def init_params(options): n_chars = options['n_chars'] n_x = options['n_x'] params = OrderedDict() # character embedding params['Wemb'] = uniform_weight(n_chars, n_x) # encoding characters into words params = param_init_encoder(options, params, prefix='encoder_f') params = param_init_encoder(options, params, prefix='encoder_b') return params
def init_params(options,W): n_h = options['n_h'] n_y = options['n_y'] params = OrderedDict() # W is initialized by the pretrained word embedding params['Wemb'] = W.astype(config.floatX) # otherwise, W will be initialized randomly # n_words = options['n_words'] # n_x = options['n_x'] # params['Wemb'] = uniform_weight(n_words,n_x) # bidirectional LSTM params = param_init_encoder(options,params,prefix="lstm_encoder") params = param_init_encoder(options,params,prefix="lstm_encoder_rev") params['Wy'] = uniform_weight(2*n_h,n_y) params['by'] = zero_bias(n_y) return params
def init_params(options, W): n_p = options['n_p'] n_h = options['n_h'] n_y = options['n_y'] params = OrderedDict() # W is initialized by the pretrained word embedding params['Wemb'] = W.astype(config.floatX) # otherwise, W will be initialized randomly # n_words = options['n_words'] # n_x = options['n_x'] # params['Wemb'] = uniform_weight(n_words,n_x) # bidirectional LSTM #params = param_init_encoder(options,params, prefix="lstm_encoder") #params = param_init_encoder(options,params, prefix="lstm_encoder_rev") params = param_init_encoder(options, params, prefix="gru_encoder") params = param_init_encoder(options, params, prefix="gru_encoder_rev") #params['Wy'] = uniform_weight(n_p, 2*n_h+1, scale=0.1) params['Wy'] = np.squeeze(uniform_weight(n_p, 2 * n_h, 1)) return params
def init_params(options, W): n_words = options['n_words'] n_x = options['n_x'] n_h = options['n_h'] n_z = options['n_z'] params = OrderedDict() # word embedding # params['Wemb'] = uniform_weight(n_words,n_x) params['Wemb'] = W.astype(config.floatX) params = param_init_encoder(options, params) params['Vhid'] = uniform_weight(n_h, n_x) params['bhid'] = zero_bias(n_words) params['C0'] = uniform_weight(n_z, n_x) return params