Esempio n. 1
0
    def test_match_all(self):
        model = Model(
            dict(
                name="times-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES_MATCH_ALL_TAG1,
                threshold=30,
            ))
        res = self.source.get_times_data(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_date=self.t0,
            to_date=self.t0 + 8,
        )
        baz_avg = []
        for line in res:
            baz_avg.append(line[1][0])

        np.testing.assert_allclose(
            np.array(baz_avg),
            np.array([216.0, np.nan, 18.0]),
            rtol=0,
            atol=0,
        )

        model = Model(
            dict(
                name="times-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES_MATCH_ALL_TAG2,
                threshold=30,
            ))

        res = self.source.get_times_data(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_date=self.t0,
            to_date=self.t0 + 8,
        )
        baz_avg = []
        for line in res:
            baz_avg.append(line[1][0])

        np.testing.assert_allclose(
            np.array(baz_avg),
            np.array([-216.0, np.nan, -18.0]),
            rtol=0,
            atol=0,
        )
Esempio n. 2
0
    def test_agg_id(self):
        model = Model(
            settings={
                'name':
                "foo",
                'type':
                "generic",
                'features': [
                    {
                        'name': 'f1',
                        'measurement': 'm',
                        'field': 'f',
                        'metric': 'avg',
                    },
                    {
                        'name': 'f2',
                        'measurement': 'm',
                        'field': 'f',
                        'metric': 'avg',
                        'match_all': [{
                            'key': 'key',
                            'value': 'value'
                        }],
                    },
                    {
                        'name': 'f3',
                        'measurement': 'm',
                        'field': 'f',
                        'metric': 'avg',
                        'match_all': [{
                            'key': 'key',
                            'value': 'value'
                        }],
                    },
                    {
                        'name': 'f4',
                        'measurement': 'm',
                        'field': 'f',
                        'metric': 'avg',
                        'match_all': [{
                            'key': 'key',
                            'value': 'value2'
                        }],
                    },
                    {
                        'name': 'f5',
                        'field': 'f',
                        'metric': 'avg',
                    },
                ],
            })

        agg_ids = [feature.agg_id for feature in model.features]
        self.assertEqual(agg_ids[0], 'm')
        self.assertEqual(agg_ids[1],
                         'm_ced1b023686195d411caee8450821ff77ed0c5eb')
        self.assertEqual(agg_ids[2], agg_ids[1])
        self.assertEqual(agg_ids[3],
                         'm_7359bacde7a306a62e35501cc9bb905e6b2c6f72')
        self.assertEqual(agg_ids[4], 'all')
Esempio n. 3
0
    def test_match_all(self):
        model = Model(
            dict(
                name="test-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES_MATCH_ALL_TAG1,
            ))
        res = self.source.get_times_data(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_date=self.t0,
            to_date=self.t0 + 9,
        )
        baz_avg = []
        for line in res:
            baz_avg.append(nan_to_none(line[1][0]))

        self.assertEqual(baz_avg, [216.0, None, 18.0])

        model = Model(
            dict(
                name="test-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES_MATCH_ALL_TAG2,
            ))

        res = self.source.get_times_data(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_date=self.t0,
            to_date=self.t0 + 9,
        )
        baz_avg = []
        for line in res:
            baz_avg.append(nan_to_none(line[1][0]))

        self.assertEqual(baz_avg, [-216.0, None, -18.0])
Esempio n. 4
0
    def setUp(self):
        db = os.environ.get('MONGODB_DB')
        if not db:
            db = "test-{}".format(int(datetime.datetime.now().timestamp()))

        settings = {
            'name': 'test',
            'addr': os.environ.get('MONGODB_ADDR', "localhost:27017"),
            'database': db,
        }

        username = os.environ.get('MONGODB_USER')

        if username:
            settings['username'] = username
            settings['password'] = os.environ.get('MONGODB_PWD')

            auth_source = os.environ.get('MONGODB_AUTH_SRC')
            if auth_source:
                settings['auth_source'] = auth_source

        self.source = MongoDataSource(settings)

        self.model = Model(
            dict(
                name="test-model",
                offset=30,
                span=300,
                bucket_interval=3600,
                interval=60,
                features=[
                    {
                        'name': 'avg_foo',
                        'metric': 'avg',
                        'collection': 'coll',
                        'field': 'foo',
                    },
                    {
                        'name': 'count_bar',
                        'metric': 'count',
                        'collection': 'coll',
                        'field': 'bar',
                        'default': 0,
                    },
                ],
            ))

        self.t0 = datetime.datetime.now(datetime.timezone.utc).replace(
            hour=0,
            minute=0,
            second=0,
            microsecond=0,
        ).timestamp()
Esempio n. 5
0
    def setUpClass(cls):
        cls.prefix = "test-{}".format(datetime.datetime.now().timestamp())
        cls.source = Warp10Bucket({
            'name':
            'test',
            'url':
            os.environ['WARP10_URL'],
            'read_token':
            os.environ['WARP10_READ_TOKEN'],
            'write_token':
            os.environ['WARP10_WRITE_TOKEN'],
            'global_prefix':
            cls.prefix,
        })
        logger = logging.getLogger('warp10client.client')
        logger.setLevel(logging.INFO)

        cls.tag = {'test': cls.prefix}

        cls.model = Model(
            dict(
                name="test-model",
                offset=30,
                span=3,
                bucket_interval=3600,
                interval=60,
                features=[
                    {
                        'name': 'avg_foo',
                        'metric': 'avg',
                        'field': 'foo',
                    },
                    {
                        'name': 'count_bar',
                        'metric': 'count',
                        'field': 'bar',
                        'default': 0,
                    },
                ],
            ))

        cls.t0 = datetime.datetime.now(datetime.timezone.utc).replace(
            hour=0,
            minute=0,
            second=0,
            microsecond=0,
        ).timestamp()
Esempio n. 6
0
    def setUp(self):
        bucket_interval = 3

        t0 = int(datetime.datetime.now().timestamp())
        t0 -= t0 % bucket_interval

        self.t0 = t0

        self.source = PrometheusBucket({
            'name': 'test',
            'addr': ADDR,
        })

        self.model = Model(dict(
            name="test-model",
            offset=30,
            span=300,
            bucket_interval=3,
            interval=60,
            features=FEATURES,
        ))
Esempio n. 7
0
 def test_match_all(self):
     model = Model(
         dict(
             name="test-model",
             offset=30,
             span=300,
             bucket_interval=3,
             interval=60,
             features=[
                 {
                     'name': 'avg_foo',
                     'metric': 'avg',
                     'collection': 'coll1',
                     'field': 'foo',
                     'match_all': [
                         {
                             'tag': 'tag_1',
                             'value': 'tag_A'
                         },
                     ],
                 },
             ],
         ))
     t0 = self.t0
     data = [
         # (foo, timestamp)
         (33, t0 - 1),  # excluded
         # empty
         (120, t0 + 1),
         (312, t0 + 2),
         (18, t0 + 7),
         (78, t0 + 10),  # excluded
     ]
     for foo, ts in data:
         self.source.insert_times_data(collection='coll1',
                                       ts=ts,
                                       data={
                                           'foo': foo,
                                       })
         self.source.insert_times_data(collection='coll1',
                                       ts=ts,
                                       tags={
                                           'tag_1': 'tag_A',
                                           'tag_2': 'tag_B',
                                       },
                                       data={
                                           'foo': foo,
                                       })
         self.source.insert_times_data(collection='coll1',
                                       ts=ts,
                                       tags={
                                           'tag_1': 'tag_B',
                                           'tag_2': 'tag_C',
                                       },
                                       data={
                                           'foo': -foo,
                                       })
     self.source.commit()
     res = self.source.get_times_data(
         model,
         from_date=t0,
         to_date=t0 + 3 * model.bucket_interval,
     )
     foo_avg = []
     for line in res:
         foo_avg.append(line[1][0])
     np.testing.assert_allclose(
         np.array(foo_avg),
         np.array([216.0, np.nan, 18.0]),
         rtol=0,
         atol=0,
     )
     model = Model(
         dict(
             name="test-model",
             offset=30,
             span=300,
             bucket_interval=3,
             interval=60,
             features=[
                 {
                     'collection': 'coll1',
                     'name': 'avg_foo',
                     'metric': 'avg',
                     'field': 'foo',
                     'match_all': [
                         {
                             'tag': 'tag_1',
                             'value': 'tag_B'
                         },
                     ],
                 },
             ],
         ))
     res = self.source.get_times_data(
         model,
         from_date=self.t0,
         to_date=self.t0 + 8,
     )
     avg_foo = []
     for line in res:
         avg_foo.append(line[1][0])
     np.testing.assert_allclose(
         np.array(avg_foo),
         np.array([-216.0, np.nan, -18.0]),
         rtol=0,
         atol=0,
     )
Esempio n. 8
0
    def setUp(self):
        bucket_interval = 3

        t0 = int(datetime.datetime.now().timestamp())
        t0 -= t0 % bucket_interval
        self.t0 = t0

        self.index = "test-{}".format(t0)
        self.sink_index = "test-{}-prediction".format(t0)

        logging.info("creating index %s", self.index)
        if os.environ.get('ELASTICSEARCH_ADDR', None) is None:
            # tip: useful tool to query ES AWS remotely:
            # npm install aws-es-curl -g
            settings = dict(
                name='aws',
                type='elasticsearch_aws',
                doc_type='doc',
                host=os.environ['ELASTICSEARCH_HOST'],
                region='eu-west-1',
                get_boto_credentials=False,
                access_key=os.environ['AWS_ACCESS_KEY_ID'],
                secret_key=os.environ['AWS_SECRET_ACCESS_KEY'],
            )

            settings['index'] = self.index
            self.source = loudml.bucket.load_bucket(settings)

            settings = copy.deepcopy(settings)
            settings['index'] = self.sink_index
            self.sink = loudml.bucket.load_bucket(settings)
        else:
            settings = {
                'name': 'test',
                'addr': os.environ['ELASTICSEARCH_ADDR'],
                'index': self.index,
                'doc_type': 'nosetests',
            }
            self.source = ElasticsearchBucket(settings)

            settings = copy.deepcopy(settings)
            settings['index'] = self.sink_index
            self.sink = ElasticsearchBucket(settings)

        data_schema = {
            "foo": {
                "type": "integer"
            },
            "bar": {
                "type": "integer"
            },
            "baz": {
                "type": "integer"
            },
            "tag_kw": {
                "type": "keyword"
            },
            "tag_int": {
                "type": "integer"
            },
            "tag_bool": {
                "type": "boolean"
            },
        }
        self.source.drop()
        self.source.init(data_schema=data_schema)

        self.model = Model(
            dict(
                name='times-model',  # not test-model due to TEMPLATE
                offset=30,
                span=300,
                bucket_interval=bucket_interval,
                interval=60,
                features=FEATURES,
                threshold=30,
            ))

        data = [
            # (foo, bar|baz, timestamp)
            (1, 33, t0 - 1),  # excluded
            (2, 120, t0),
            (3, 312, t0 + 1),
            # empty
            (4, 18, t0 + 7),
            (5, 78, t0 + 9),  # excluded
        ]
        for foo, bar, ts in data:
            self.source.insert_times_data(ts=ts, data={
                'foo': foo,
            })
            self.source.insert_times_data(ts=ts, data={
                'bar': bar,
            })
            self.source.insert_times_data(ts=ts,
                                          tags={
                                              'tag_kw': 'tag1',
                                              'tag_int': 9,
                                              'tag_bool': False,
                                          },
                                          data={
                                              'baz': bar,
                                          })
            self.source.insert_times_data(ts=ts,
                                          tags={
                                              'tag_kw': 'tag2',
                                              'tag_int': 7,
                                              'tag_bool': True,
                                          },
                                          data={
                                              'baz': -bar,
                                          })

        self.source.commit()

        # Let elasticsearch indexes the data before querying it
        time.sleep(10)
Esempio n. 9
0
class TestElasticBucket(unittest.TestCase):
    def setUp(self):
        bucket_interval = 3

        t0 = int(datetime.datetime.now().timestamp())
        t0 -= t0 % bucket_interval
        self.t0 = t0

        self.index = "test-{}".format(t0)
        self.sink_index = "test-{}-prediction".format(t0)

        logging.info("creating index %s", self.index)
        if os.environ.get('ELASTICSEARCH_ADDR', None) is None:
            # tip: useful tool to query ES AWS remotely:
            # npm install aws-es-curl -g
            settings = dict(
                name='aws',
                type='elasticsearch_aws',
                doc_type='doc',
                host=os.environ['ELASTICSEARCH_HOST'],
                region='eu-west-1',
                get_boto_credentials=False,
                access_key=os.environ['AWS_ACCESS_KEY_ID'],
                secret_key=os.environ['AWS_SECRET_ACCESS_KEY'],
            )

            settings['index'] = self.index
            self.source = loudml.bucket.load_bucket(settings)

            settings = copy.deepcopy(settings)
            settings['index'] = self.sink_index
            self.sink = loudml.bucket.load_bucket(settings)
        else:
            settings = {
                'name': 'test',
                'addr': os.environ['ELASTICSEARCH_ADDR'],
                'index': self.index,
                'doc_type': 'nosetests',
            }
            self.source = ElasticsearchBucket(settings)

            settings = copy.deepcopy(settings)
            settings['index'] = self.sink_index
            self.sink = ElasticsearchBucket(settings)

        data_schema = {
            "foo": {
                "type": "integer"
            },
            "bar": {
                "type": "integer"
            },
            "baz": {
                "type": "integer"
            },
            "tag_kw": {
                "type": "keyword"
            },
            "tag_int": {
                "type": "integer"
            },
            "tag_bool": {
                "type": "boolean"
            },
        }
        self.source.drop()
        self.source.init(data_schema=data_schema)

        self.model = Model(
            dict(
                name='times-model',  # not test-model due to TEMPLATE
                offset=30,
                span=300,
                bucket_interval=bucket_interval,
                interval=60,
                features=FEATURES,
                threshold=30,
            ))

        data = [
            # (foo, bar|baz, timestamp)
            (1, 33, t0 - 1),  # excluded
            (2, 120, t0),
            (3, 312, t0 + 1),
            # empty
            (4, 18, t0 + 7),
            (5, 78, t0 + 9),  # excluded
        ]
        for foo, bar, ts in data:
            self.source.insert_times_data(ts=ts, data={
                'foo': foo,
            })
            self.source.insert_times_data(ts=ts, data={
                'bar': bar,
            })
            self.source.insert_times_data(ts=ts,
                                          tags={
                                              'tag_kw': 'tag1',
                                              'tag_int': 9,
                                              'tag_bool': False,
                                          },
                                          data={
                                              'baz': bar,
                                          })
            self.source.insert_times_data(ts=ts,
                                          tags={
                                              'tag_kw': 'tag2',
                                              'tag_int': 7,
                                              'tag_bool': True,
                                          },
                                          data={
                                              'baz': -bar,
                                          })

        self.source.commit()

        # Let elasticsearch indexes the data before querying it
        time.sleep(10)

    def tearDown(self):
        self.sink.drop()
        self.source.drop()

    def test_get_index_name(self):
        ts = 1527156069

        self.assertEqual(self.source.get_index_name(), self.index)
        self.assertEqual(self.source.get_index_name("test"), "test")
        self.assertEqual(self.source.get_index_name("test", timestamp=ts),
                         "test")
        self.assertEqual(
            self.source.get_index_name("test-*", timestamp=ts),
            "test-2018.05.24",
        )

    def test_get_times_data(self):
        res = self.source.get_times_data(
            bucket_interval=self.model.bucket_interval,
            features=self.model.features,
            from_date=self.t0,
            to_date=self.t0 + 8,
        )

        foo_avg = []
        for line in res:
            foo_avg.append(line[1][0])

        np.testing.assert_allclose(
            np.array(foo_avg),
            np.array([2.5, np.nan, 4.0]),
            rtol=0,
            atol=0,
        )

    def test_save_timeseries_prediction(self):
        now_ts = datetime.datetime.now().timestamp()

        timestamps = [
            now_ts,
            now_ts + self.model.bucket_interval,
        ]
        predicted = [4.0, 2.0]
        observed = [4.1, 1.9]

        prediction = TimeSeriesPrediction(
            self.model,
            timestamps=timestamps,
            predicted=np.array(predicted),
            observed=np.array(observed),
        )

        self.sink.init(data_schema=prediction.get_schema())
        self.sink.save_timeseries_prediction(prediction,
                                             tags=self.model.get_tags())
        self.sink.refresh()

        res = self.sink.search(routing=self.model.routing, size=100, body={})

        hits = res['hits']['hits']
        self.assertEqual(len(hits), 2)

        for i, hit in enumerate(
                sorted(hits, key=lambda x: x['_source']['timestamp'])):
            source = hit['_source']
            self.assertEqual(
                source, {
                    'avg_foo': predicted[i],
                    '@avg_foo': observed[i],
                    'timestamp': int(timestamps[i] * 1000),
                    'model': self.model.name,
                })

    def test_match_all(self):
        model = Model(
            dict(
                name="times-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES_MATCH_ALL_TAG1,
                threshold=30,
            ))
        res = self.source.get_times_data(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_date=self.t0,
            to_date=self.t0 + 8,
        )
        baz_avg = []
        for line in res:
            baz_avg.append(line[1][0])

        np.testing.assert_allclose(
            np.array(baz_avg),
            np.array([216.0, np.nan, 18.0]),
            rtol=0,
            atol=0,
        )

        model = Model(
            dict(
                name="times-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES_MATCH_ALL_TAG2,
                threshold=30,
            ))

        res = self.source.get_times_data(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_date=self.t0,
            to_date=self.t0 + 8,
        )
        baz_avg = []
        for line in res:
            baz_avg.append(line[1][0])

        np.testing.assert_allclose(
            np.array(baz_avg),
            np.array([-216.0, np.nan, -18.0]),
            rtol=0,
            atol=0,
        )
Esempio n. 10
0
    def test_multi_fetch(self):
        model = Model(
            dict(
                name="test-model",
                offset=30,
                span=3,
                bucket_interval=3600,
                interval=60,
                features=[
                    {
                        'name': 'avg_foo',
                        'metric': 'avg',
                        'field': 'foo',
                        'match_all': [
                            {
                                'tag': 'a',
                                'value': 'b'
                            },
                        ],
                    },
                    {
                        'name': 'count_bar',
                        'metric': 'count',
                        'field': 'bar',
                        'default': 0,
                    },
                ],
            ))
        res = self.source.build_multi_fetch(
            bucket_interval=model.bucket_interval,
            features=model.features,
            from_str="2018-07-21T00:00:00Z",
            to_str="2018-07-22T00:00:00Z",
        )
        self.assertEqual(
            res, """
[
[
[
'{}'
'{}.foo'
{{ 'a' 'b' }}
'2018-07-21T00:00:00Z'
'2018-07-22T00:00:00Z'
]
FETCH
bucketizer.mean
0
3600000000
0
]
BUCKETIZE
[
[
'{}'
'{}.bar'
{{  }}
'2018-07-21T00:00:00Z'
'2018-07-22T00:00:00Z'
]
FETCH
bucketizer.count
0
3600000000
0
]
BUCKETIZE
]
""".strip().format(
                self.source.read_token,
                self.prefix,
                self.source.read_token,
                self.prefix,
            ))
Esempio n. 11
0
    def test_train_predict(self):
        model = DonutModel(
            dict(
                name='test',
                offset=30,
                span=5,
                bucket_interval=60 * 60,
                interval=60,
                features=[
                    {
                        'name': 'count_foo',
                        'metric': 'count',
                        'field': 'prefix.foo',
                        'default': 0,
                    },
                    {
                        'name': 'avg_foo',
                        'metric': 'avg',
                        'field': 'prefix.foo',
                        'default': 5,
                    },
                ],
                max_evals=1,
            ))

        generator = SinEventGenerator(base=3, sigma=0.05)

        to_date = datetime.datetime.now(datetime.timezone.utc).replace(
            hour=0,
            minute=0,
            second=0,
            microsecond=0,
        ).timestamp()
        from_date = to_date - 3600 * 24

        for ts in generator.generate_ts(from_date, to_date, step_ms=60000):
            self.source.insert_times_data(
                ts=ts,
                data={'prefix.foo': random.lognormvariate(10, 1)},
            )

        self.source.commit()

        # Train
        model.train(self.source, from_date=from_date, to_date=to_date)

        # Check
        self.assertTrue(model.is_trained)

        # Predict
        pred_from = to_date - 3 * model.bucket_interval
        pred_to = to_date
        prediction = model.predict(
            bucket=self.source,
            from_date=pred_from,
            to_date=pred_to,
        )
        self.source.save_timeseries_prediction(prediction, tags=self.tag)

        # Fake model just for extracting saved prediction
        model2 = Model(
            dict(
                name='test-prediction',
                offset=30,
                span=5,
                bucket_interval=60 * 60,
                interval=60,
                features=[
                    {
                        'name': 'count_foo',
                        'metric': 'avg',
                        'field': "{}.count_foo".format(model.name),
                    },
                    {
                        'name': 'avg_foo',
                        'metric': 'avg',
                        'field': "{}.avg_foo".format(model.name),
                    },
                ],
                max_evals=1,
            ))

        res = self.source.get_times_data(
            bucket_interval=model2.bucket_interval,
            features=model2.features,
            from_date=pred_from,
            to_date=pred_to,
            tags=self.tag,
        )

        for i, pred_ts in enumerate(prediction.timestamps):
            values, ts = res[i][1:]
            self.assertEqual(ts, pred_ts)
            np.testing.assert_allclose(
                np.array(values),
                prediction.predicted[i],
            )
Esempio n. 12
0
    def setUp(self):
        bucket_interval = 3

        t0 = int(datetime.datetime.now().timestamp())

        # XXX Bucket returned by InfluxDB are aligned on
        # modulo(bucket_interval), that's why
        # timestamp must be aligned for unit tests.
        t0 -= t0 % bucket_interval

        self.t0 = t0

        self.db = 'test-{}'.format(t0)
        logging.info("creating database %s", self.db)
        self.source = InfluxBucket({
            'name': 'test',
            'addr': ADDR,
            'database': self.db,
            'measurement': 'nosetests',
        })
        self.source.drop()
        self.source.init()

        self.model = Model(
            dict(
                name="test-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES,
            ))

        data = [
            # (foo, bar, timestamp)
            (1, 33, t0 - 1),  # excluded
            (2, 120, t0),
            (3, 312, t0 + 1),
            # empty
            (4, 18, t0 + 7),
            (5, 78, t0 + 9),  # excluded
        ]
        for foo, bar, ts in data:
            self.source.insert_times_data(measurement='measure1',
                                          ts=ts,
                                          data={
                                              'foo': foo,
                                          })
            self.source.insert_times_data(measurement='measure2',
                                          ts=ts,
                                          data={
                                              'bar': bar,
                                          })
            self.source.insert_times_data(measurement='measure3',
                                          ts=ts,
                                          tags={
                                              'tag_kw': 'tag1',
                                              'tag_int': 9,
                                              'tag_bool': False,
                                          },
                                          data={
                                              'baz': bar,
                                          })
            self.source.insert_times_data(measurement='measure3',
                                          ts=ts,
                                          tags={
                                              'tag_kw': 'tag2',
                                              'tag_int': 7,
                                              'tag_bool': True,
                                          },
                                          data={
                                              'baz': -bar,
                                          })

        self.source.commit()
Esempio n. 13
0
    def test_validate_model(self):
        # Valid
        Model(
            settings={
                'name': "foo",
                'type': "generic",
                'features': [
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'avg',
                    },
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'count',
                    }
                ],
            }
        )
        Model(
            settings={
                'name': "foo",
                'type': "generic",
                'features': [
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'avg',
                    },
                ],
                'routing': 'cux',
            }
        )
        Model(
            settings={
                'name': "foo",
                'type': "generic",
                'features': [
                    {
                        'name': 'bar',
                        'measurement': 'prefix.measurement',
                        'field': 'prefix.baz',
                        'metric': 'avg',
                    },
                ],
                'routing': 'cux',
            }
        )

        # Invalid
        self.invalid_model(
            settings={
                'type': 'generic',
                'features': [
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'avg',
                    },
                ],
            }
        )
        self.invalid_model(
            settings={
                'name': 'foo',
                'type': 'generic',
                'features': [],
            }
        )
        self.invalid_model(
            settings={
                'name': "foo",
                'type': "generic",
                'features': [
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'avg',
                        'io': 'i',
                    },
                ],
            }
        )
        self.invalid_model(
            settings={
                'name': "foo",
                'type': "generic",
                'features': [
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'count',
                        'io': 'o',
                    }
                ],
            }
        )
        self.invalid_model(
            settings={
                'name': 'foo/invalid',
                'type': 'generic',
                'features': [
                    {
                        'name': 'bar',
                        'field': 'baz',
                        'metric': 'avg',
                    },
                ],
            }
        )
Esempio n. 14
0
 def invalid_model(self, **kwargs):
     with self.assertRaises(errors.Invalid):
         Model(**kwargs)
Esempio n. 15
0
    def setUpClass(cls):
        bucket_interval = 3

        t0 = int(datetime.datetime.now().timestamp())
        t0 -= t0 % bucket_interval

        cls.t0 = t0

        cls.source = OpenTSDBBucket({
            'name': 'test',
            'addr': ADDR,
        })
        cls.source.drop()
        cls.source.init()

        cls.model = Model(
            dict(
                name="test-model",
                offset=30,
                span=300,
                bucket_interval=3,
                interval=60,
                features=FEATURES,
            ))

        data = [
            # (foo, bar, timestamp)
            (1, 33, t0 - 1),  # excluded
            (2, 120, t0),
            (3, 312, t0 + 1),
            # empty
            (4, 18, t0 + 7),
            (5, 78, t0 + 9),  # excluded
        ]
        for foo, bar, ts in data:
            cls.source.insert_times_data(ts=ts, data={
                'foo': foo,
            })
            cls.source.insert_times_data(ts=ts, data={
                'bar': bar,
            })
            cls.source.insert_times_data(ts=ts,
                                         tags={
                                             'tag_kw': 'tag1',
                                             'tag_int': 9,
                                             'tag_bool': False,
                                         },
                                         data={
                                             'baz': bar,
                                         })
            cls.source.insert_times_data(ts=ts,
                                         tags={
                                             'tag_kw': 'tag2',
                                             'tag_int': 7,
                                             'tag_bool': True,
                                         },
                                         data={
                                             'baz': -bar,
                                         })

        cls.source.commit()