def __init__(self, *args: str, **kwargs: str) -> None: """Executor tests constructor.""" super().__init__(*args, **kwargs) self.executor = Executor( workspace_path="tmp_workdir", subject="test", data={ "id": "abc", "some_key": "some_value" }, send_response=False, log_name="my_log", additional_log_names=["additional_log1", "additional_log2"], )
class TestExecutor(unittest.TestCase): """Executor tests.""" def __init__(self, *args: str, **kwargs: str) -> None: """Executor tests constructor.""" super().__init__(*args, **kwargs) self.executor = Executor( workspace_path="tmp_workdir", subject="test", data={ "id": "abc", "some_key": "some_value" }, send_response=False, log_name="my_log", additional_log_names=["additional_log1", "additional_log2"], ) @classmethod def tearDownClass(cls) -> None: """Tear down environment for test.""" shutil.rmtree("tmp_workdir", ignore_errors=True) def test_workdir_property(self) -> None: """Test if workdir property returns correct path.""" self.assertEqual(self.executor.workdir, "tmp_workdir") def test_request_id_property(self) -> None: """Test if request_id property returns correct value.""" self.assertEqual(self.executor.request_id, "abc") def test_log_name_property(self) -> None: """Test if log_name property returns correct value.""" self.assertEqual(self.executor.log_name, "my_log") def test_additional_log_names_property(self) -> None: """Test if additional_log_names property returns correct value.""" self.assertIs(type(self.executor.additional_log_names), list) self.assertEqual( self.executor.additional_log_names, ["additional_log1", "additional_log2"], ) def test_is_not_multi_commands(self) -> None: """Test if execution type is recognized correctly.""" result = self.executor.is_multi_commands(["echo", "Hello world!"]) self.assertFalse(result) def test_is_multi_commands(self) -> None: """Test if multi command execution is recognized correctly.""" result = self.executor.is_multi_commands([ ["echo", "Hello"], ["echo", "world!"], ], ) self.assertTrue(result) def test_process_call(self) -> None: """Test if multi command execution is recognized correctly.""" print_phrase = "Hello world!" proc = self.executor.call(["echo", print_phrase]) self.assertTrue(proc.is_ok) logs = self.executor.additional_log_names if self.executor.log_name is not None: logs.append(f"{self.executor.log_name}.txt") for log in logs: with open(os.path.join(self.executor.workdir, log), "r") as log_file: self.assertEqual(log_file.readline().rstrip("\n"), print_phrase)
def benchmark_model( response_data: dict, workload: Workload, workdir: Workdir, model: str, model_path: str, model_precision: str, benchmark_mode: str, benchmark_count: int, benchmark_total: int, ) -> dict: """Benchmark model and prepare response data.""" request_id = response_data.get("id") benchmark: Benchmark = Benchmark( workload=workload, model_path=model_path, precision=model_precision, mode=benchmark_mode, ) log_name = f"{model}_{benchmark_mode}_benchmark" executor = Executor( workload.workload_path, subject="benchmark", data={"id": request_id}, send_response=False, log_name=log_name, additional_log_names=["output.txt"], ) proc = executor.call( benchmark.command, ) logs = [os.path.join(workload.workload_path, f"{log_name}.txt")] if not proc.is_ok: raise ClientErrorException("Benchmark failed during execution.") parser = BenchmarkParserFactory.get_parser(benchmark_mode, logs) metrics = parser.process() metric = {} execution_details: Dict[str, Any] = {} if benchmark_mode == Benchmarks.PERF: result_field = f"perf_throughput_{model}" elif benchmark_mode == Benchmarks.ACC: result_field = f"acc_{model}" else: raise InternalException(f"Benchmark mode {benchmark_mode} is not supported.") if isinstance(metrics, dict): metric = {result_field: metrics.get(result_field, "")} execution_details = response_data.get("execution_details", {}) model_benchmark_details = execution_details.get(f"{model}_benchmark", {}) model_benchmark_details.update( { benchmark_mode: benchmark.serialize(), }, ) response_data.update({"progress": f"{benchmark_count}/{benchmark_total}"}) response_data.update(metric) response_data["execution_details"].update( {f"{model}_benchmark": model_benchmark_details}, ) workdir.update_metrics( request_id=request_id, metric_data=metric, ) workdir.update_execution_details( request_id=request_id, execution_details=execution_details, ) log.debug(f"Parsed data is {json.dumps(response_data)}") mq.post_success("benchmark_progress", response_data) return response_data
def execute_tuning(data: Dict[str, Any]) -> dict: """Get configuration.""" from lpot.ux.utils.workload.workload import Workload if not str(data.get("id", "")): message = "Missing request id." mq.post_error( "tuning_finish", { "message": message, "code": 404 }, ) raise Exception(message) request_id: str = data["id"] workdir = Workdir(request_id=request_id) workload_path: str = workdir.workload_path try: workload_data = load_json(os.path.join(workload_path, "workload.json"), ) except Exception as err: mq.post_error( "tuning_finish", { "message": repr(err), "code": 404, "id": request_id }, ) raise err workload = Workload(workload_data) tuning: Tuning = Tuning(workload, workdir.workload_path, workdir.template_path) send_data = { "message": "started", "id": request_id, "size_fp32": get_size(tuning.model_path), } workdir.clean_logs() workdir.update_data( request_id=request_id, model_path=tuning.model_path, model_output_path=tuning.model_output_path, status="wip", ) executor = Executor( workspace_path=workload_path, subject="tuning", data=send_data, log_name="output", ) proc = executor.call(tuning.command, ) tuning_time = executor.process_duration if tuning_time: tuning_time = round(tuning_time, 2) log.debug(f"Elapsed time: {tuning_time}") logs = [os.path.join(workload_path, "output.txt")] parser = Parser(logs) if proc.is_ok: response_data = parser.process() if isinstance(response_data, dict): response_data["id"] = request_id response_data["tuning_time"] = tuning_time response_data["size_int8"] = get_size(tuning.model_output_path) response_data["model_output_path"] = tuning.model_output_path response_data["size_fp32"] = get_size(tuning.model_path) response_data["is_custom_dataloader"] = bool(workdir.template_path) workdir.update_data( request_id=request_id, model_path=tuning.model_path, model_output_path=tuning.model_output_path, metric=response_data, status="success", execution_details={"tuning": tuning.serialize()}, ) response_data["execution_details"] = {"tuning": tuning.serialize()} log.debug(f"Parsed data is {json.dumps(response_data)}") mq.post_success("tuning_finish", response_data) return response_data else: log.debug("FAIL") workdir.update_data( request_id=request_id, model_path=tuning.model_path, status="error", ) mq.post_failure("tuning_finish", { "message": "failed", "id": request_id }) raise ClientErrorException("Tuning failed during execution.")
def execute_optimization(data: Dict[str, Any]) -> dict: """Get configuration.""" from lpot.ux.utils.workload.workload import Workload if not str(data.get("id", "")): message = "Missing request id." mq.post_error( "optimization_finish", {"message": message, "code": 404}, ) raise Exception(message) request_id: str = data["id"] workdir = Workdir(request_id=request_id, overwrite=False) workload_path: str = workdir.workload_path try: workload_data = _load_json_as_dict( os.path.join(workload_path, "workload.json"), ) except Exception as err: mq.post_error( "optimization_finish", {"message": repr(err), "code": 404, "id": request_id}, ) raise err workload = Workload(workload_data) optimization: Optimization = OptimizationFactory.get_optimization( workload, workdir.template_path, ) send_data = { "message": "started", "id": request_id, "size_input_model": get_size(optimization.input_graph), } workdir.clean_logs() workdir.update_data( request_id=request_id, model_path=optimization.input_graph, input_precision=optimization.input_precision, model_output_path=optimization.output_graph, output_precision=optimization.output_precision, status="wip", ) executor = Executor( workspace_path=workload_path, subject="optimization", data=send_data, log_name="output", ) proc = executor.call( optimization.command, ) optimization_time = executor.process_duration if optimization_time: optimization_time = round(optimization_time, 2) log.debug(f"Elapsed time: {optimization_time}") logs = [os.path.join(workload_path, "output.txt")] parser = OptimizationParser(logs) if proc.is_ok: response_data = parser.process() if isinstance(response_data, dict): response_data["id"] = request_id response_data["optimization_time"] = optimization_time response_data["size_optimized_model"] = get_size(optimization.output_graph) response_data["model_output_path"] = optimization.output_graph response_data["size_input_model"] = get_size(optimization.input_graph) response_data["is_custom_dataloader"] = bool(workdir.template_path) workdir.update_data( request_id=request_id, model_path=optimization.input_graph, model_output_path=optimization.output_graph, metric=response_data, status="success", execution_details={"optimization": optimization.serialize()}, input_precision=optimization.input_precision, output_precision=optimization.output_precision, ) response_data["execution_details"] = {"optimization": optimization.serialize()} log.debug(f"Parsed data is {json.dumps(response_data)}") mq.post_success("optimization_finish", response_data) return response_data else: log.debug("FAIL") workdir.update_data( request_id=request_id, model_path=optimization.input_graph, input_precision=optimization.input_precision, output_precision=optimization.output_precision, status="error", ) mq.post_failure("optimization_finish", {"message": "failed", "id": request_id}) raise ClientErrorException("Optimization failed during execution.")
def execute_benchmark(data: Dict[str, Any]) -> None: """ Execute benchmark. Expected data: { "id": "configuration_id", "workspace_path": "/path/to/workspace", "models": [ { "precision": "fp32", "path": "/localdisk/fp32.pb" }, { "precision": "int8", "path": "/localdisk/int8.pb" } ] } """ from lpot.ux.utils.workload.workload import Workload request_id = str(data.get("id", "")) models = data.get("models", None) if not (request_id and models): message = "Missing request id or model list." mq.post_error( "benchmark_finish", {"message": message, "code": 404, "id": request_id}, ) raise ClientErrorException(message) workdir = Workdir(request_id=request_id, overwrite=False) try: workload_path = workdir.workload_path workload_data = load_json( os.path.join(workload_path, "workload.json"), ) except Exception as err: mq.post_error( "benchmark_finish", {"message": repr(err), "code": 404, "id": request_id}, ) raise ClientErrorException(repr(err)) workload = Workload(workload_data) response_data: Dict[str, Any] = {"id": request_id, "execution_details": {}} mq.post_success( "benchmark_start", { "message": "started", "id": request_id, }, ) for idx, model_info in enumerate(models, start=1): model_precision = model_info.get("precision", None) model_path = model_info.get("path", None) benchmark_mode = model_info.get("mode", "performance") if not (model_precision and model_path): message = "Missing model precision or model path." mq.post_error( "benchmark_finish", {"message": message, "code": 404, "id": request_id}, ) raise ClientErrorException(message) benchmark: Benchmark = Benchmark( workload=workload, model_path=model_path, datatype=model_precision, mode=benchmark_mode, ) log_name = f"{model_precision}_{benchmark_mode}_benchmark" executor = Executor( workload_path, subject="benchmark", data={"id": request_id}, send_response=False, log_name=log_name, additional_log_names=["output.txt"], ) proc = executor.call( benchmark.command, ) logs = [os.path.join(workload_path, f"{log_name}.txt")] if proc.is_ok: parser = Parser(logs) metrics = parser.process() metric = {} execution_details: Dict[str, Any] = {} throughput_field = f"perf_throughput_{model_precision}" if isinstance(metrics, dict): metric = {throughput_field: metrics.get(throughput_field, "")} execution_details = { f"{model_precision}_benchmark": benchmark.serialize(), } response_data.update({"progress": f"{idx}/{len(models)}"}) response_data.update(metric) response_data["execution_details"].update(execution_details) workdir.update_metrics( request_id=request_id, metric_data=metric, ) workdir.update_execution_details( request_id=request_id, execution_details=execution_details, ) log.debug(f"Parsed data is {json.dumps(response_data)}") mq.post_success("benchmark_progress", response_data) else: log.error("Benchmark failed.") mq.post_failure("benchmark_finish", {"message": "failed", "id": request_id}) raise ClientErrorException("Benchmark failed during execution.") mq.post_success("benchmark_finish", response_data)