Esempio n. 1
0
def get_one_sigma_errs(indep_vars, params, model, **kwargs):
    """
    Return the function mean and 1-sigma error at each `k` value
    """         
    data = {name : params[name] for name in params.columns}
    data.update(kwargs)
    def function(data, **indep_vars):
        data.update(indep_vars)
        values = model(**data)
        errs = one_sigma(values)
        return 0.5*(errs[0] + errs[1])
    
    names = indep_vars.keys()    
    indep_vars = np.vstack([v for v in indep_vars.values()]).T
    return np.array([function(data, **dict(zip(names, row))) for row in indep_vars])
Esempio n. 2
0
def load_data(data, space, **meta):
    """
    Load the data, saved in columns to an ASCII file, into either
    a ``PkmuResult`` or ``PkResult`` object
    """
    # make the edges
    k = data[:, 0]
    kedges = make_kedges(data)
    factor = 1.0 / 12 ** 0.5

    if space == "redshift":
        Nmu = 5
        muedges = np.linspace(0, 1, Nmu + 1)
        mu = 0.5 * (muedges[1:] + muedges[:-1])
        k, mu = np.broadcast_arrays(k[..., None], mu[None, ...])
        power = np.vstack([data[:, 2 * i + 1] for i in range(Nmu)]).T
        error = np.vstack([data[:, 2 * (i + 1)] for i in range(Nmu)]).T
        data_dict = {"power": power, "error": error * factor, "k": k, "mu": mu}
        return Power2dDataSet([kedges, muedges], data_dict, **meta)
    elif space == "real":
        data_dict = {"power": data[:, -2], "error": data[:, -1] * factor, "k": k}
        return Power1dDataSet(kedges, data_dict, **meta)
    else:
        raise ValueError
Esempio n. 3
0
    def write(self, key, result, model, eval_kws, **extra):
        
        if 'k' not in key:
            raise ValueError("to write the best-fit function must have `k` in the key")
            
        index_cols = key.keys()
        with self.open(index_cols) as output:

            Nk = len(key['k'])
            
            # the function mean
            kws = eval_kws.copy()
            params = dict(zip(result.free_names, result.values()))
            kws.update(params)
            mu = model.eval(**kws)
        
            # get the 1sigma errors
            traces = [result[k].flat_trace for k in result.free_names]
            other_names = [name for name in model.param_names if name not in result.free_names]
            traces += [np.repeat(result[name].median, len(traces[0])) for name in other_names]
            
            params = np.vstack(traces).T
            params = pd.DataFrame(params, columns=result.free_names+other_names)
            indep_vars = {k:eval_kws[k] for k in model.independent_vars}
            mean_errs = get_one_sigma_errs(indep_vars, params, model.eval, **eval_kws)
            
            # append to the output frame
            d = {'mean':mu, 'error':mean_errs}
            for k in key:
                if np.isscalar(key[k]):
                    d[k] = np.repeat(key[k], Nk)
                else:
                    d[k] = key[k]
            for k in extra:
                d[k] = np.repeat(extra[k], Nk)
            self._output = output.append(pd.DataFrame(d))