Esempio n. 1
0
    def F_to_K(self, F):
        """
        Compute agent 2's best cost-minimizing response K, given F.

        Parameters
        ==========
        F : array_like
            A self.k x self.n array

        Returns
        =======
        K : array_like, dtype = float
        P : array_like, dtype = float

        """
        Q2 = self.beta * self.theta
        R2 = -self.R - dot(F.T, dot(self.Q, F))
        A2 = self.A - dot(self.B, F)
        B2 = self.C
        lq = LQ(Q2, R2, A2, B2, beta=self.beta)
        P, neg_K, d = lq.stationary_values()
        return -neg_K, P
Esempio n. 2
0
    def K_to_F(self, K):
        """
        Compute agent 1's best value-maximizing response F, given K.

        Parameters
        ==========
        K : array_like
            A self.j x self.n array

        Returns
        =======
        F : array_like, dtype = float
        P : array_like, dtype = float

        """
        A1 = self.A + dot(self.C, K)
        B1 = self.B
        Q1 = self.Q
        R1 = self.R - self.beta * self.theta * dot(K.T, K)
        lq = LQ(Q1, R1, A1, B1, beta=self.beta)
        P, F, d = lq.stationary_values()
        return F, P
Esempio n. 3
0
    def robust_rule(self):
        """
        This method solves the robust control problem by tricking it into a
        stacked LQ problem, as described in chapter 2 of Hansen-Sargent's
        text "Robustness."  The optimal control with observed state is

            u_t = - F x_t

        And the value function is -x'Px

        Returns
        =======
        F : array_like, dtype = float
            The optimal control matrix from above above

        P : array_like, dtype = float
            The psoitive semi-definite matrix defining the value function

        K : array_like, dtype = float
            the worst-case shock matrix K, where :math:`w_{t+1} = K x_t` is
            the worst case shock

        """
        # == Simplify names == #
        A, B, C, Q, R = self.A, self.B, self.C, self.Q, self.R
        beta, theta = self.beta, self.theta
        k, j = self.k, self.j
        # == Set up LQ version == #
        I = identity(j)
        Z = np.zeros((k, j))
        Ba = hstack([B, C])
        Qa = vstack([hstack([Q, Z]), hstack([Z.T, -beta * I * theta])])
        lq = LQ(Qa, R, A, Ba, beta=beta)
        # == Solve and convert back to robust problem == #
        P, f, d = lq.stationary_values()
        F = f[:k, :]
        K = -f[k:f.shape[0], :]
        return F, K, P
Esempio n. 4
0
"""
Origin: QE by John Stachurski and Thomas J. Sargent
Filename: solution_ree_ex2.py
Authors: Chase Coleman, Spencer Lyon, Thomas Sargent, John Stachurski
Solves an exercise from the rational expectations module
"""
from __future__ import print_function
import numpy as np
from lqcontrol import LQ
from solution_ree_ex1 import beta, R, Q, B

candidates = ((94.0886298678, 0.923409232937), (93.2119845412, 0.984323478873),
              (95.0818452486, 0.952459076301))

for kappa0, kappa1 in candidates:

    # == Form the associated law of motion == #
    A = np.array([[1, 0, 0], [0, kappa1, kappa0], [0, 0, 1]])

    # == Solve the LQ problem for the firm == #
    lq = LQ(Q, R, A, B, beta=beta)
    P, F, d = lq.stationary_values()
    F = F.flatten()
    h0, h1, h2 = -F[2], 1 - F[0], -F[1]

    # == Test the equilibrium condition == #
    if np.allclose((kappa0, kappa1), (h0, h1 + h2)):
        print('Equilibrium pair =', kappa0, kappa1)
        print('(h0, h1, h2) = ', h0, h1, h2)
        break