def train(data_dir,
          atlas_file,
          model_dir,
          model,
          gpu_id,
          lr,
          nb_epochs,
          prior_lambda,
          image_sigma,
          mean_lambda,
          steps_per_epoch,
          batch_size,
          load_model_file,
          bidir,
          atlas_wt,
          bias_mult,
          smooth_pen_layer,
          data_loss,
          reg_param,
          ncc_win,
          initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model_dir: model folder to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param nb_epochs: number of training iterations
    :param prior_lambda: the prior_lambda, the scalar in front of the smoothing laplacian, in MICCAI paper
    :param image_sigma: the image sigma in MICCAI paper
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param bidir: logical whether to use bidirectional cost function
    """
    
     
    # prepare data files
    # we have data arranged in train/validate/test folders
    # inside each folder is a /vols/ and a /asegs/ folder with the volumes
    # and segmentations. All of our papers use npz formated data.
    train_vol_names = glob.glob(data_dir)
    train_vol_names = [f for f in train_vol_names if 'ADNI' not in f]
    random.shuffle(train_vol_names)  # shuffle volume list
    assert len(train_vol_names) > 0, "Could not find any training data"

    # data generator
    train_example_gen = datagenerators.example_gen(train_vol_names, batch_size=batch_size)

    # prepare the initial weights for the atlas "layer"
    if atlas_file is None or atlas_file == "":
        nb_atl_creation = 100
        print('creating "atlas" by averaging %d subjects' % nb_atl_creation)
        x_avg = 0
        for _ in range(nb_atl_creation):
            x_avg += next(train_example_gen)[0][0,...,0]
        x_avg /= nb_atl_creation

        x_avg = x_avg[np.newaxis,...,np.newaxis]
        atlas_vol = x_avg
    else:
        atlas_vol = np.load(atlas_file)['vol'][np.newaxis, ..., np.newaxis]
    vol_size = atlas_vol.shape[1:-1]

    # Diffeomorphic network architecture used in MICCAI 2018 paper
    nf_enc = [16,32,32,32]
    nf_dec = [32,32,32,32,16,3] 
    if model == 'm1':
        pass
    elif model == 'm1double':
        nf_enc = [f*2 for f in nf_enc]
        nf_dec = [f*2 for f in nf_dec]

    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)


    assert data_loss in ['mse', 'cc', 'ncc'], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss in ['ncc', 'cc']:
        data_loss = losses.NCC(win=[ncc_win]*3).loss      
    else:
        data_loss = lambda y_t, y_p: K.mean(K.square(y_t-y_p))

    # gpu handling
    gpu = '/gpu:' + str(gpu_id)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # prepare the model
    with tf.device(gpu):
        # the MICCAI201 model takes in [image_1, image_2] and outputs [warped_image_1, velocity_stats]
        # in these experiments, we use image_2 as atlas
        model = networks.img_atlas_diff_model(vol_size, nf_enc, nf_dec, 
                                            atl_mult=1, bidir=bidir,
                                            smooth_pen_layer=smooth_pen_layer)



        # compile
        mean_layer_loss = lambda _, y_pred: mean_lambda * K.mean(K.square(y_pred))

        flow_vol_shape = model.outputs[-2].shape[1:-1]
        loss_class = losses.Miccai2018(image_sigma, prior_lambda, flow_vol_shape=flow_vol_shape)
        if bidir:
            model_losses = [data_loss,
                            lambda _,y_p: data_loss(model.get_layer('atlas').output, y_p),
                            mean_layer_loss,
                            losses.Grad('l2').loss]
            loss_weights = [atlas_wt, 1-atlas_wt, 1, reg_param]
        else:
            model_losses = [loss_class.recon_loss, loss_class.kl_loss, mean_layer_loss]
            loss_weights = [1, 1, 1]
        model.compile(optimizer=Adam(lr=lr), loss=model_losses, loss_weights=loss_weights)
    
        # set initial weights in model
        model.get_layer('atlas').set_weights([atlas_vol[0,...]])

        # load initial weights. # note this overloads the img_param weights
        if load_model_file is not None and len(load_model_file) > 0:
            model.load_weights(load_model_file, by_name=True)



    # save first iteration
    model.save(os.path.join(model_dir, '%02d.h5' % initial_epoch))

    # atlas_generator specific to this model. Once we're convinced of this, move to datagenerators
    def atl_gen(gen):  
        zero_flow = np.zeros([batch_size, *vol_size, len(vol_size)])
        zero_flow_half = np.zeros([batch_size] + [f//2 for f in vol_size] + [len(vol_size)])
        while 1:
            x2 = next(train_example_gen)[0]
            # TODO: note this is the opposite of train_miccai and it might be confusing.
            yield ([atlas_vol, x2], [x2, atlas_vol, zero_flow, zero_flow])

    atlas_gen = atl_gen(train_example_gen)

    # prepare callbacks
    save_file_name = os.path.join(model_dir, '{epoch:02d}.h5')
    save_callback = ModelCheckpoint(save_file_name)

    # fit generator
    with tf.device(gpu):
        model.fit_generator(atlas_gen, 
                            initial_epoch=initial_epoch,
                            epochs=nb_epochs,
                            callbacks=[save_callback],
                            steps_per_epoch=steps_per_epoch,
                            verbose=1)
Esempio n. 2
0
def train(data_dir,
          atlas_file,
          model_dir,
          model,
          gpu_id,
          lr,
          nb_epochs,
          prior_lambda,
          image_sigma,
          mean_lambda,
          steps_per_epoch,
          batch_size,
          load_model_file,
          bidir,
          atlas_wt,
          bias_mult,
          smooth_pen_layer,
          data_loss,
          reg_param,
          ncc_win,
          initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model_dir: model folder to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param nb_epochs: number of training iterations
    :param prior_lambda: the prior_lambda, the scalar in front of the smoothing laplacian, in MICCAI paper
    :param image_sigma: the image sigma in MICCAI paper
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param bidir: logical whether to use bidirectional cost function
    """

    # prepare data files
    # we have data arranged in train/validate/test folders
    # inside each folder is a /vols/ and a /asegs/ folder with the volumes
    # and segmentations. All of our papers use npz formated data.
    train_vol_names = glob.glob(data_dir)
    train_vol_names = [f for f in train_vol_names if 'ADNI' not in f]
    random.shuffle(train_vol_names)  # shuffle volume list
    assert len(train_vol_names) > 0, "Could not find any training data"

    # prepare data generation specific to conditional templates
    train_vols_dir = os.path.join(data_dir, 'vols')
    train_vol_basenames = [
        f for f in os.listdir(train_vols_dir) if ('ADNI' in f or 'ABIDE' in f)
    ]
    train_vol_names = [
        os.path.join(train_vols_dir, f) for f in train_vol_basenames
    ]

    # csv pruning
    # our csv is a file of the form:
    #   file,age,sex
    #   ADNI_ADNI-1.5T-FS-5.3-Long_63196.long.094_S_1314_base_mri_talairach_norm.npz,81.0,2
    csv_file_path = os.path.join(data_dir, 'combined_pheno.csv')
    train_atr_dct = load_pheno_csv(csv_file_path)
    train_vol_basenames = [
        f for f in train_vol_basenames if f in list(train_atr_dct.keys())
    ]
    train_vol_names = [
        os.path.join(train_vols_dir, f) for f in train_vol_basenames
    ]

    # replace keys with full path
    for key in list(train_atr_dct.keys()):
        if key in train_vol_basenames:
            train_atr_dct[os.path.join(data_dir, 'vols',
                                       key)] = train_atr_dct[key]
        train_atr_dct.pop(key, None)

    # prepare the initial weights for the atlas "layer"
    if atlas_file is None or atlas_file == "":
        nb_atl_creation = 100
        print('creating "atlas" by averaging %d subjects' % nb_atl_creation)
        x_avg = 0
        for _ in range(nb_atl_creation):
            x_avg += next(train_example_gen)[0][0, ..., 0]
        x_avg /= nb_atl_creation

        x_avg = x_avg[np.newaxis, ..., np.newaxis]
        atlas_vol = x_avg
    else:
        atlas_vol = np.load(atlas_file)['vol'][np.newaxis, ..., np.newaxis]
    vol_size = atlas_vol.shape[1:-1]

    genobj = Generator(train_vol_names, atlas_vol, y_k=train_atr_dct)

    # Diffeomorphic network architecture used in MICCAI 2018 paper
    nf_enc = [16, 32, 32, 32]
    nf_dec = [32, 32, 32, 32, 16, 3]
    if model == 'm1':
        pass
    elif model == 'm1double':
        nf_enc = [f * 2 for f in nf_enc]
        nf_dec = [f * 2 for f in nf_dec]

    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)

    assert data_loss in [
        'mse', 'cc', 'ncc'
    ], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss in ['ncc', 'cc']:
        data_loss = losses.NCC(win=[ncc_win] * 3).loss
    else:
        data_loss = lambda y_t, y_p: K.mean(K.square(y_t - y_p))

    # gpu handling
    gpu = '/gpu:' + str(gpu_id)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # prepare the model
    with tf.device(gpu):

        # parameters for atlas construction.
        nb_conv_features = 4
        cond_im_input_shape = [160, 192, 224, 4]  # note the 8 features
        cond_nb_levels = 0
        cond_conv_size = [3, 3, 3]
        extra_conv_layers = 3
        pheno_input_shape = [2]

        bidir = True
        smooth_pen_layer = 'diffflow'

        model, mn = networks.cond_img_atlas_diff_model(
            vol_size,
            nf_enc,
            nf_dec,
            atl_mult=1,
            bidir=bidir,
            smooth_pen_layer=smooth_pen_layer,
            nb_conv_features=nb_conv_features,
            cond_im_input_shape=cond_im_input_shape,
            cond_nb_levels=cond_nb_levels,
            cond_conv_size=cond_conv_size,
            pheno_input_shape=pheno_input_shape,
            extra_conv_layers=extra_conv_layers,
            ret_vm=True,
        )
        outputs = [model.outputs[f]
                   for f in [0, 2, 3, 3]]  # latest model used in paper
        model = keras.models.Model(model.inputs, outputs)

        # compile
        mean_layer_loss = lambda _, y_pred: mean_lambda * K.mean(
            K.square(y_pred))

        model_losses = [
            data_loss,  # could be mse or ncc or a combination, etc
            mean_layer_loss,
            lambda _, yp: losses.Grad('l2').loss(_, yp),
            lambda _, yp: K.mean(K.square(yp))
        ]

        # parameters used in paper
        msmag_param = 0.01
        reg_param = 1
        centroid_reg = 1
        loss_weights = [atlas_wt, centroid_reg, reg_param, msmag_param]
        model.compile(optimizer=keras.optimizers.Adam(lr=lr),
                      loss=model_losses,
                      loss_weights=loss_weights)

        # load initial weights. # note this overloads the img_param weights
        if load_model_file is not None and len(load_model_file) > 0:
            model.load_weights(load_model_file, by_name=True)

    # save first iteration
    model.save(os.path.join(model_dir, '%02d.h5' % initial_epoch))

    # prepare callbacks
    save_file_name = os.path.join(model_dir, '{epoch:02d}.h5')
    save_callback = ModelCheckpoint(save_file_name)

    # fit generator
    with tf.device(gpu):
        model.fit_generator(genobj.cond_mean_flow_x2(batch_size=batch_size),
                            initial_epoch=initial_epoch,
                            epochs=nb_epochs,
                            callbacks=[save_callback],
                            steps_per_epoch=steps_per_epoch,
                            verbose=1)
Esempio n. 3
0
def train(data_dir,
          atlas_file,
          model,
          model_name,
          gpu_id,
          lr,
          nb_epochs,
          reg_param,
          steps_per_epoch,
          batch_size,
          load_model_file,
          data_loss,
          initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model: either vm1 or vm2 (based on CVPR 2018 paper)
    :param model_dir: the model directory to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param n_iterations: number of training iterations
    :param reg_param: the smoothness/reconstruction tradeoff parameter (lambda in CVPR paper)
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param data_loss: data_loss: 'mse' or 'ncc
    """

    # load atlas from provided files. The atlas we used is 160x192x224.
    # atlas_vol = np.load(atlas_file)['vol'][np.newaxis, ..., np.newaxis]
    atlas_vol = nib.load(atlas_file).get_data()[np.newaxis, ..., np.newaxis]
    vol_size = atlas_vol.shape[1:-1]

    # prepare data files
    # for the CVPR and MICCAI papers, we have data arranged in train/validate/test folders
    # inside each folder is a /vols/ and a /asegs/ folder with the volumes
    # and segmentations. All of our papers use npz formated data.
    train_vol_names = glob.glob(os.path.join(data_dir, '*.npz'))
    random.shuffle(train_vol_names)  # shuffle volume list
    assert len(train_vol_names) > 0, "Could not find any training data"

    # UNET filters for voxelmorph-1 and voxelmorph-2,
    # these are architectures presented in CVPR 2018
    nf_enc = [16, 32, 32, 32]
    if model == 'vm1':
        nf_dec = [32, 32, 32, 32, 8, 8]
    elif model == 'vm2':
        nf_dec = [32, 32, 32, 32, 32, 16, 16]
    else:  # 'vm2double':
        nf_enc = [f * 2 for f in nf_enc]
        nf_dec = [f * 2 for f in [32, 32, 32, 32, 32, 16, 16]]

    assert data_loss in [
        'mse', 'cc', 'ncc'
    ], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss in ['ncc', 'cc']:
        data_loss = losses.NCC().loss

    model_dir = "../models/" + model_name
    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)

    # GPU handling
    gpu = '/gpu:%d' % gpu_id
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # prepare the model
    with tf.device(gpu):
        # prepare the model
        # in the CVPR layout, the model takes in [image_1, image_2] and outputs [warped_image_1, flow]
        # in the experiments, we use image_2 as atlas
        model = networks.cvpr2018_net(vol_size, nf_enc, nf_dec)

        # load initial weights
        if load_model_file is not None and load_model_file != '':
            print('loading', load_model_file)
            model.load_weights(load_model_file)

        # save first iteration
        model.save(os.path.join(model_dir, '%02d.h5' % initial_epoch))

    # data generator
    # nb_gpus = len(gpu_id.split(','))
    # assert np.mod(batch_size, nb_gpus) == 0, \
    #     'batch_size should be a multiple of the nr. of gpus. ' + \
    #     'Got batch_size %d, %d gpus' % (batch_size, nb_gpus)
    nb_gpus = 1

    train_example_gen = datagenerators.example_gen(train_vol_names,
                                                   batch_size=batch_size)
    atlas_vol_bs = np.repeat(atlas_vol, batch_size, axis=0)
    cvpr2018_gen = datagenerators.cvpr2018_gen(train_example_gen,
                                               atlas_vol_bs,
                                               batch_size=batch_size)

    # prepare callbacks
    save_file_name = os.path.join(model_dir, '{epoch:02d}.h5')

    # fit generator
    with tf.device(gpu):

        # multi-gpu support
        if nb_gpus > 1:
            save_callback = nrn_gen.ModelCheckpointParallel(save_file_name)
            mg_model = multi_gpu_model(model, gpus=nb_gpus)

        # single-gpu
        else:
            save_callback = ModelCheckpoint(save_file_name)
            mg_model = model

        # compile
        mg_model.compile(optimizer=Adam(lr=lr),
                         loss=[data_loss, losses.Grad('l2').loss],
                         loss_weights=[1.0, reg_param])

        # fit
        mg_model.fit_generator(cvpr2018_gen,
                               initial_epoch=initial_epoch,
                               epochs=nb_epochs,
                               callbacks=[save_callback],
                               steps_per_epoch=steps_per_epoch,
                               verbose=1)
def train(data_dir,
          atlas_file,
          model_dir,
          gpu_id,
          lr,
          nb_epochs,
          prior_lambda,
          image_sigma,
          steps_per_epoch,
          batch_size,
          load_model_file,
          bidir,
          bool_cc,
          initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model_dir: model folder to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param nb_epochs: number of training iterations
    :param prior_lambda: the prior_lambda, the scalar in front of the smoothing laplacian, in MICCAI paper
    :param image_sigma: the image sigma in MICCAI paper
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param bidir: logical whether to use bidirectional cost function
    :param bool_cc: Train CC or MICCAI version
    """

    # load atlas from provided files. The atlas we used is 160x192x224.
    #atlas_vol = np.load(atlas_file)['vol'][np.newaxis, ..., np.newaxis]
    vm_dir = '/home/jdram/voxelmorph/'
    base = np.load(
        os.path.join(vm_dir, "data",
                     "ts12_dan_a88_fin_o_trim_adpc_002661_256.npy"))
    monitor = np.load(
        os.path.join(vm_dir, "data",
                     "ts12_dan_a05_fin_o_trim_adpc_002682_256.npy"))
    #base    = np.load(os.path.join(vm_dir, "data","ts12_dan_a88_fin_o_trim_adpc_002661_abs.npy"))
    #monitor = np.load(os.path.join(vm_dir, "data","ts12_dan_a05_fin_o_trim_adpc_002682_abs.npy"))

    #vol_size = (64, 64, 64)
    vol_size = (64, 64, 256 - 64)
    #vol_size = (128, 128, 256)

    # prepare data files
    # for the CVPR and MICCAI papers, we have data arranged in train/validate/test folders
    # inside each folder is a /vols/ and a /asegs/ folder with the volumes
    # and segmentations. All of our papers use npz formated data.
    #train_vol_names = glob.glob(os.path.join(data_dir, '*.npy'))
    #random.shuffle(train_vol_names)  # shuffle volume list
    #assert len(train_vol_names) > 0, "Could not find any training data"

    # Diffeomorphic network architecture used in MICCAI 2018 paper
    nf_enc = [32, 64, 64, 64]
    nf_dec = [64, 64, 64, 64, 32, 3]

    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)
    tf.reset_default_graph()

    if bool_cc:
        pre_net = "cc_"
    else:
        if bidir:
            pre_net = "miccai_bidir_"
        else:
            pre_net = "miccai_"

    # gpu handling
    gpu = '/device:GPU:%d' % int(gpu_id)  # gpu_id
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # prepare the model
    with tf.device(gpu):
        # prepare the model
        # in the CVPR layout, the model takes in [image_1, image_2] and outputs [warped_image_1, flow]
        # in the experiments, we use image_2 as atlas
        if bool_cc:
            model = networks.cvpr2018_net(vol_size, nf_enc, nf_dec)
        else:
            model = networks.miccai2018_net(vol_size,
                                            nf_enc,
                                            nf_dec,
                                            bidir=bidir,
                                            vel_resize=.5)

        # load initial weights
        if load_model_file is not None and load_model_file != "":
            print('loading', load_model_file)
            model.load_weights(load_model_file)

        # save first iteration
        model.save(os.path.join(model_dir, f'{pre_net}{initial_epoch:02d}.h5'))
        model.summary()

        if bool_cc:
            model_losses = [losses.NCC().loss, losses.Grad('l2').loss]
            loss_weights = [1.0, 0.01]  # recommend 1.0 for ncc, 0.01 for mse
        else:
            flow_vol_shape = model.outputs[-1].shape[1:-1]
            loss_class = losses.Miccai2018(image_sigma,
                                           prior_lambda,
                                           flow_vol_shape=flow_vol_shape)
            if bidir:
                model_losses = [
                    loss_class.recon_loss, loss_class.recon_loss,
                    loss_class.kl_loss
                ]
                loss_weights = [0.5, 0.5, 1]
            else:
                model_losses = [loss_class.recon_loss, loss_class.kl_loss]
                loss_weights = [1, 1]

    segy_gen = datagenerators.segy_gen(base, monitor, batch_size=batch_size)

    # prepare callbacks
    save_file_name = os.path.join(model_dir, pre_net + '{epoch:02d}.h5')

    with tf.device(gpu):
        # fit generator
        save_callback = ModelCheckpoint(save_file_name, period=5)
        csv_cb = CSVLogger(f'{pre_net}log.csv')
        nan_cb = TerminateOnNaN()
        rlr_cb = ReduceLROnPlateau(monitor='loss', verbose=1)
        els_cb = EarlyStopping(monitor='loss',
                               patience=15,
                               verbose=1,
                               restore_best_weights=True)
        cbs = [save_callback, csv_cb, nan_cb, rlr_cb, els_cb]
        mg_model = model

        # compile
        mg_model.compile(optimizer=Adam(lr=lr),
                         loss=model_losses,
                         loss_weights=loss_weights)

        mg_model.fit(
            [base, monitor],
            [monitor, np.zeros_like(base)],
            initial_epoch=initial_epoch,
            batch_size=8,
            epochs=nb_epochs,
            callbacks=cbs,
            #steps_per_epoch=steps_per_epoch,
            verbose=1)
def test(root_dir, fixed_dir, moving_dir, model_dir, gpu_id, img_size):
    #
    # 定义模型,加载权重
    # 输入维度
    #GPU handling
    gpu = '/gpu:%d' % 0  # gpu_id
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    ndims = 2
    vol_shape = (img_size, img_size)
    nb_enc_features = [32, 32, 32, 32]  # 下采样卷积核个数
    nb_dec_features = [32, 32, 32, 32, 32, 16]  # 上采样卷积核个数

    # 网络定义U-net
    unet = networks.unet_core(vol_shape, nb_enc_features, nb_dec_features)

    # 输入
    print('numer of inputs', len(unet.inputs))
    moving_input_tensor = unet.inputs[0]
    fixed_input_tensor = unet.inputs[1]

    # 输出
    print('output:', unet.output)

    # 转换为流场维度
    disp_tensor = keras.layers.Conv2D(ndims,
                                      kernel_size=3,
                                      padding='same',
                                      name='disp')(unet.output)

    # 显示流场维度
    print('displacement tensor:', disp_tensor)

    spatial_transformer = neuron.layers.SpatialTransformer(
        name='spatial_transformer')

    # 扭转图像
    moved_image_tensor = spatial_transformer(
        [moving_input_tensor, disp_tensor])

    inputs = [moving_input_tensor, fixed_input_tensor]
    outputs = [moved_image_tensor, disp_tensor]
    vxm_model = keras.models.Model(inputs, outputs)

    # losses. Keras recognizes the string 'mse' as mean squared error, so we don't have to code it
    #loss = ['mse', losses.Grad('l2').loss]
    loss = [losses.NCC().loss, losses.Grad('l2').loss]

    # 损失函数
    lambda_param = 0.01
    loss_weights = [1, lambda_param]

    #---------------加载模型权重-------------------------
    vxm_model.compile(optimizer='Adam', loss=loss, loss_weights=loss_weights)
    vxm_model.load_weights(model_dir)

    #--------------前向推理------------------------------------
    fixed_vol_names = glob.glob(os.path.join(fixed_dir, '*.png'))
    moving_vol_names = glob.glob(os.path.join(moving_dir, '*.png'))
    print(fixed_vol_names, moving_vol_names)
    # fixed_vol_names.sort()
    # moving_vol_names.sort()
    data = datagenerators.my_data_generator(fixed_vol_names,
                                            moving_vol_names,
                                            batch_size=1,
                                            img_size=img_size)
    sample, _ = next(data)
    print('输入维度:', sample[0].shape)
    sample_pred = vxm_model.predict(sample)

    #---------------保存流场维度数据------------------------------
    print('流场输出维度:', sample_pred[1].shape)
    #a=sample_pred[0].squeeze()
    slices_in = [sample_pred[1].squeeze()]
    np.save(root_dir + 'flow.npy', slices_in)
    u, v = slices_in[0][..., 0], slices_in[0][..., 1]
    #u, v = flow_smooth.smooth(u,v,1)
    # np.savetxt(root_dir+'a.csv',a,delimiter=",")
    np.savetxt(root_dir + 'u.csv', u, delimiter=",")
    np.savetxt(root_dir + 'v.csv', v, delimiter=",")  # 保存偏移值

    #------------输出配准点的列表-------txt---------------------------
    txt = open(root_dir + 'match.txt', 'w')
    moving_img = Image.open(moving_vol_names[0])
    # moving_pixeles=str(moving_vol_names[0]).split('_')
    # fixed_pixeles=str(fixed_vol_names[0]).split('_')

    # print(moving_pixeles)
    # print(fixed_pixeles)

    # x_moving=float(moving_pixeles[2])
    # y_moving=float(moving_pixeles[3].strip('.png'))  # 读取文件名中左上角初始坐标
    # x_fixed=float(fixed_pixeles[2])
    # y_fixed=float(fixed_pixeles[3].strip('.png'))

    # width,height=moving_img.size
    # print('待配准图片长宽:',width,height)
    # w_scale=width/img_size
    # h_scale=height/img_size
    # for i in range(img_size):
    #     for j in range(img_size):
    #         x1=str(i*w_scale+x_moving)     # 坐标转换
    #         y1=str(j*h_scale+y_moving)
    #         x2=str(i+u[i][j]+x_fixed)
    #         y2=str(j-v[i][j]+y_fixed)
    #         txt.write(x1+' '+y1+' '+x2+' '+y2)
    #         txt.write('\n')
    width, height = moving_img.size
    print('待配准图片长宽:', width, height)
    w_scale = width / img_size
    h_scale = height / img_size
    for i in range(img_size):
        for j in range(img_size):
            # if  u[i][j]!=0:
            x1 = str(i * w_scale)  # 坐标转换
            y1 = str(j * h_scale)
            x2 = str(i + u[i][j])
            y2 = str(j - v[i][j])
            txt.write(x1 + ' ' + y1 + ' ' + x2 + ' ' + y2)
            txt.write('\n')

    #---------------可视化配准图像和流场-----------------------------
    slices_2d = [f[0, ..., 0] for f in sample + sample_pred]
    # fixed=sample[1].squeeze()
    # moving=sample[0].squeeze()
    warped = sample_pred[0].squeeze()

    #print(warped.shape)
    plt.imshow(warped, cmap='Greys_r')
    plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0)
    plt.margins(0, 0)
    plt.axis('off')
    plt.savefig(root_dir + 'warped_picture.png',
                transparent=True,
                dpi=300,
                pad_inches=0.0)
    # plt.show()

    titles = [
        'input_moving', 'input_fixed', 'predicted_moved', 'deformation_x'
    ]
    neuron.plot.slices(slices_2d,
                       titles=titles,
                       cmaps=['gray'],
                       do_colorbars=True,
                       path=root_dir + 'predict.png')
    neuron.plot.flow([sample_pred[1].squeeze()],
                     width=5,
                     path=root_dir + 'flow.png')
Esempio n. 6
0
def train(
        data_dir,
        val_data_dir,
        atlas_file,
        val_atlas_file,
        model,
        model_dir,
        gpu_id,
        lr,
        nb_epochs,
        reg_param,
        gama_param,
        steps_per_epoch,
        batch_size,
        load_model_file,
        data_loss,
        seg_dir=None,  # one file
        val_seg_dir=None,
        Sf_file=None,  # one file
        val_Sf_file=None,
        auxi_label=None,
        initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model: either vm1 or vm2 (based on CVPR 2018 paper)
    :param model_dir: the model directory to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param n_iterations: number of training iterations
    :param reg_param: the smoothness/reconstruction tradeoff parameter (lambda in CVPR paper)
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param data_loss: 'mse' or 'ncc
    :param auxi_label: whether to use auxiliary informmation during the training
    """

    # load atlas from provided files. The atlas we used is 160x192x224.
    # atlas_file = 'D:/voxel/data/t064.tif'
    atlas = Image.open(atlas_file)  # is a TiffImageFile _size is (628, 690)
    atlas_vol = np.array(atlas)[
        np.newaxis, ..., np.newaxis]  # is a ndarray, shape is (1, 690, 628, 1)
    # new = Image.fromarray(X) new.size is (628, 690)
    vol_size = atlas_vol.shape[1:-1]  # (690, 628)
    print(vol_size)

    val_atlas = Image.open(
        val_atlas_file)  # is a TiffImageFile _size is (628, 690)
    val_atlas_vol = np.array(val_atlas)[
        np.newaxis, ..., np.newaxis]  # is a ndarray, shape is (1, 690, 628, 1)
    # new = Image.fromarray(X) new.size is (628, 690)
    val_vol_size = val_atlas_vol.shape[1:-1]  # (690, 628)
    print(val_vol_size)

    Sm = Image.open(seg_dir)  # is a TiffImageFile _size is (628, 690)
    Sm_ = np.array(Sm)[np.newaxis, ..., np.newaxis]

    val_Sm = Image.open(val_seg_dir)  # is a TiffImageFile _size is (628, 690)
    val_Sm_ = np.array(val_Sm)[np.newaxis, ..., np.newaxis]

    # prepare data files
    # for the CVPR and MICCAI papers, we have data arranged in train/validate/test folders
    # inside each folder is a /vols/ and a /asegs/ folder with the volumes
    # and segmentations. All of our papers use npz formated data.
    # data_dir = D:/voxel/data/01
    train_vol_names = data_dir  # glob.glob(os.path.join(data_dir, '*.tif'))   # is a list contain file path(name)
    # random.shuffle(train_vol_names)  # shuffle volume list    tif
    assert len(train_vol_names) > 0, "Could not find any training data"

    val_vol_names = val_data_dir  # glob.glob(os.path.join(data_dir, '*.tif'))   # is a list contain file path(name)
    # random.shuffle(train_vol_names)  # shuffle volume list    tif
    assert len(val_vol_names) > 0, "Could not find any training data"

    # UNET filters for voxelmorph-1 and voxelmorph-2,
    # these are architectures presented in CVPR 2018
    nf_enc = [16, 32, 32, 32]
    if model == 'vm1':
        nf_dec = [32, 32, 32, 32, 8, 8]
    elif model == 'vm2':
        nf_dec = [32, 32, 32, 32, 32, 16, 16]
    else:  # 'vm2double':
        nf_enc = [f * 2 for f in nf_enc]
        nf_dec = [f * 2 for f in [32, 32, 32, 32, 32, 16, 16]]

    assert data_loss in [
        'mse', 'cc', 'ncc'
    ], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss in ['ncc', 'cc']:
        data_loss = losses.NCC().loss

    if Sf_file is not None:
        Sf = Image.open(Sf_file)
        Sf_ = np.array(Sf)[np.newaxis, ..., np.newaxis]

    if val_Sf_file is not None:
        val_Sf = Image.open(val_Sf_file)
        val_Sf_ = np.array(val_Sf)[np.newaxis, ..., np.newaxis]

        # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)

    # GPU handling
    gpu = '/gpu:%d' % 0  # gpu_id
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))
    #gpu = gpu_id

    # data generator
    nb_gpus = len(gpu_id.split(','))  # 1
    assert np.mod(batch_size, nb_gpus) == 0, \
        'batch_size should be a multiple of the nr. of gpus. ' + \
        'Got batch_size %d, %d gpus' % (batch_size, nb_gpus)

    train_example_gen = datagenerators.example_gen(
        train_vol_names,
        batch_size=batch_size)  # it is a list contain a ndarray
    atlas_vol_bs = np.repeat(
        atlas_vol, batch_size,
        axis=0)  # is a ndarray, if batch_size is 2, shape is (2, 690, 628, 1)
    cvpr2018_gen = datagenerators.cvpr2018_gen(train_example_gen,
                                               atlas_vol_bs,
                                               batch_size=batch_size)

    val_example_gen = datagenerators.example_gen(
        val_vol_names, batch_size=batch_size)  # it is a list contain a ndarray
    val_atlas_vol_bs = np.repeat(
        val_atlas_vol, batch_size,
        axis=0)  # is a ndarray, if batch_size is 2, shape is (2, 690, 628, 1)
    val_cvpr2018_gen = datagenerators.cvpr2018_gen(val_example_gen,
                                                   val_atlas_vol_bs,
                                                   batch_size=batch_size)

    # prepare the model
    with tf.device(gpu):
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
        # prepare the model
        # in the CVPR layout, the model takes in [image_1, image_2] and outputs [warped_image_1, flow]
        # in the experiments, we use image_2 as atlas

        model = networks.cvpr2018_net(vol_size, nf_enc, nf_dec)

        # load initial weights
        if load_model_file is not None:
            print('loading', load_model_file)
            model.load_weights(load_model_file)

        # save first iteration
        model.save(os.path.join(model_dir, '%02d.h5' % initial_epoch))

        # if auxi_label is not None:
        #     print('yes')
        #     loss_model= [data_loss, losses.Grad('l2').loss, losses.Lseg()._lseg(Sf_) ]    ##########################
        #     loss_weight= [1.0, reg_param, gama_param]
        # else:
        loss_model = [
            data_loss,
            losses.Grad(gama_param, Sf_, Sm_, penalty='l2').loss
        ]  # real gama: reg_param*gama_param
        loss_weight = [1.0, reg_param]

        # reg_param_tensor = tf.constant(5, dtype=tf.float32)
        metrics_2 = losses.Grad(gama_param,
                                val_Sf_,
                                val_Sm_,
                                penalty='l2',
                                flag_vali=True).loss  # reg_param

    # prepare callbacks
    save_file_name = os.path.join(model_dir, '{epoch:02d}.h5')

    # fit generator
    with tf.device(gpu):

        # multi-gpu support
        if nb_gpus > 1:
            save_callback = nrn_gen.ModelCheckpointParallel(save_file_name)
            mg_model = multi_gpu_model(model, gpus=nb_gpus)

        # single-gpu
        else:
            save_callback = ModelCheckpoint(save_file_name)
            mg_model = model

        # compile
        mg_model.compile(optimizer=Adam(lr=lr),
                         loss=loss_model,
                         loss_weights=loss_weight,
                         metrics={'flow': metrics_2})

        # fit
        history = mg_model.fit_generator(cvpr2018_gen,
                                         initial_epoch=initial_epoch,
                                         epochs=nb_epochs,
                                         callbacks=[save_callback],
                                         steps_per_epoch=steps_per_epoch,
                                         validation_data=val_cvpr2018_gen,
                                         validation_steps=1,
                                         verbose=2)

        # plot

        print('model', mg_model.metrics_names)
        print('keys()', history.history.keys())

        # print(metrics.name)

        plt.plot(history.history['loss'])
        # plt.plot(history.history['val_spatial_transformer_1_loss'])
        plt.title('cvpr_auxi_loss')
        plt.ylabel('loss')
        plt.xlabel('Epoch')
        plt.legend(['Train', 'Validation'])
        plt.show()
Esempio n. 7
0
def train(src_dir,
          tgt_dir,
          model_dir,
          model_lr_dir,
          lr,
          nb_epochs,
          reg_param,
          steps_per_epoch,
          batch_size,
          load_model_file=None,
          data_loss='ncc',
          initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model: either vm1 or vm2 (based on CVPR 2018 paper)
    :param model_dir: the model directory to save to
    :param lr: learning rate
    :param n_iterations: number of training iterations
    :param reg_param: the smoothness/reconstruction tradeoff parameter (lambda in CVPR paper)
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param data_loss: data_loss: 'mse' or 'ncc
    """

    # prepare data files
    # for the CVPR and MICCAI papers, we have data arranged in train/validate/test folders
    # inside each folder is a /vols/ and a /asegs/ folder with the volumes
    # and segmentations. All of our papers use npz formated data.
    src_vol_names = glob.glob(os.path.join(src_dir, '*.npz'))
    tgt_vol_names = glob.glob(os.path.join(tgt_dir, '*.npz'))
    random.shuffle(src_vol_names)  # shuffle volume list
    random.shuffle(tgt_vol_names)  # shuffle volume list
    assert len(src_vol_names) > 0, "Could not find any training data"

    assert data_loss in [
        'mse', 'ncc'
    ], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss == 'ncc':
        data_loss = losses.NCC().loss

        # GPU handling
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    # set_session(tf.Session(config=config))

    vol_size = (56, 56, 56)
    # prepare the model
    src_lr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='input_src_lr')
    tgt_lr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='input_tgt_lr')
    srm_lr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='mask_src_lr')
    attn_lr = tf.placeholder(tf.float32, [None, *vol_size, 1], name='attn_lr')

    src_mr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='input_src_mr')
    tgt_mr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='input_tgt_mr')
    srm_mr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='mask_src_mr')
    df_lr2mr = tf.placeholder(tf.float32, [None, *vol_size, 3],
                              name='df_lr2mr')
    attn_mr = tf.placeholder(tf.float32, [None, *vol_size, 1], name='attn_mr')

    src_hr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='input_src_hr')
    tgt_hr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='input_tgt_hr')
    srm_hr = tf.placeholder(tf.float32, [None, *vol_size, 1],
                            name='mask_src_hr')
    df_mr2hr = tf.placeholder(tf.float32, [None, *vol_size, 3],
                              name='df_mr2hr')
    attn_hr = tf.placeholder(tf.float32, [None, *vol_size, 1], name='attn_hr')

    model_lr = networks.net_lr(src_lr, tgt_lr, srm_lr)
    model_mr = networks.net_mr(src_mr, tgt_mr, srm_mr, df_lr2mr)
    model_hr = networks.net_hr(src_hr, tgt_hr, srm_hr, df_mr2hr)

    # the loss functions
    lr_ncc = data_loss(model_lr[0].outputs, tgt_lr)
    #lr_grd = losses.Grad('l2').loss(model_lr[0].outputs, model_lr[2].outputs)
    lr_grd = losses.Anti_Folding('l2').loss(model_lr[0].outputs,
                                            model_lr[2].outputs)

    cost_lr = lr_ncc + reg_param * lr_grd  # + lr_attn

    mr_ncc = data_loss(model_mr[0].outputs, tgt_mr)
    #mr_grd = losses.Grad('l2').loss(model_mr[0].outputs, model_mr[2].outputs)
    mr_grd = losses.Anti_Folding('l2').loss(model_mr[0].outputs,
                                            model_mr[2].outputs)

    cost_mr = mr_ncc + reg_param * mr_grd

    hr_ncc = data_loss(model_hr[0].outputs, tgt_hr)
    #hr_grd = losses.Grad('l2').loss(model_hr[0].outputs, model_hr[2].outputs)
    hr_grd = losses.Anti_Folding('l2').loss(model_hr[0].outputs,
                                            model_hr[2].outputs)

    cost_hr = hr_ncc + reg_param * hr_grd

    # the training operations
    def get_v(name):
        t_vars = tf.trainable_variables()
        d_vars = [var for var in t_vars if name in var.name]
        return d_vars

    #attn_vars = tl.layers.get_variables_with_name('cbam_1', True, True)
    attn_vars = get_v('cbam_1')
    for a_v in attn_vars:
        print(a_v)

    train_op_lr = tf.train.AdamOptimizer(lr).minimize(cost_lr)

    train_op_mr = tf.train.AdamOptimizer(lr).minimize(cost_mr)
    train_op_hr = tf.train.AdamOptimizer(lr).minimize(cost_hr)

    # data generator
    src_example_gen = datagenerators.example_gen(src_vol_names,
                                                 batch_size=batch_size)
    tgt_example_gen = datagenerators.example_gen(tgt_vol_names,
                                                 batch_size=batch_size)

    data_gen = datagenerators.gen_with_mask(src_example_gen,
                                            tgt_example_gen,
                                            batch_size=batch_size)

    variables_to_restore = tf.contrib.framework.get_variables_to_restore(
        exclude=['net_hr'])
    saver = tf.train.Saver(variables_to_restore)

    #saver = tf.train.Saver(max_to_keep=3)
    # fit generator
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())

        # load initial weights
        try:
            if load_model_file is not None:
                model_file = tf.train.latest_checkpoint(load_model_file)  #
                saver.restore(sess, model_file)
        except:
            print('No files in', load_model_file)
        saver.save(sess, model_dir + 'dfnet', global_step=0)

        def resize_df(df, zoom):
            df1 = nd.interpolation.zoom(
                df[0, :, :, :, 0], zoom=zoom, mode='nearest', order=3) * zoom[
                    0]  # Cubic: order=3; Bilinear: order=1; Nearest: order=0
            df2 = nd.interpolation.zoom(
                df[0, :, :, :,
                   1], zoom=zoom, mode='nearest', order=3) * zoom[1]
            df3 = nd.interpolation.zoom(
                df[0, :, :, :,
                   2], zoom=zoom, mode='nearest', order=3) * zoom[2]
            dfs = np.stack((df1, df2, df3), axis=3)
            return dfs[np.newaxis, :, :, :]

        class logPrinter(object):
            def __init__(self):
                self.n_batch = 0
                self.total_dice = []
                self.cost = []
                self.ncc = []
                self.grd = []

            def addLog(self, dice, cost, ncc, grd):
                self.n_batch += 1
                self.dice.append(dice)
                self.cost.append(cost)
                self.ncc.append(ncc)
                self.grd.append(grd)

            def output(self):
                dice = np.array(self.dice).mean(axis=0).round(3).tolist()
                cost = np.array(self.cost).mean()
                ncc = np.array(self.ncc).mean()
                grd = np.array(self.grd).mean()
                return dice, cost, ncc, grd, self.n_batch

            def clear(self):
                self.n_batch = 0
                self.dice = []
                self.cost = []
                self.ncc = []
                self.grd = []

        lr_log = logPrinter()
        mr_log = logPrinter()
        hr_log = logPrinter()

        # train low resolution
        # load initial weights
        saver = tf.train.Saver(max_to_keep=1)
        #if model_lr_dir is not None:
        #    model_lr_dir = tf.train.latest_checkpoint(model_lr_dir)  #
        #    print(model_lr_dir)
        #    saver.restore(sess, model_lr_dir)

        nb_epochs = 20  #20#10
        steps_per_epoch = 30 * 29
        for epoch in range(nb_epochs):
            tbar = trange(steps_per_epoch, unit='batch', ncols=100)
            lr_log.clear()
            for i in tbar:
                image, mask = data_gen.__next__()
                global_X, global_atlas = image
                global_X_mask, global_atlas_mask = mask
                global_diff = global_X[0, :, :, :,
                                       0] - global_atlas[0, :, :, :, 0]

                # low resolution
                global_X_64 = nd.interpolation.zoom(global_X[0, :, :, :, 0],
                                                    zoom=(0.25, 0.25, 0.25),
                                                    mode='nearest')
                global_A_64 = nd.interpolation.zoom(global_atlas[0, :, :, :,
                                                                 0],
                                                    zoom=(0.25, 0.25, 0.25),
                                                    mode='nearest')
                global_XM_64 = nd.interpolation.zoom(global_X_mask[0, :, :, :,
                                                                   0],
                                                     zoom=(0.25, 0.25, 0.25),
                                                     mode='nearest',
                                                     order=0)
                global_AM_64 = nd.interpolation.zoom(
                    global_atlas_mask[0, :, :, :, 0],
                    zoom=(0.25, 0.25, 0.25),
                    mode='nearest',
                    order=0)
                global_diff_16 = nd.interpolation.zoom(global_diff,
                                                       zoom=(0.25, 0.25, 0.25),
                                                       mode='nearest')

                global_X_64 = global_X_64[np.newaxis, :, :, :, np.newaxis]
                global_A_64 = global_A_64[np.newaxis, :, :, :, np.newaxis]
                global_XM_64 = global_XM_64[np.newaxis, :, :, :, np.newaxis]
                global_AM_64 = global_AM_64[np.newaxis, :, :, :, np.newaxis]
                global_diff_16 = global_diff_16[np.newaxis, :, :, :,
                                                np.newaxis]

                feed_dict = {
                    src_lr: global_X_64,
                    tgt_lr: global_A_64,
                    srm_lr: global_XM_64,
                    attn_lr: global_diff_16
                }
                err_lr, _ = sess.run([cost_lr, train_op_lr],
                                     feed_dict=feed_dict)
                df_lr, warp_seg, elr_ncc, elr_grad, lr_attn_map, lr_attn_feature = sess.run(
                    [
                        model_lr[2].outputs, model_lr[1].outputs, lr_ncc,
                        lr_grd, model_lr[3], model_lr[4]
                    ],
                    feed_dict=feed_dict)
                # print(df_lr.shape)
                lr_dice, _ = dice(warp_seg[0, :, :, :, 0],
                                  global_AM_64[0, :, :, :, 0],
                                  labels=[0, 10, 150, 250],
                                  nargout=2)
                lr_log.addLog(lr_dice, err_lr, elr_ncc, elr_grad)
                lr_out = lr_log.output()

                tbar.set_description('Epoch %d/%d ### step %i' %
                                     (epoch + 1, nb_epochs, i))
                tbar.set_postfix(lr_dice=lr_out[0],
                                 lr_cost=lr_out[1],
                                 lr_ncc=lr_out[2],
                                 lr_grd=lr_out[3])

            saver.save(sess, model_lr_dir + 'dfnet', global_step=0)
        # train middle resolution
        nb_epochs = 1  #1
        steps_per_epoch = 30 * 29
        for epoch in range(nb_epochs):
            lr_log.clear()
            for lr_step in range(steps_per_epoch):
                image, mask = data_gen.__next__()
                global_X, global_atlas = image
                global_X_mask, global_atlas_mask = mask
                global_diff = global_X[0, :, :, :,
                                       0] - global_atlas[0, :, :, :, 0]

                # low resolution
                global_X_64 = nd.interpolation.zoom(global_X[0, :, :, :, 0],
                                                    zoom=(0.25, 0.25, 0.25),
                                                    mode='nearest')
                global_A_64 = nd.interpolation.zoom(global_atlas[0, :, :, :,
                                                                 0],
                                                    zoom=(0.25, 0.25, 0.25),
                                                    mode='nearest')
                global_XM_64 = nd.interpolation.zoom(global_X_mask[0, :, :, :,
                                                                   0],
                                                     zoom=(0.25, 0.25, 0.25),
                                                     mode='nearest',
                                                     order=0)
                global_AM_64 = nd.interpolation.zoom(
                    global_atlas_mask[0, :, :, :, 0],
                    zoom=(0.25, 0.25, 0.25),
                    mode='nearest',
                    order=0)
                global_diff_16 = nd.interpolation.zoom(global_diff,
                                                       zoom=(0.25, 0.25, 0.25),
                                                       mode='nearest')

                global_X_64 = global_X_64[np.newaxis, :, :, :, np.newaxis]
                global_A_64 = global_A_64[np.newaxis, :, :, :, np.newaxis]
                global_XM_64 = global_XM_64[np.newaxis, :, :, :, np.newaxis]
                global_AM_64 = global_AM_64[np.newaxis, :, :, :, np.newaxis]
                global_diff_16 = global_diff_16[np.newaxis, :, :, :,
                                                np.newaxis]

                feed_dict = {
                    src_lr: global_X_64,
                    tgt_lr: global_A_64,
                    srm_lr: global_XM_64,
                    attn_lr: global_diff_16
                }
                err_lr, _ = sess.run([cost_lr, train_op_lr],
                                     feed_dict=feed_dict)
                df_lr, warp_seg, elr_ncc, elr_grad, lr_attn_map, lr_attn_feature = sess.run(
                    [
                        model_lr[2].outputs, model_lr[1].outputs, lr_ncc,
                        lr_grd, model_lr[3], model_lr[4]
                    ],
                    feed_dict=feed_dict)

                lr_dice, _ = dice(warp_seg[0, :, :, :, 0],
                                  global_AM_64[0, :, :, :, 0],
                                  labels=[0, 10, 150, 250],
                                  nargout=2)
                lr_log.addLog(lr_dice, err_lr, elr_ncc, elr_grad)
                lr_out = lr_log.output()

                print('\nEpoch %d/%d ### step %i' %
                      (epoch + 1, nb_epochs, lr_out[-1]))
                print(
                    '[lr] lr_dice={}, lr_cost={:.3f}, lr_ncc={:.3f}, lr_grd={:.3f}'
                    .format(lr_out[0], lr_out[1], lr_out[2], lr_out[3]))

                # middle part
                df_lr_res2mr = resize_df(df_lr, zoom=(2, 2, 2))

                select_points_lr = patch_selection_attn(lr_attn_map,
                                                        zoom_scales=[8, 8, 8],
                                                        kernel=7,
                                                        mi=10,
                                                        ma=18)
                print(select_points_lr)
                mr_log.clear()

                for sp in select_points_lr:
                    mov_img_112 = global_X[0, sp[0] - 56:sp[0] + 56,
                                           sp[1] - 56:sp[1] + 56,
                                           sp[2] - 56:sp[2] + 56, 0]
                    fix_img_112 = global_atlas[0, sp[0] - 56:sp[0] + 56,
                                               sp[1] - 56:sp[1] + 56,
                                               sp[2] - 56:sp[2] + 56, 0]
                    mov_seg_112 = global_X_mask[0, sp[0] - 56:sp[0] + 56,
                                                sp[1] - 56:sp[1] + 56,
                                                sp[2] - 56:sp[2] + 56, 0]
                    fix_seg_112 = global_atlas_mask[0, sp[0] - 56:sp[0] + 56,
                                                    sp[1] - 56:sp[1] + 56,
                                                    sp[2] - 56:sp[2] + 56, 0]
                    dif_img_112 = global_diff[sp[0] - 56:sp[0] + 56,
                                              sp[1] - 56:sp[1] + 56,
                                              sp[2] - 56:sp[2] + 56]

                    #print(mov_img_112.shape)
                    if fix_img_112.shape != (112, 112, 112):
                        print(mov_img_112.shape)
                        continue
                    fix_112_56 = nd.interpolation.zoom(fix_img_112,
                                                       zoom=(0.5, 0.5, 0.5),
                                                       mode='nearest')
                    mov_112_56 = nd.interpolation.zoom(mov_img_112,
                                                       zoom=(0.5, 0.5, 0.5),
                                                       mode='nearest')
                    fix_112_56m = nd.interpolation.zoom(fix_seg_112,
                                                        zoom=(0.5, 0.5, 0.5),
                                                        mode='nearest',
                                                        order=0)
                    mov_112_56m = nd.interpolation.zoom(mov_seg_112,
                                                        zoom=(0.5, 0.5, 0.5),
                                                        mode='nearest',
                                                        order=0)
                    dif_112_56 = nd.interpolation.zoom(dif_img_112,
                                                       zoom=(0.5, 0.5, 0.5),
                                                       mode='nearest')

                    mid_fix_img = fix_112_56[np.newaxis, :, :, :, np.newaxis]
                    mid_mov_img = mov_112_56[np.newaxis, :, :, :, np.newaxis]
                    mid_fix_seg = fix_112_56m[np.newaxis, :, :, :, np.newaxis]
                    mid_mov_seg = mov_112_56m[np.newaxis, :, :, :, np.newaxis]
                    mid_dif_img = dif_112_56[np.newaxis, :, :, :, np.newaxis]
                    df_mr_feed = df_lr_res2mr[:,
                                              sp[0] // 2 - 28:sp[0] // 2 + 28,
                                              sp[1] // 2 - 28:sp[1] // 2 + 28,
                                              sp[2] // 2 - 28:sp[2] // 2 +
                                              28, :]

                    feed_dict = {
                        src_mr: mid_mov_img,
                        tgt_mr: mid_fix_img,
                        srm_mr: mid_mov_seg,
                        df_lr2mr: df_mr_feed,
                        attn_mr: mid_dif_img
                    }
                    err_mr, _ = sess.run([cost_mr, train_op_mr],
                                         feed_dict=feed_dict)
                    df_mr, warp_seg, emr_ncc, emr_grad = sess.run(
                        [
                            model_mr[2].outputs, model_mr[1].outputs, mr_ncc,
                            mr_grd
                        ],
                        feed_dict=feed_dict)

                    mr_dice, _ = dice(warp_seg[0, :, :, :, 0],
                                      mid_fix_seg[0, :, :, :, 0],
                                      labels=[0, 10, 150, 250],
                                      nargout=2)
                    mr_log.addLog(mr_dice, err_mr, emr_ncc, emr_grad)
                    mr_out = mr_log.output()

                    # print('  Epoch %d/%d ### step %i' % (epoch+1, nb_epochs, mr_out[-1]))
                    print(
                        '  [mr] {}/{} mr_dice={}, mr_cost={:.3f}, mr_ncc={:.3f}, mr_grd={:.3f}'
                        .format(mr_out[-1], len(select_points_lr), mr_out[0],
                                mr_out[1], mr_out[2], mr_out[3]))

            saver.save(sess, model_dir + 'dfnet', global_step=0)

        # train high resolution
        nb_epochs = 1
        steps_per_epoch = 300
        for epoch in range(nb_epochs):
            lr_log.clear()
            for lr_step in range(steps_per_epoch):
                image, mask = data_gen.__next__()
                global_X, global_atlas = image
                global_X_mask, global_atlas_mask = mask
                global_diff = global_X[0, :, :, :,
                                       0] - global_atlas[0, :, :, :, 0]

                # low resolution
                global_X_64 = nd.interpolation.zoom(global_X[0, :, :, :, 0],
                                                    zoom=(0.25, 0.25, 0.25),
                                                    mode='nearest')
                global_A_64 = nd.interpolation.zoom(global_atlas[0, :, :, :,
                                                                 0],
                                                    zoom=(0.25, 0.25, 0.25),
                                                    mode='nearest')
                global_XM_64 = nd.interpolation.zoom(global_X_mask[0, :, :, :,
                                                                   0],
                                                     zoom=(0.25, 0.25, 0.25),
                                                     mode='nearest',
                                                     order=0)
                global_AM_64 = nd.interpolation.zoom(
                    global_atlas_mask[0, :, :, :, 0],
                    zoom=(0.25, 0.25, 0.25),
                    mode='nearest',
                    order=0)
                global_diff_16 = nd.interpolation.zoom(global_diff,
                                                       zoom=(0.25, 0.25, 0.25),
                                                       mode='nearest')

                global_X_64 = global_X_64[np.newaxis, :, :, :, np.newaxis]
                global_A_64 = global_A_64[np.newaxis, :, :, :, np.newaxis]
                global_XM_64 = global_XM_64[np.newaxis, :, :, :, np.newaxis]
                global_AM_64 = global_AM_64[np.newaxis, :, :, :, np.newaxis]
                global_diff_16 = global_diff_16[np.newaxis, :, :, :,
                                                np.newaxis]

                feed_dict = {
                    src_lr: global_X_64,
                    tgt_lr: global_A_64,
                    srm_lr: global_XM_64,
                    attn_lr: global_diff_16
                }
                err_lr, _ = sess.run([cost_lr, train_op_lr],
                                     feed_dict=feed_dict)
                df_lr, warp_seg, elr_ncc, elr_grad, lr_attn_map, lr_attn_feature = sess.run(
                    [
                        model_lr[2].outputs, model_lr[1].outputs, lr_ncc,
                        lr_grd, model_lr[3], model_lr[4]
                    ],
                    feed_dict=feed_dict)

                lr_dice, _ = dice(warp_seg[0, :, :, :, 0],
                                  global_AM_64[0, :, :, :, 0],
                                  labels=[0, 10, 150, 250],
                                  nargout=2)
                lr_log.addLog(lr_dice, err_lr, elr_ncc, elr_grad)
                lr_out = lr_log.output()

                print('\nEpoch %d/%d ### step %i' %
                      (epoch + 1, nb_epochs, lr_out[-1]))
                print(
                    '[lr] lr_dice={}, lr_cost={:.3f}, lr_ncc={:.3f}, lr_grd={:.3f}'
                    .format(lr_out[0], lr_out[1], lr_out[2], lr_out[3]))

                # middle part
                df_lr_res2mr = resize_df(df_lr, zoom=(2, 2, 2))

                select_points_lr = patch_selection_attn(lr_attn_map,
                                                        zoom_scales=[8, 8, 8],
                                                        kernel=7,
                                                        mi=10,
                                                        ma=18)
                print(select_points_lr)
                mr_log.clear()

                for sp in select_points_lr:
                    mov_img_112 = global_X[0, sp[0] - 56:sp[0] + 56,
                                           sp[1] - 56:sp[1] + 56,
                                           sp[2] - 56:sp[2] + 56, 0]
                    fix_img_112 = global_atlas[0, sp[0] - 56:sp[0] + 56,
                                               sp[1] - 56:sp[1] + 56,
                                               sp[2] - 56:sp[2] + 56, 0]
                    mov_seg_112 = global_X_mask[0, sp[0] - 56:sp[0] + 56,
                                                sp[1] - 56:sp[1] + 56,
                                                sp[2] - 56:sp[2] + 56, 0]
                    fix_seg_112 = global_atlas_mask[0, sp[0] - 56:sp[0] + 56,
                                                    sp[1] - 56:sp[1] + 56,
                                                    sp[2] - 56:sp[2] + 56, 0]
                    dif_img_112 = global_diff[sp[0] - 56:sp[0] + 56,
                                              sp[1] - 56:sp[1] + 56,
                                              sp[2] - 56:sp[2] + 56]

                    #print(mov_img_112.shape)
                    if fix_img_112.shape != (112, 112, 112):
                        print(mov_img_112.shape)
                        continue
                    fix_112_56 = nd.interpolation.zoom(fix_img_112,
                                                       zoom=(0.5, 0.5, 0.5),
                                                       mode='nearest')
                    mov_112_56 = nd.interpolation.zoom(mov_img_112,
                                                       zoom=(0.5, 0.5, 0.5),
                                                       mode='nearest')
                    fix_112_56m = nd.interpolation.zoom(fix_seg_112,
                                                        zoom=(0.5, 0.5, 0.5),
                                                        mode='nearest',
                                                        order=0)
                    mov_112_56m = nd.interpolation.zoom(mov_seg_112,
                                                        zoom=(0.5, 0.5, 0.5),
                                                        mode='nearest',
                                                        order=0)
                    dif_112_56 = nd.interpolation.zoom(dif_img_112,
                                                       zoom=(0.5, 0.5, 0.5),
                                                       mode='nearest')

                    mid_fix_img = fix_112_56[np.newaxis, :, :, :, np.newaxis]
                    mid_mov_img = mov_112_56[np.newaxis, :, :, :, np.newaxis]
                    mid_fix_seg = fix_112_56m[np.newaxis, :, :, :, np.newaxis]
                    mid_mov_seg = mov_112_56m[np.newaxis, :, :, :, np.newaxis]
                    mid_dif_img = dif_112_56[np.newaxis, :, :, :, np.newaxis]
                    df_mr_feed = df_lr_res2mr[:,
                                              sp[0] // 2 - 28:sp[0] // 2 + 28,
                                              sp[1] // 2 - 28:sp[1] // 2 + 28,
                                              sp[2] // 2 - 28:sp[2] // 2 +
                                              28, :]

                    feed_dict = {
                        src_mr: mid_mov_img,
                        tgt_mr: mid_fix_img,
                        srm_mr: mid_mov_seg,
                        df_lr2mr: df_mr_feed,
                        attn_mr: mid_dif_img
                    }
                    err_mr, _ = sess.run([cost_mr, train_op_mr],
                                         feed_dict=feed_dict)
                    df_mr, warp_seg, emr_ncc, emr_grad, mr_attn_map, mr_attn_feature = sess.run(
                        [
                            model_mr[2].outputs, model_mr[1].outputs, mr_ncc,
                            mr_grd, model_mr[3], model_mr[4]
                        ],
                        feed_dict=feed_dict)

                    mr_dice, _ = dice(warp_seg[0, :, :, :, 0],
                                      mid_fix_seg[0, :, :, :, 0],
                                      labels=[0, 10, 150, 250],
                                      nargout=2)
                    mr_log.addLog(mr_dice, err_mr, emr_ncc, emr_grad)
                    mr_out = mr_log.output()

                    # print('  Epoch %d/%d ### step %i' % (epoch+1, nb_epochs, mr_out[-1]))
                    print(
                        '  [mr] {}/{} mr_dice={}, mr_cost={:.3f}, mr_ncc={:.3f}, mr_grd={:.3f}'
                        .format(mr_out[-1], len(select_points_lr), mr_out[0],
                                mr_out[1], mr_out[2], mr_out[3]))

                    # high part
                    df_mr_res2hr = resize_df(df_mr, zoom=(2, 2, 2))
                    hr_log.clear()
                    select_points_mr = patch_selection_attn(
                        mr_attn_map,
                        zoom_scales=[4, 4, 4],
                        kernel=7,
                        mi=8,
                        ma=20)
                    print(30 * '-')
                    print('High Part')
                    print(select_points_mr)
                    for spm in select_points_mr:
                        fix_img_56 = fix_img_112[spm[0] - 28:spm[0] + 28,
                                                 spm[1] - 28:spm[1] + 28,
                                                 spm[2] - 28:spm[2] + 28]
                        mov_img_56 = mov_img_112[spm[0] - 28:spm[0] + 28,
                                                 spm[1] - 28:spm[1] + 28,
                                                 spm[2] - 28:spm[2] + 28]
                        fix_seg_56 = fix_seg_112[spm[0] - 28:spm[0] + 28,
                                                 spm[1] - 28:spm[1] + 28,
                                                 spm[2] - 28:spm[2] + 28]
                        mov_seg_56 = mov_seg_112[spm[0] - 28:spm[0] + 28,
                                                 spm[1] - 28:spm[1] + 28,
                                                 spm[2] - 28:spm[2] + 28]
                        dif_img_56 = dif_img_112[spm[0] - 28:spm[0] + 28,
                                                 spm[1] - 28:spm[1] + 28,
                                                 spm[2] - 28:spm[2] + 28]
                        if fix_img_56.shape != (56, 56, 56):
                            continue

                        hig_fix_img = fix_img_56[np.newaxis, :, :, :,
                                                 np.newaxis]
                        hig_mov_img = mov_img_56[np.newaxis, :, :, :,
                                                 np.newaxis]
                        hig_fix_seg = fix_seg_56[np.newaxis, :, :, :,
                                                 np.newaxis]
                        hig_mov_seg = mov_seg_56[np.newaxis, :, :, :,
                                                 np.newaxis]
                        hig_dif_img = dif_img_56[np.newaxis, :, :, :,
                                                 np.newaxis]

                        df_hr_feed = df_mr_res2hr[:, spm[0] - 28:spm[0] + 28,
                                                  spm[1] - 28:spm[1] + 28,
                                                  spm[2] - 28:spm[2] + 28, :]

                        feed_dict = {
                            src_hr: hig_mov_img,
                            tgt_hr: hig_fix_img,
                            srm_hr: hig_mov_seg,
                            df_mr2hr: df_hr_feed,
                            attn_hr: hig_dif_img
                        }
                        err_hr, _ = sess.run([cost_hr, train_op_hr],
                                             feed_dict=feed_dict)
                        df_hr, warp_seg, ehr_ncc, ehr_grad = sess.run(
                            [
                                model_hr[2].outputs, model_hr[1].outputs,
                                hr_ncc, hr_grd
                            ],
                            feed_dict=feed_dict)

                        hr_dice, _ = dice(warp_seg[0, :, :, :, 0],
                                          hig_fix_seg[0, :, :, :, 0],
                                          labels=[0, 10, 150, 250],
                                          nargout=2)
                        hr_log.addLog(hr_dice, err_hr, ehr_ncc, ehr_grad)
                        hr_out = hr_log.output()

                        # print('  Epoch %d/%d ### step %i' % (epoch+1, nb_epochs, mr_out[-1]))
                        print(
                            '    [hr] {}/{} hr_dice={}, hr_cost={:.3f}, hr_ncc={:.3f}, hr_grd={:.3f}'
                            .format(hr_out[-1], len(select_points_mr),
                                    hr_out[0], hr_out[1], hr_out[2],
                                    hr_out[3]))

                saver.save(sess, model_dir + 'dfnet', global_step=lr_step)
Esempio n. 8
0
def train(data_dir,
          depth_size,
          model,
          model_dir,
          gpu_id,
          lr,
          nb_epochs,
          reg_param,
          steps_per_epoch,
          train_mode,
          load_model_file,
          data_loss,
          batch_size,
          initial_epoch=0):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param atlas_file: atlas filename. So far we support npz file with a 'vol' variable
    :param model: either vm1 or vm2 (based on CVPR 2018 paper)
    :param model_dir: the model directory to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param n_iterations: number of training iterations
    :param reg_param: the smoothness/reconstruction tradeoff parameter (lambda in CVPR paper)
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param data_loss: data_loss: 'mse' or 'ncc'
    """

    # load data
    train_x, train_y = load_data(data_dir=data_dir,
                                 depth_size=depth_size,
                                 mode='train',
                                 fixed='first')
    #    test_x, test_y = load_data(data_dir=data_dir, depth_size=depth_size, mode='test', fixed='first')

    vol_size = train_x[0].shape[1:-1]  # (width, height, depth)

    # set encoder, decoder feature number
    nf_enc = [16, 32, 32, 32]
    if model == 'vm1':
        nf_dec = [32, 32, 32, 32, 8, 8]
    elif model == 'vm2':
        nf_dec = [32, 32, 32, 32, 32, 16, 16]
    else:  # 'vm2double':
        nf_enc = [f * 2 for f in nf_enc]
        nf_dec = [f * 2 for f in [32, 32, 32, 32, 32, 16, 16]]

    # set loss function
    # Mean Squared Error, Cross-Correlation, Negative Cross-Correlation
    assert data_loss in [
        'mse', 'cc', 'ncc'
    ], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss in ['ncc', 'cc']:
        data_loss = losses.NCC().loss

    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)

    # GPU handling
    gpu = '/gpu:%d' % 0  # gpu_id
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # prepare the model
    with tf.device(gpu):
        # in the CVPR layout, the model takes in [moving image, fixed image] and outputs [warped image, flow]
        model = networks.cvpr2018_net(tuple(vol_size), nf_enc, nf_dec)

        model.load_weights(load_model_file)

        # save first iteration
        model.save(os.path.join(model_dir, '%02d.h5' % initial_epoch))

    # prepare callbacks
    save_file_name = os.path.join(model_dir, '{epoch:02d}.h5')

    # fit
    with tf.device(gpu):
        save_callback = ModelCheckpoint(save_file_name)
        mg_model = model

        # compile
        mg_model.compile(optimizer=Adam(lr=lr),
                         loss=[data_loss, losses.Grad('l2').loss],
                         loss_weights=[1.0, reg_param])

        # fit
        mg_model.fit(x=train_x,
                     y=train_y,
                     batch_size=None,
                     epochs=nb_epochs,
                     verbose=1,
                     callbacks=[save_callback],
                     steps_per_epoch=steps_per_epoch)
Esempio n. 9
0
def train(data_dir, model, model_dir, gpu_id, lr, nb_epochs, reg_param,
          steps_per_epoch, load_model_file, data_loss, window_size,
          batch_size):
    """
    model training function
    :param data_dir: folder with npz files for each subject.
    :param model: either vm1 or vm2 (based on CVPR 2018 paper)
    :param model_dir: the model directory to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param reg_param: the smoothness/reconstruction tradeoff parameter (lambda in CVPR paper)
    :param steps_per_epoch: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    :param load_model_file: optional h5 model file to initialize with
    :param data_loss: data_loss: 'mse' or 'ncc'
    """

    vol_size = [256, 256, 144]  # (width, height, depth)

    # set encoder, decoder feature number
    nf_enc = [16, 32, 32, 32]
    if model == 'vm1':
        nf_dec = [32, 32, 32, 32, 8, 8]
    elif model == 'vm2':
        nf_dec = [32, 32, 32, 32, 32, 16, 16]
    else:  # 'vm2double':
        nf_enc = [f * 2 for f in nf_enc]
        nf_dec = [f * 2 for f in [32, 32, 32, 32, 32, 16, 16]]

    # set loss function
    # Mean Squared Error, Cross-Correlation, Negative Cross-Correlation
    assert data_loss in [
        'mse', 'cc', 'ncc'
    ], 'Loss should be one of mse or cc, found %s' % data_loss
    if data_loss in ['ncc', 'cc']:
        NCC = losses.NCC(win=window_size)
        data_loss = NCC.loss

    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)

    # GPU handling
    gpu = '/gpu:%d' % 0  # gpu_id
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # prepare the model
    with tf.device(gpu):
        # in the CVPR layout, the model takes in [moving image, fixed image] and outputs [warped image, flow]
        model = networks.cvpr2018_net(vol_size, nf_enc, nf_dec)

        if load_model_file is not None:
            model.load_weights(load_model_file)

        # save first iteration
        # model.save(os.path.join(model_dir, '%02d.h5' % initial_epoch))

    # load data
    # path = "../../dataset/urinary"
    # vol_names = [filename for filename in os.listdir(data_dir) if (int(filename.split("_")[-1].split('.')[0]) < 206) and
    #                                                           (int(filename.split("_")[-1].split('.')[0]) not in except_list)]

    vol_names = [
        filename for filename in os.listdir(data_dir)
        if int(filename.split("_")[-1].split(".")[0]) in normal
    ]

    # vol_names = [filename for filename in os.listdir(data_dir) if int(filename.split("_")[-1].split(".")[0]) in (9, 130, 128)]
    vol_names.sort()
    uro_gen = uro_generator(vol_names, data_dir, fixed='joyoungje')

    # test_path = os.path.join(data_dir, 'test')
    # test_vol_names = [filename for filename in os.listdir(test_path) if '.npz']
    # test_gen = uro_generator(test_vol_names, test_path)

    # fit
    with tf.device(gpu):
        mg_model = model

        # compile
        mg_model.compile(optimizer=Adam(lr=lr),
                         loss=[data_loss, losses.Grad('l2').loss],
                         loss_weights=[1.0, reg_param])

        # fit
        save_file_name = os.path.join(model_dir, '{epoch:04d}.h5')
        save_callback = ModelCheckpoint(save_file_name)
        mg_model.fit_generator(uro_gen,
                               epochs=nb_epochs,
                               verbose=1,
                               callbacks=[save_callback],
                               steps_per_epoch=steps_per_epoch)