss(fake_logits, real_logits, fake_images, real_images,
                          batch_size, build_discriminator)

G_loss = (1 - l1_ratio) * G_loss + l1_ratio * tf.losses.mean_squared_error(
    fake_images, real_images)

D_solver = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1)
G_solver = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1)
D_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
D_train_step = D_solver.minimize(D_loss, var_list=D_vars)
G_train_step = G_solver.minimize(G_loss, var_list=G_vars)

# train
pointer = 0

Esempio n. 34
0
    def train(self):
        thresd = 100

        if self.args.load_loss:
            print('load loss')
            self.save_d_loss = util.load_loss(self.args.result_dir,
                                              'discriminator')
            self.save_g_loss = util.load_loss(self.args.result_dir,
                                              'generator')
        self.model.d.train()
        self.model.g.train()
        for epoch in range(self.args.epochs):
            start_time = time.time()
            d_cnt = 0
            for n_batch, (lr, hr, _) in enumerate(self.data.loader_train):
                if not self.args.cpu:
                    lr = lr.cuda()
                    hr = hr.cuda()

                lr = Variable(lr, requires_grad=True)
                hr = Variable(hr, requires_grad=True)
                loss_ = loss(self.args, lr, hr, self.model)

                if d_cnt < self.args.d_count:
                    self.update_d(loss_)
                    if self.args.save_loss:
                        a = [
                            self.d_r_loss.cpu().view(-1),
                            self.d_f_loss.cpu().view(-1),
                            self.d_cost.cpu().view(-1),
                            self.wasserstein.cpu().view(-1)
                        ]
                        a = np.array([[l.detach().numpy()[0] for l in a]])
                        self.save_d_loss = util.add_loss(self.save_d_loss, a)
                        print(
                           'batch:{}/{}--d_real_loss = {:0.6f}, d_fake_loss = {:0.6f},d_cost = {:0.6f}, wasserstein = {:0.6f}\n' \
                               .format(n_batch, self.args.n_train // self.args.batch_size + 1, self.d_r_loss,
                                       self.d_f_loss, self.d_cost, self.wasserstein)
                        )
                else:
                    d_cnt = 0
                    self.update_g(loss_)
                    print('g_loss={:0.6f},p_loss={:0.6f}'.format(
                        self.g_cost, self.p_loss))
                    if self.args.save_loss:
                        a = self.g_cost.cpu().view(-1).detach().numpy()
                        self.save_g_loss = util.add_loss(self.save_g_loss, a)
                        self.save_g_loss = torch.cat([self.save_g_loss, a], 0)
                        del (a)
                d_cnt += 1
            util.save_mdoel(self.args.result_dir, self.model.d,
                            'discriminator')
            util.save_mdoel(self.args.result_dir, self.model.g, 'generator')
            if self.args.save_loss:
                util.save_loss(self.args.result_dir, self.save_d_loss,
                               'discriminator')
                util.save_loss(self.args.result_dir, self.save_g_loss,
                               'generator')
            if self.wasserstein.abs() < thresd:
                if epoch > 5:
                    thresd = self.wasserstein.abs()
                    util.save_mdoel(self.args.result_dir, self.model.d,
                                    'best_discriminator')
                    util.save_mdoel(self.args.result_dir, self.model.g,
                                    'best_generator')
                    print('best epoch {}'.format(epoch))
            print('epoch:{:0>4d} takes {:.2f} seconds--d_cost:{:.4f},wasserstein:{:.4f}' \
                  .format(epoch, start_time - time.time(), self.d_cost, self.wasserstein))