Esempio n. 1
0
    def test_loss_calculation(self):
        from lpot.strategy.tpe import TpeTuneStrategy
        from lpot import Quantization

        quantizer = Quantization('fake_yaml.yaml')
        dataset = quantizer.dataset('dummy', (100, 3, 3, 1), label=True)
        dataloader = quantizer.dataloader(dataset)
        testObject = TpeTuneStrategy(self.constant_graph, quantizer.conf,
                                     dataloader)
        testObject._calculate_loss_function_scaling_components(
            0.01, 2, testObject.loss_function_config)
        # check if latency difference between min and max corresponds to 10 points of loss function
        tmp_val = testObject.calculate_loss(0.01, 2,
                                            testObject.loss_function_config)
        tmp_val2 = testObject.calculate_loss(0.01, 1,
                                             testObject.loss_function_config)
        self.assertTrue(True if int(tmp_val2 - tmp_val) == 10 else False)
        # check if 1% of acc difference corresponds to 10 points of loss function
        tmp_val = testObject.calculate_loss(0.02, 2,
                                            testObject.loss_function_config)
        tmp_val2 = testObject.calculate_loss(0.03, 2,
                                             testObject.loss_function_config)
        self.assertTrue(True if int(tmp_val2 - tmp_val) == 10 else False)
Esempio n. 2
0
    def test_matmul_biasadd_requantize_dequantize_fusion_with_softmax(self):
        tf.disable_v2_behavior()

        g = tf.Graph()
        with g.as_default():
            from lpot import Quantization

            x_data = np.array([[0.1, 0.2], [0.2, 0.3]])
            y_data = np.array([[1, 2], [3, 4]], dtype=np.float)
            x = tf.placeholder(tf.float32, shape=[2, 2], name='x')
            y = tf.constant(y_data, dtype=tf.float32, shape=[2, 2])
            z = tf.matmul(x, y)
            z = tf.nn.bias_add(z, [1, 2])
            z = tf.nn.softmax(z, name='op_to_store')
            found_quantized_matmul = False
            if tf.version.VERSION < "2.2.0":
                found_quantized_matmul = False
            else:
                with tf.Session() as sess:
                    sess.run(z, feed_dict={x: x_data, y: y_data})
                    float_graph_def = sess.graph.as_graph_def()

                    quantizer = Quantization('fake_yaml.yaml')
                    dataset = quantizer.dataset('dummy',
                                                shape=(2, 2),
                                                label=True)
                    dataloader = quantizer.dataloader(dataset, batch_size=2)
                    output_graph = quantizer(float_graph_def,
                                             q_dataloader=dataloader,
                                             eval_dataloader=dataloader)

                    for i in output_graph.as_graph_def().node:
                        if i.op == 'QuantizedMatMulWithBiasAndDequantize':
                            found_quantized_matmul = True
                            break
            self.assertEqual(found_quantized_matmul, False)
Esempio n. 3
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS))
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model checkpoints and predictions will be written."
    )

    # Other parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help=
        "The input data dir. Should contain the .json files for the task. If not specified, will run with tensorflow_datasets."
    )
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")

    parser.add_argument(
        '--version_2_with_negative',
        action='store_true',
        help=
        'If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument(
        '--null_score_diff_threshold',
        type=float,
        default=0.0,
        help=
        "If null_score - best_non_null is greater than the threshold predict null."
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training",
        action='store_true',
        help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument("--warmup_steps",
                        default=0,
                        type=int,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json output file."
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")

    parser.add_argument('--logging_steps',
                        type=int,
                        default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument("--do_calibration",
                        action='store_true',
                        help="Whether to do calibration.")
    parser.add_argument("--do_int8_inference",
                        action='store_true',
                        help="Whether to run int8 inference.")
    parser.add_argument("--do_fp32_inference",
                        action='store_true',
                        help="Whether to run fp32 inference.")
    parser.add_argument("--mkldnn_eval",
                        action='store_true',
                        help="evaluation with MKLDNN")
    parser.add_argument(
        "--tune",
        action='store_true',
        help="run Low Precision Optimization Tool to tune int8 acc.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="SQuAD task")
    parser.add_argument("--warmup",
                        type=int,
                        default=5,
                        help="warmup for performance")
    parser.add_argument('-i',
                        "--iter",
                        default=0,
                        type=int,
                        help='For accuracy measurement only.')
    parser.add_argument('--benchmark',
                        dest='benchmark',
                        action='store_true',
                        help='run benchmark')
    parser.add_argument('-r',
                        "--accuracy_only",
                        dest='accuracy_only',
                        action='store_true',
                        help='For accuracy measurement only.')
    parser.add_argument(
        "--tuned_checkpoint",
        default='./',
        type=str,
        metavar='PATH',
        help=
        'path to checkpoint tuned by Low Precision Optimization Tool (default: ./)'
    )
    parser.add_argument('--int8',
                        dest='int8',
                        action='store_true',
                        help='run benchmark')

    args = parser.parse_args()

    args.predict_file = os.path.join(
        args.output_dir, 'predictions_{}_{}.txt'.format(
            list(filter(None, args.model_name_or_path.split('/'))).pop(),
            str(args.max_seq_length)))

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    mix_qkv = False
    if args.do_calibration or args.do_int8_inference or args.tune:
        mix_qkv = True

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config,
        mix_qkv=mix_qkv,
        cache_dir=args.cache_dir if args.cache_dir else None)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                tokenizer,
                                                evaluate=False,
                                                output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Save the trained model and the tokenizer
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir,
                                            force_download=True,
                                            mix_qkv=mix_qkv)
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        model.to(args.device)

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce model loading logs

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            if args.mkldnn_eval or args.do_fp32_inference:
                model = model_class.from_pretrained(checkpoint,
                                                    force_download=True)
                model.to(args.device)

                # Evaluate
                result, _ = evaluate(args,
                                     model,
                                     tokenizer,
                                     prefix=global_step)
                result = dict(
                    (k + ('_{}'.format(global_step) if global_step else ''), v)
                    for k, v in result.items())
                results.update(result)

            if args.tune:

                def eval_func_for_lpot(model):
                    result, _ = evaluate(args, model, tokenizer)
                    for key in sorted(result.keys()):
                        logger.info("  %s = %s", key, str(result[key]))
                    bert_task_acc_keys = [
                        'best_f1', 'f1', 'mcc', 'spearmanr', 'acc'
                    ]
                    for key in bert_task_acc_keys:
                        if key in result.keys():
                            logger.info("Finally Eval {}:{}".format(
                                key, result[key]))
                            acc = result[key]
                            break
                    return acc

                model = model_class.from_pretrained(checkpoint,
                                                    force_download=True,
                                                    mix_qkv=True)
                model.to(args.device)
                dataset = load_and_cache_examples(args,
                                                  tokenizer,
                                                  evaluate=True,
                                                  output_examples=False)
                args.eval_batch_size = args.per_gpu_eval_batch_size * max(
                    1, args.n_gpu)
                eval_task = "squad"
                from lpot import Quantization
                quantizer = Quantization("./conf.yaml")
                dataset = quantizer.dataset('bert',
                                            dataset=dataset,
                                            task=eval_task,
                                            model_type=args.model_type)
                test_dataloader = quantizer.dataloader(
                    dataset, batch_size=args.eval_batch_size)
                quantizer(model, test_dataloader, eval_func=eval_func_for_lpot)
                exit(0)

            if args.benchmark or args.accuracy_only:
                model = model_class.from_pretrained(checkpoint, mix_qkv=True)
                model.to(args.device)
                if args.int8:
                    from lpot.utils.pytorch import load
                    new_model = load(
                        os.path.abspath(
                            os.path.expanduser(args.tuned_checkpoint)), model)
                else:
                    new_model = model
                result, _ = evaluate(args,
                                     new_model,
                                     tokenizer,
                                     prefix=global_step)
                exit(0)

            if args.do_calibration:
                model = model_class.from_pretrained(checkpoint,
                                                    force_download=True,
                                                    mix_qkv=True)
                model.to(args.device)
                model.qconfig = default_per_channel_qconfig
                propagate_qconfig_(model)
                add_observer_(model)
                # Evaluate
                evaluate(args,
                         model,
                         tokenizer,
                         prefix=global_step,
                         calibration=True)
                convert(model, inplace=True)
                quantized_model_path = "squad" + str(
                    global_step) + "_quantized_model"
                if not os.path.exists(quantized_model_path):
                    os.makedirs(quantized_model_path)
                model.save_pretrained(quantized_model_path)
                result, _ = evaluate(args,
                                     model,
                                     tokenizer,
                                     prefix=global_step)
                result = dict(
                    (k + ('_{}'.format(global_step) if global_step else ''), v)
                    for k, v in result.items())
                results.update(result)
            if args.do_int8_inference:
                model = model_class.from_pretrained(checkpoint,
                                                    force_download=True,
                                                    mix_qkv=True)
                model.to(args.device)
                model.qconfig = default_per_channel_qconfig
                propagate_qconfig_(model)
                add_observer_(model)
                convert(model, inplace=True)
                quantized_model_path = "squad" + str(
                    global_step) + "_quantized_model"
                if not os.path.exists(quantized_model_path):
                    logger.info("Please run calibration first!")
                    return
                model_bin_file = os.path.join(quantized_model_path,
                                              "pytorch_model.bin")
                state_dict = torch.load(model_bin_file)
                model.load_state_dict(state_dict)
                print(model)
                with torch.autograd.profiler.profile() as prof:
                    result, _ = evaluate(args,
                                         model,
                                         tokenizer,
                                         prefix=global_step)
                print(prof.key_averages().table(sort_by="cpu_time_total"))
                result = dict(
                    (k + ('_{}'.format(global_step) if global_step else ''), v)
                    for k, v in result.items())
                results.update(result)
    logger.info("Results: {}".format(results))

    return results
Esempio n. 4
0
        else:
            # TODO: wait scalar support in dummy dataset
            inputs_shape.append((1,))
            inputs_dtype.append('bool')
    logger.info("***** Final benchmark input name: {}, shape: {}".format( \
                model_detail['input'].keys(), inputs_shape))
    logger.info("***** Final benchmark output name: {}".format(model_detail['output']))
    batch_size = inputs_shape[0][0]

    if args.tune:
        # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
        from lpot import Quantization
        from lpot.adaptor.tf_utils.util import write_graph
        inputs = model_detail['input']
        outputs = model_detail['output']
        _write_inputs_outputs_to_yaml(args.yaml, "./config_tmp.yaml", list(inputs.keys()), outputs)

        quantizer = Quantization("./config_tmp.yaml")
        # generate dummy data
        dataset = quantizer.dataset(dataset_type='dummy', shape=inputs_shape,
                                low=1.0, high=20.0, dtype=inputs_dtype, label=True)
        data_loader = quantizer.dataloader(dataset=dataset,
                                           batch_size=batch_size,
                                           collate_fn=oob_collate_data_func)
        q_model = quantizer(args.model_path, q_dataloader=data_loader)
        write_graph(q_model.as_graph_def(), args.output_path)

    else:
        run_benchmark(model_detail, num_iter, num_warmup,
                      disable_optimize, batch_size, args.timeline)
Esempio n. 5
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list;"
        + ", ".join(ALL_MODELS))
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training",
        action='store_true',
        help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument("--warmup_steps",
                        default=0,
                        type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps',
                        type=int,
                        default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument("--mkldnn_eval",
                        action='store_true',
                        help="evaluation with MKLDNN")
    parser.add_argument("--mkldnn_train",
                        action='store_true',
                        help="training with MKLDNN")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument("--do_fp32_inference",
                        action='store_true',
                        help="Whether to run fp32 inference.")
    parser.add_argument("--do_calibration",
                        action='store_true',
                        help="Whether to do calibration.")
    parser.add_argument("--do_int8_inference",
                        action='store_true',
                        help="Whether to run int8 inference.")
    parser.add_argument("--do_bf16",
                        action='store_true',
                        help="run bf16 evaluation / training.")
    parser.add_argument("--tune",
                        action='store_true',
                        help="run lpot to tune int8 acc.")
    parser.add_argument("--warmup",
                        type=int,
                        default=2,
                        help="warmup for performance")

    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)
    mix_qkv = False
    if args.do_calibration or args.do_int8_inference or args.tune:
        mix_qkv = True
    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config,
        mix_qkv=mix_qkv,
        bf16=args.do_bf16,
        mkldnn_train=args.mkldnn_train,
        cache_dir=args.cache_dir if args.cache_dir else None)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                evaluate=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            logger.info("Evaluate:" + args.task_name)
            if args.mkldnn_eval or args.do_fp32_inference or args.do_bf16:
                model = model_class.from_pretrained(checkpoint)
                model.to(args.device)
                result = evaluate(args, model, tokenizer, prefix=prefix)
                result = dict((k + '_{}'.format(global_step), v)
                              for k, v in result.items())
                results.update(result)

            if args.tune:

                def eval_func_for_lpot(model):
                    result, perf = evaluate(args,
                                            model,
                                            tokenizer,
                                            prefix=prefix)
                    bert_task_acc_keys = [
                        'acc_and_f1', 'f1', 'mcc', 'spearmanr', 'acc'
                    ]
                    for key in bert_task_acc_keys:
                        if key in result.keys():
                            logger.info("Finally Eval {}:{}".format(
                                key, result[key]))
                            acc = result[key]
                            break
                    return acc

                model = model_class.from_pretrained(checkpoint, mix_qkv=True)
                model.to(args.device)
                eval_task_names = (
                    "mnli", "mnli-mm") if args.task_name == "mnli" else (
                        args.task_name, )

                for eval_task in eval_task_names:
                    eval_dataset = load_and_cache_examples(args,
                                                           eval_task,
                                                           tokenizer,
                                                           evaluate=True)

                    args.eval_batch_size = args.per_gpu_eval_batch_size * max(
                        1, args.n_gpu)
                    # multi-gpu eval
                    if args.n_gpu > 1:
                        model = torch.nn.DataParallel(model)

                    if args.mkldnn_eval:
                        from torch.utils import mkldnn as mkldnn_utils
                        model = mkldnn_utils.to_mkldnn(model)
                        print(model)
                    from lpot import Quantization
                    quantizer = Quantization("./conf.yaml")
                    if eval_task != "squad":
                        eval_task = 'classifier'
                    eval_dataset = quantizer.dataset(
                        'bert',
                        dataset=eval_dataset,
                        task=eval_task,
                        model_type=args.model_type)
                    test_dataloader = quantizer.dataloader(
                        eval_dataset, batch_size=args.eval_batch_size)
                    quantizer(model,
                              test_dataloader,
                              eval_func=eval_func_for_lpot)
                exit(0)

            if args.do_calibration:
                model = model_class.from_pretrained(checkpoint, mix_qkv=True)
                model.to(args.device)
                model.qconfig = default_per_channel_qconfig
                fallback_layers = {}
                if args.model_name_or_path == "bert-base-uncased" and args.task_name == "mrpc":
                    fallback_layers = {"bert.encoder.layer.9.output.dense."}
                propagate_qconfig_(model)
                fallback_layer(model,
                               layer_name="",
                               exculde_layers=fallback_layers)
                add_observer_(model)
                result, _ = evaluate(args,
                                     model,
                                     tokenizer,
                                     prefix=global_step,
                                     calibration=True)
                convert(model, inplace=True)
                quantized_model_path = args.task_name + "_quantized_model"
                if not os.path.exists(quantized_model_path):
                    os.makedirs(quantized_model_path)
                model.save_pretrained(quantized_model_path)
                print(model)
                result, _ = evaluate(args, model, tokenizer, prefix=prefix)
            if args.do_int8_inference:
                model = model_class.from_pretrained(checkpoint, mix_qkv=True)
                model.to(args.device)
                model.qconfig = default_per_channel_qconfig
                fallback_layers = {}
                if args.model_name_or_path == "bert-base-uncased" and args.task_name == "mrpc":
                    fallback_layers = {"bert.encoder.layer.9.output.dense."}
                propagate_qconfig_(model)
                fallback_layer(model,
                               layer_name="",
                               exculde_layers=fallback_layers)
                add_observer_(model)
                convert(model, inplace=True)
                quantized_model_path = args.task_name + "_quantized_model"
                if not os.path.exists(quantized_model_path):
                    logger.error(
                        "please do calibrantion befor run int8 inference")
                    return
                prepare(model, inplace=True)
                convert(model, inplace=True)
                model_bin_file = os.path.join(quantized_model_path,
                                              "pytorch_model.bin")
                state_dict = torch.load(model_bin_file)
                model.load_state_dict(state_dict)
                result, _ = evaluate(args, model, tokenizer, prefix=prefix)

    return results
Esempio n. 6
0
    arg_parser.add_argument('-w',
                            "--warmup_iter",
                            help='For benchmark measurement only.',
                            dest='warmup_iter',
                            default=200,
                            type=int)
    arg_parser.add_argument('--config', type=str, default='')
    arg_parser.add_argument('--output_model', type=str, default='')
    arg_parser.add_argument('--tune', action='store_true', default=False)
    arg_parser.add_argument('--benchmark',
                            dest='benchmark',
                            action='store_true',
                            help='run benchmark')

    args = arg_parser.parse_args()
    infer = model_infer(args)
    if args.tune:
        quantizer = Quantization(args.config)
        q_dataloader = quantizer.dataloader(infer, args.batch_size)
        output_graph = quantizer(args.input_graph,
                                 q_dataloader=q_dataloader,
                                 eval_func=infer.accuracy_check)
        try:
            write_graph(output_graph.as_graph_def(), args.output_model)
        except Exception as e:
            logging.getLogger().info("Failed to save model due to {}".format(
                str(e)))
    else:
        infer.run()
    def test_fold_pad_conv3(self):
        tf.compat.v1.disable_eager_execution()
        tf.compat.v1.reset_default_graph()
        x = tf.compat.v1.placeholder(tf.float32, [1, 56, 56, 16], name="input")
        x = tf.nn.relu(x)
        xw = tf.constant(np.random.random((2, 2, 16, 16)),
                         dtype=tf.float32,
                         name='y')
        x = tf.nn.conv2d(input=x,
                         filters=xw,
                         strides=[1, 1, 1, 1],
                         padding='VALID')

        y = tf.constant(np.random.random((1, 55, 55, 16)),
                        dtype=tf.float32,
                        name='y')

        z = tf.math.add(x, y, name='add')

        conv_weights = tf.compat.v1.get_variable(
            "weight", [3, 3, 16, 16],
            initializer=tf.compat.v1.random_normal_initializer())
        conv = tf.nn.conv2d(z,
                            conv_weights,
                            strides=[1, 2, 2, 1],
                            padding="VALID")
        normed = tf.compat.v1.layers.batch_normalization(conv)
        relu = tf.nn.relu(normed)

        conv_weights2 = tf.compat.v1.get_variable(
            "weight2", [3, 3, 16, 16],
            initializer=tf.compat.v1.random_normal_initializer())
        conv2 = tf.nn.conv2d(z,
                             conv_weights2,
                             strides=[1, 2, 2, 1],
                             padding="VALID")
        normed2 = tf.compat.v1.layers.batch_normalization(conv2)
        relu2 = tf.nn.relu(normed2)
        add = tf.math.add(relu, relu2, name='op_to_store')
        out_name = add.name.split(':')[0]
        with tf.compat.v1.Session() as sess:
            sess.run(tf.compat.v1.global_variables_initializer())
            output_graph_def = graph_util.convert_variables_to_constants(
                sess=sess,
                input_graph_def=sess.graph_def,
                output_node_names=[out_name])
            from lpot import Quantization

            quantizer = Quantization('fake_yaml.yaml')
            dataset = quantizer.dataset('dummy',
                                        shape=(100, 56, 56, 16),
                                        label=True)
            dataloader = quantizer.dataloader(dataset)
            output_graph = quantizer(output_graph_def,
                                     q_dataloader=dataloader,
                                     eval_dataloader=dataloader)
            quantize_v2_count = 0

            for i in output_graph.as_graph_def().node:
                if i.op == 'QuantizeV2':
                    quantize_v2_count += 1
            if self.disable_s8:
                self.assertEqual(quantize_v2_count, 1)
            else:
                self.assertEqual(quantize_v2_count, 2)