Esempio n. 1
0
    def create_sr_model(self, ip):

        x = Convolution2D(64,
                          3,
                          3,
                          activation='relu',
                          border_mode='same',
                          name='sr_res_conv1')(ip)

        nb_residual = 5 if self.small_model else 15

        for i in range(nb_residual):
            x = self._residual_block(x, i + 1)

        x = Deconvolution2D(64,
                            3,
                            3,
                            activation='relu',
                            border_mode='same',
                            subsample=(2, 2),
                            name='sr_res_deconv1',
                            output_shape=(self.batch_size, 64,
                                          self.img_width * 2,
                                          self.img_height * 2))(x)

        x = Deconvolution2D(64,
                            3,
                            3,
                            activation='relu',
                            border_mode='same',
                            subsample=(2, 2),
                            name='sr_res_deconv2',
                            output_shape=(self.batch_size, 64,
                                          self.img_width * 4,
                                          self.img_height * 4))(x)

        tv_regularizer = TVRegularizer(img_width=self.img_width * 4,
                                       img_height=self.img_height * 4,
                                       weight=self.tv_weight)
        x = Convolution2D(3,
                          3,
                          3,
                          activation="linear",
                          border_mode='same',
                          activity_regularizer=tv_regularizer,
                          name='sr_res_conv_final')(x)
        #x = Denormalize(name='sr_res_output')(x)

        return x
Esempio n. 2
0
    def create_sr_model(self, ip):

        x = Convolution2D(self.filters,
                          5,
                          5,
                          activation='linear',
                          border_mode='same',
                          name='sr_res_conv1')(ip)
        x = BatchNormalization(axis=channel_axis,
                               mode=self.mode,
                               name='sr_res_bn_1')(x)
        x = LeakyReLU(alpha=0.25, name='sr_res_lr1')(x)

        x = Convolution2D(self.filters,
                          5,
                          5,
                          activation='linear',
                          border_mode='same',
                          name='sr_res_conv2')(x)
        x = BatchNormalization(axis=channel_axis,
                               mode=self.mode,
                               name='sr_res_bn_2')(x)
        x = LeakyReLU(alpha=0.25, name='sr_res_lr2')(x)

        nb_residual = 5 if self.small_model else 15

        for i in range(nb_residual):
            x = self._residual_block(x, i + 1)

        for scale in range(self.nb_scales):
            x = self._upscale_block(x, scale + 1)

        scale = 2**self.nb_scales
        tv_regularizer = TVRegularizer(img_width=self.img_width * scale,
                                       img_height=self.img_height * scale,
                                       weight=self.tv_weight)

        x = Convolution2D(3,
                          5,
                          5,
                          activation='tanh',
                          border_mode='same',
                          activity_regularizer=tv_regularizer,
                          name='sr_res_conv_final')(x)

        x = Denormalize()(x)

        return x
def add_total_variation_loss(transform_output_layer, weight):
    # Total Variation Regularization
    layer = transform_output_layer  # Output layer
    tv_regularizer = TVRegularizer(weight)(layer)
    layer.add_loss(tv_regularizer)