def main(): # generate data and translate labels train_features, train_targets = generate_all_datapoints_and_labels() test_features, test_targets = generate_all_datapoints_and_labels() train_labels, test_labels = convert_labels(train_targets), convert_labels(test_targets) print('*************************************************************************') print('*************************************************************************') print('*************************************************************************') print('*************************************************************************') print('*************************************************************************') print('Model: Linear + ReLU + Linear +ReLU + Linear + ReLU + Linear + Tanh') print('Loss: MSE') print('Optimizer: SGD') print('*************************************************************************') print('Training') print('*************************************************************************') # build network, loss and optimizer for Model 1 my_model_design_1=[Linear(2,25), ReLU(), Linear(25,25), Dropout(p=0.5), ReLU(), Linear(25,25), ReLU(),Linear(25,2),Tanh()] my_model_1=Sequential(my_model_design_1) optimizer_1=SGD(my_model_1,lr=1e-3) criterion_1=LossMSE() # train Model 1 batch_size=1 for epoch in range(50): temp_train_loss_sum=0. temp_test_loss_sum=0. num_train_correct=0 num_test_correct=0 # trained in batch-fashion: here batch size = 1 for temp_batch in range(0,len(train_features), batch_size): temp_train_features=train_features.narrow(0, temp_batch, batch_size) temp_train_labels=train_labels.narrow(0, temp_batch, batch_size) for i in range(batch_size): # clean parameter gradient before each batch optimizer_1.zero_grad() temp_train_feature=temp_train_features[i] temp_train_label=temp_train_labels[i] # forward pass to compute loss temp_train_pred=my_model_1.forward(temp_train_feature) temp_train_loss=criterion_1.forward(temp_train_pred,temp_train_label) temp_train_loss_sum+=temp_train_loss _, temp_train_pred_cat=torch.max(temp_train_pred,0) _, temp_train_label_cat=torch.max(temp_train_label,0) if temp_train_pred_cat==temp_train_label_cat: num_train_correct+=1 # calculate gradient according to loss gradient temp_train_loss_grad=criterion_1.backward(temp_train_pred,temp_train_label) # accumulate parameter gradient in each batch my_model_1.backward(temp_train_loss_grad) # update parameters by optimizer optimizer_1.step() # evaluate the current model on testing set # only forward pass is implemented for i_test in range(len(test_features)): temp_test_feature=test_features[i_test] temp_test_label=test_labels[i_test] temp_test_pred=my_model_1.forward(temp_test_feature) temp_test_loss=criterion_1.forward(temp_test_pred,temp_test_label) temp_test_loss_sum+=temp_test_loss _, temp_test_pred_cat=torch.max(temp_test_pred,0) _, temp_test_label_cat=torch.max(temp_test_label,0) if temp_test_pred_cat==temp_test_label_cat: num_test_correct+=1 temp_train_loss_mean=temp_train_loss_sum/len(train_features) temp_test_loss_mean=temp_test_loss_sum/len(test_features) temp_train_accuracy=num_train_correct/len(train_features) temp_test_accuracy=num_test_correct/len(test_features) print("Epoch: {}/{}..".format(epoch+1, 50), "Training Loss: {:.4f}..".format(temp_train_loss_mean), "Training Accuracy: {:.4f}..".format(temp_train_accuracy), "Validation/Test Loss: {:.4f}..".format(temp_test_loss_mean), "Validation/Test Accuracy: {:.4f}..".format(temp_test_accuracy), ) # # visualize the classification performance of Model 1 on testing set test_pred_labels_1=[] for i in range(1000): temp_test_feature=test_features[i] temp_test_label=test_labels[i] temp_test_pred=my_model_1.forward(temp_test_feature) _, temp_train_pred_cat=torch.max(temp_test_pred,0) if test_targets[i].int() == temp_train_pred_cat.int(): test_pred_labels_1.append(int(test_targets[i])) else: test_pred_labels_1.append(2) fig,axes = plt.subplots(1,1,figsize=(6,6)) axes.scatter(test_features[:,0], test_features[:,1], c=test_pred_labels_1) axes.set_title('Classification Performance of Model 1') plt.show() print('*************************************************************************') print('*************************************************************************') print('*************************************************************************') print('*************************************************************************') print('*************************************************************************') print('Model: Linear + ReLU + Linear + Dropout+ SeLU + Linear + Dropout + ReLU + Linear + Sigmoid') print('Loss: Cross Entropy') print('Optimizer: Adam') print('*************************************************************************') print('Training') print('*************************************************************************') # build network, loss function and optimizer for Model 2 my_model_design_2=[Linear(2,25), ReLU(), Linear(25,25), Dropout(p=0.5), SeLU(), Linear(25,25),Dropout(p=0.5), ReLU(),Linear(25,2), Sigmoid()] my_model_2=Sequential(my_model_design_2) optimizer_2=Adam(my_model_2,lr=1e-3) criterion_2=CrossEntropy() # train Model 2 batch_size=1 epoch=0 while(epoch<25): temp_train_loss_sum=0. temp_test_loss_sum=0. num_train_correct=0 num_test_correct=0 # trained in batch-fashion: here batch size = 1 for temp_batch in range(0,len(train_features), batch_size): temp_train_features=train_features.narrow(0, temp_batch, batch_size) temp_train_labels=train_labels.narrow(0, temp_batch, batch_size) for i in range(batch_size): # clean parameter gradient before each batch optimizer_2.zero_grad() temp_train_feature=temp_train_features[i] temp_train_label=temp_train_labels[i] # forward pass to compute loss temp_train_pred=my_model_2.forward(temp_train_feature) temp_train_loss=criterion_2.forward(temp_train_pred,temp_train_label) temp_train_loss_sum+=temp_train_loss _, temp_train_pred_cat=torch.max(temp_train_pred,0) _, temp_train_label_cat=torch.max(temp_train_label,0) if temp_train_pred_cat==temp_train_label_cat: num_train_correct+=1 # calculate gradient according to loss gradient temp_train_loss_grad=criterion_2.backward(temp_train_pred,temp_train_label) ''' if (not temp_train_loss_grad[0]>=0) and (not temp_train_loss_grad[0]<0): continue ''' # accumulate parameter gradient in each batch my_model_2.backward(temp_train_loss_grad) # update parameters by optimizer optimizer_2.step() # evaluate the current model on testing set # only forward pass is implemented for i_test in range(len(test_features)): temp_test_feature=test_features[i_test] temp_test_label=test_labels[i_test] temp_test_pred=my_model_2.forward(temp_test_feature) temp_test_loss=criterion_2.forward(temp_test_pred,temp_test_label) temp_test_loss_sum+=temp_test_loss _, temp_test_pred_cat=torch.max(temp_test_pred,0) _, temp_test_label_cat=torch.max(temp_test_label,0) if temp_test_pred_cat==temp_test_label_cat: num_test_correct+=1 temp_train_loss_mean=temp_train_loss_sum/len(train_features) temp_test_loss_mean=temp_test_loss_sum/len(test_features) temp_train_accuracy=num_train_correct/len(train_features) temp_test_accuracy=num_test_correct/len(test_features) # in case there is gradient explosion problem, initiliza model again and restart training # but the situation seldom happens if (not temp_train_loss_grad[0]>=0) and (not temp_train_loss_grad[0]<0): epoch=0 my_model_design_2=[Linear(2,25), ReLU(), Linear(25,25), Dropout(p=0.5), ReLU(), Linear(25,25),Dropout(p=0.5), ReLU(),Linear(25,2),Sigmoid()] my_model_2=Sequential(my_model_design_2) optimizer_2=Adam(my_model_2,lr=1e-3) criterion_2=CrossEntropy() print('--------------------------------------------------------------------------------') print('--------------------------------------------------------------------------------') print('--------------------------------------------------------------------------------') print('--------------------------------------------------------------------------------') print('--------------------------------------------------------------------------------') print('Restart training because of gradient explosion') continue print("Epoch: {}/{}..".format(epoch+1, 25), "Training Loss: {:.4f}..".format(temp_train_loss_mean), "Training Accuracy: {:.4f}..".format(temp_train_accuracy), "Validation/Test Loss: {:.4f}..".format(temp_test_loss_mean), "Validation/Test Accuracy: {:.4f}..".format(temp_test_accuracy), ) epoch+=1 # visualize the classification performance of Model 2 on testing set test_pred_labels_2=[] for i in range(1000): temp_test_feature=test_features[i] temp_test_label=test_labels[i] temp_test_pred=my_model_2.forward(temp_test_feature) _, temp_train_pred_cat=torch.max(temp_test_pred,0) if test_targets[i].int() == temp_train_pred_cat.int(): test_pred_labels_2.append(int(test_targets[i])) else: test_pred_labels_2.append(2) fig,axes = plt.subplots(1,1,figsize=(6,6)) axes.scatter(test_features[:,0], test_features[:,1], c=test_pred_labels_2) axes.set_title('Classification Performance of Model 2') plt.show()
net = MnistNetMiniBatch() learning_rate = 0.001 L_train = [] L_test = [] Acc_train = [] Acc_test = [] len_mini_batch = 10 for it in range(100): L_acc = 0. sh = list(range(train_x.shape[0])) np.random.shuffle(sh) for i in range(train_x.shape[0]): x = train_x[sh[i]] y = train_y_oh[sh[i]] y_h = net.forward(x) L = loss.forward(y, y_h) L_acc += L dz = loss.backward() if i % len_mini_batch == 0: dz = net.backward(dz, learning_rate, update=True, len_mini_batch=len_mini_batch) else: dz = net.backward(dz, learning_rate) L_acc /= train_y_oh.shape[0] L_train.append(L_acc) acc = compute_acc(train_x, train_y, net) Acc_train.append(acc) L_e_acc = 0. for i in range(test_x.shape[0]):