def testGetLongitudeValue(self): """Test if getLongitude() and getRa() return the expected value. """ for lon, lat in self._dataset: for point in ( SpherePoint(lon, lat), SpherePoint(lon.asDegrees(), lat.asDegrees(), degrees), SpherePoint(lon.asRadians(), lat.asRadians(), radians), ): self.assertIsInstance(point.getLongitude(), geom.Angle) # Behavior for non-finite points is undefined; depends on internal # data representation if point.isFinite(): self.assertGreaterEqual(point.getLongitude().asDegrees(), 0.0) self.assertLess(point.getLongitude().asDegrees(), 360.0) # Longitude not guaranteed to match input at pole if not point.atPole(): # assertAnglesAlmostEqual handles angle wrapping internally self.assertAnglesAlmostEqual(lon, point.getLongitude()) self.assertAnglesAlmostEqual(lon, point.getRa()) # Vector construction should return valid longitude even in edge cases. point = SpherePoint(lsst.sphgeom.Vector3d(0.0, 0.0, -1.0)) self.assertGreaterEqual(point.getLongitude().asDegrees(), 0.0) self.assertLess(point.getLongitude().asDegrees(), 360.0)
def testVector3dConstructor(self): # test poles for z in (-11.3, -1.1, 0.1, 2.5): # arbitrary non-zero values sp = SpherePoint(lsst.sphgeom.Vector3d(0.0, 0.0, z)) self.assertTrue(sp.atPole()) self.assertEqual(sp.getLongitude().asRadians(), 0.0) if z < 0: self.assertAnglesAlmostEqual(sp.getLatitude(), -90 * degrees) else: self.assertAnglesAlmostEqual(sp.getLatitude(), 90 * degrees) spx = SpherePoint(lsst.sphgeom.Vector3d(11.1, 0.0, 0.0)) self.assertAnglesAlmostEqual(spx.getLongitude(), 0.0 * degrees) self.assertAnglesAlmostEqual(spx.getLatitude(), 0.0 * degrees) spy = SpherePoint(lsst.sphgeom.Vector3d(0.0, 234234.5, 0.0)) self.assertAnglesAlmostEqual(spy.getLongitude(), 90.0 * degrees) self.assertAnglesAlmostEqual(spy.getLatitude(), 0.0 * degrees) spxy = SpherePoint(lsst.sphgeom.Vector3d(7.5, -7.5, 0.0)) self.assertAnglesAlmostEqual(spxy.getLongitude(), -45.0 * degrees) self.assertAnglesAlmostEqual(spxy.getLatitude(), 0.0 * degrees) spxz = SpherePoint(lsst.sphgeom.Vector3d(100.0, 0.0, -100.0)) self.assertAnglesAlmostEqual(spxz.getLongitude(), 0.0 * degrees) self.assertAnglesAlmostEqual(spxz.getLatitude(), -45.0 * degrees) # Only one singularity: a vector of all zeros with self.assertRaises(pexEx.InvalidParameterError): SpherePoint(lsst.sphgeom.Vector3d(0.0, 0.0, 0.0))
def testSeparationValueAbsolute(self): """Test if separation() returns specific values. """ # Test from "Meeus, p. 110" (test originally written for coord::Coord; # don't know exact reference) spica = SpherePoint(201.2983, -11.1614, degrees) arcturus = SpherePoint(213.9154, 19.1825, degrees) # Verify to precision of quoted distance and positions. self.assertAlmostEqual( 32.7930, spica.separation(arcturus).asDegrees(), 4) # Verify small angles: along a constant ra, add an arcsec to spica dec. epsilon = 1.0*geom.arcseconds spicaPlus = SpherePoint(spica.getLongitude(), spica.getLatitude() + epsilon) self.assertAnglesAlmostEqual(epsilon, spicaPlus.separation(spica))
def testOffsetValue(self): """Test if offset() returns the expected value. """ # This should cover arcs over the meridian, across the pole, etc. for lon1, lat1 in self._dataset: point1 = SpherePoint(lon1, lat1) for lon2, lat2 in self._dataset: if lon1 == lon2 and lat1 == lat2: continue point2 = SpherePoint(lon2, lat2) bearing = point1.bearingTo(point2) distance = point1.separation(point2) # offsetting point1 by bearing and distance should produce the same result as point2 newPoint = point1.offset(bearing, distance) self.assertIsInstance(newPoint, SpherePoint) self.assertSpherePointsAlmostEqual(point2, newPoint) if newPoint.atPole(): self.assertAnglesAlmostEqual(newPoint.getLongitude(), 0*degrees) # measuring the separation and bearing from point1 to the new point # should produce the requested separation and bearing measuredDistance = point1.separation(newPoint) self.assertAnglesAlmostEqual(measuredDistance, distance) if abs(measuredDistance.asDegrees() - 180) > 1e-5: # The two points are not opposite each other on the sphere, # so the bearing has a well defined value measuredBearing = point1.bearingTo(newPoint) self.assertAnglesAlmostEqual(measuredBearing, bearing) # offset by a negative amount in the opposite direction should produce the same result newPoint2 = point1.offset(bearing + 180 * degrees, -distance) self.assertIsInstance(newPoint2, SpherePoint) # check angular separation (longitude is checked below) self.assertSpherePointsAlmostEqual(newPoint, newPoint2) if point1.isFinite() and point2.isFinite(): if not point2.atPole(): self.assertAnglesAlmostEqual( point2.getLongitude(), newPoint.getLongitude()) self.assertAnglesAlmostEqual( point2.getLongitude(), newPoint2.getLongitude()) self.assertAnglesAlmostEqual( point2.getLatitude(), newPoint.getLatitude()) self.assertAnglesAlmostEqual( point2.getLatitude(), newPoint2.getLatitude()) else: self.assertTrue(math.isnan( newPoint.getLongitude().asRadians())) self.assertTrue(math.isnan( newPoint2.getLongitude().asRadians())) self.assertTrue(math.isnan( newPoint.getLatitude().asRadians())) self.assertTrue(math.isnan( newPoint2.getLatitude().asRadians())) # Test precision near the poles lon = 123.0*degrees almostPole = SpherePoint(lon, self.nextDown(90.0*degrees)) goSouth = almostPole.offset(-90.0*degrees, 90.0*degrees) self.assertAnglesAlmostEqual(lon, goSouth.getLongitude()) self.assertAnglesAlmostEqual(0.0*degrees, goSouth.getLatitude()) goEast = almostPole.offset(0.0*degrees, 90.0*degrees) self.assertAnglesAlmostEqual(lon + 90.0*degrees, goEast.getLongitude()) self.assertAnglesAlmostEqual(0.0*degrees, goEast.getLatitude())
def testRotatedValue(self): """Test if rotated() returns the expected value. """ # Try rotating about the equatorial pole (ie. along a parallel). longitude = 90.0 latitudes = [0.0, 30.0, 60.0] arcLen = 10.0 pole = SpherePoint(0.0*degrees, 90.0*degrees) for latitude in latitudes: point = SpherePoint(longitude*degrees, latitude*degrees) newPoint = point.rotated(pole, arcLen*degrees) self.assertIsInstance(newPoint, SpherePoint) self.assertAlmostEqual( longitude + arcLen, newPoint.getLongitude().asDegrees()) self.assertAlmostEqual( latitude, newPoint.getLatitude().asDegrees()) # Try with pole = vernal equinox and rotate up the 90 degree meridian. pole = SpherePoint(0.0*degrees, 0.0*degrees) for latitude in latitudes: point = SpherePoint(longitude*degrees, latitude*degrees) newPoint = point.rotated(pole, arcLen*degrees) self.assertAlmostEqual( longitude, newPoint.getLongitude().asDegrees()) self.assertAlmostEqual( latitude + arcLen, newPoint.getLatitude().asDegrees()) # Test accuracy close to coordinate pole point = SpherePoint(90.0*degrees, np.nextafter(90.0, -inf)*degrees) newPoint = point.rotated(pole, 90.0*degrees) self.assertAlmostEqual(270.0, newPoint.getLongitude().asDegrees()) self.assertAlmostEqual(90.0 - np.nextafter(90.0, -inf), newPoint.getLatitude().asDegrees()) # Generic pole; can't predict position, but test for rotation # invariant. pole = SpherePoint(283.5*degrees, -23.6*degrees) for lon, lat in self._dataset: point = SpherePoint(lon, lat) dist = point.separation(pole) newPoint = point.rotated(pole, -32.4*geom.radians) self.assertNotAlmostEqual(point.getLongitude().asDegrees(), newPoint.getLongitude().asDegrees()) self.assertNotAlmostEqual(point.getLatitude().asDegrees(), newPoint.getLatitude().asDegrees()) self.assertAnglesAlmostEqual(dist, newPoint.separation(pole)) # Non-finite values give undefined rotations for latitude in latitudes: point = SpherePoint(longitude*degrees, latitude*degrees) nanPoint = point.rotated(pole, nan*degrees) infPoint = point.rotated(pole, inf*degrees) self.assertTrue(math.isnan(nanPoint.getLongitude().asRadians())) self.assertTrue(math.isnan(nanPoint.getLatitude().asRadians())) self.assertTrue(math.isnan(infPoint.getLongitude().asRadians())) self.assertTrue(math.isnan(infPoint.getLatitude().asRadians())) # Non-finite points rotate into non-finite points for point in [ SpherePoint(-inf*degrees, 1.0*radians), SpherePoint(32.0*degrees, nan*radians), ]: newPoint = point.rotated(pole, arcLen*degrees) self.assertTrue(math.isnan(nanPoint.getLongitude().asRadians())) self.assertTrue(math.isnan(nanPoint.getLatitude().asRadians())) self.assertTrue(math.isnan(infPoint.getLongitude().asRadians())) self.assertTrue(math.isnan(infPoint.getLatitude().asRadians())) # Rotation around non-finite poles undefined for latitude in latitudes: point = SpherePoint(longitude*degrees, latitude*degrees) for pole in [ SpherePoint(-inf*degrees, 1.0*radians), SpherePoint(32.0*degrees, nan*radians), ]: newPoint = point.rotated(pole, arcLen*degrees) self.assertTrue(math.isnan( nanPoint.getLongitude().asRadians())) self.assertTrue(math.isnan(nanPoint.getLatitude().asRadians())) self.assertTrue(math.isnan( infPoint.getLongitude().asRadians())) self.assertTrue(math.isnan(infPoint.getLatitude().asRadians()))
def testDefaultConstructor(self): sp = SpherePoint() self.assertTrue(math.isnan(sp.getLongitude())) self.assertTrue(math.isnan(sp.getLatitude())) self.assertFalse(sp.isFinite())