Esempio n. 1
0
    def testRegularizationSidelobes(self):
        """Test that artificial chromatic sidelobes are suppressed.
        """
        clampFrequency = 2.
        regularizationWidth = 2
        noiseLevel = 0.1
        sourceAmplitude = 100.
        modelImages = self.makeTestImages(seed=5, nSrc=5, psfSize=3., noiseLevel=noiseLevel,
                                          detectionSigma=5., sourceSigma=sourceAmplitude, fluxRange=2.)
        templateImage = np.mean([model.array for model in modelImages], axis=0)
        sidelobeImages = self.makeTestImages(seed=5, nSrc=5, psfSize=1.5, noiseLevel=noiseLevel/10.,
                                             detectionSigma=5., sourceSigma=sourceAmplitude*5., fluxRange=2.)
        statsCtrl = self.prepareStats()
        signList = [-1., 0., 1.]
        sidelobeShift = (0., 4.)
        for model, sidelobe, sign in zip(modelImages, sidelobeImages, signList):
            sidelobe.array *= sign
            model.array += applyDcr(sidelobe.array, sidelobeShift, useInverse=False)
            model.array += applyDcr(sidelobe.array, sidelobeShift, useInverse=True)

        dcrModels = DcrModel(modelImages=modelImages, mask=self.mask)
        refModels = [dcrModels[subfilter].clone() for subfilter in range(self.dcrNumSubfilters)]

        dcrModels.regularizeModelFreq(modelImages, self.bbox, statsCtrl, clampFrequency,
                                      regularizationWidth=regularizationWidth)
        for model, refModel, sign in zip(modelImages, refModels, signList):
            # Make sure the test parameters do reduce the outliers
            self.assertGreater(np.sum(np.abs(refModel.array - templateImage)),
                               np.sum(np.abs(model.array - templateImage)))
    def testRegularizationSidelobes(self):
        """Test that artificial chromatic sidelobes are suppressed.
        """
        clampFrequency = 2.
        regularizationWidth = 2
        noiseLevel = 0.1
        sourceAmplitude = 100.
        modelImages = self.makeTestImages(seed=5, nSrc=5, psfSize=3., noiseLevel=noiseLevel,
                                          detectionSigma=5., sourceSigma=sourceAmplitude, fluxRange=2.)
        templateImage = np.mean([model.array for model in modelImages], axis=0)
        sidelobeImages = self.makeTestImages(seed=5, nSrc=5, psfSize=1.5, noiseLevel=noiseLevel/10.,
                                             detectionSigma=5., sourceSigma=sourceAmplitude*5., fluxRange=2.)
        statsCtrl = self.prepareStats()
        signList = [-1., 0., 1.]
        sidelobeShift = (0., 4.)
        for model, sidelobe, sign in zip(modelImages, sidelobeImages, signList):
            sidelobe.array *= sign
            model.array += applyDcr(sidelobe.array, sidelobeShift, useInverse=False)
            model.array += applyDcr(sidelobe.array, sidelobeShift, useInverse=True)

        dcrModels = DcrModel(modelImages=modelImages, mask=self.mask)
        refModels = [dcrModels[subfilter].clone() for subfilter in range(self.dcrNumSubfilters)]

        dcrModels.regularizeModelFreq(modelImages, self.bbox, statsCtrl, clampFrequency,
                                      regularizationWidth=regularizationWidth)
        for model, refModel, sign in zip(modelImages, refModels, signList):
            # Make sure the test parameters do reduce the outliers
            self.assertGreater(np.sum(np.abs(refModel.array - templateImage)),
                               np.sum(np.abs(model.array - templateImage)))
Esempio n. 3
0
 def testApplyDcr(self):
     """Test that the image transformation reduces to a simple shift.
     """
     dxVals = [-2, 1, 0, 1, 2]
     dyVals = [-2, 1, 0, 1, 2]
     x0 = 13
     y0 = 27
     inputImage = afwImage.MaskedImageF(self.bbox)
     image = inputImage.image.array
     image[y0, x0] = 1.
     for dx in dxVals:
         for dy in dyVals:
             shift = (dy, dx)
             shiftedImage = applyDcr(image, shift, useInverse=False)
             # Create a blank reference image, and add the fake point source at the shifted location.
             refImage = afwImage.MaskedImageF(self.bbox)
             refImage.image.array[y0 + dy, x0 + dx] = 1.
             self.assertFloatsAlmostEqual(shiftedImage, refImage.image.array, rtol=1e-12, atol=1e-12)
 def testApplyDcr(self):
     """Test that the image transformation reduces to a simple shift.
     """
     dxVals = [-2, 1, 0, 1, 2]
     dyVals = [-2, 1, 0, 1, 2]
     x0 = 13
     y0 = 27
     inputImage = afwImage.MaskedImageF(self.bbox)
     image = inputImage.image.array
     image[y0, x0] = 1.
     for dx in dxVals:
         for dy in dyVals:
             shift = (dy, dx)
             shiftedImage = applyDcr(image, shift, useInverse=False)
             # Create a blank reference image, and add the fake point source at the shifted location.
             refImage = afwImage.MaskedImageF(self.bbox)
             refImage.image.array[y0 + dy, x0 + dx] = 1.
             self.assertFloatsAlmostEqual(shiftedImage, refImage.image.array, rtol=1e-12, atol=1e-12)