Esempio n. 1
0
def main():

    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module=importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt=countModel(modelFamily,nlaws,setf,[dataset],floatNoise)
    recon_expt=countModel(modelFamily,nlaws,setf,[dataset],floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n'*5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf=os.path.join(outdir,'1-summary.txt')
    summary=numpy.genfromtxt(summf)[-1,:]
    drawmap=summary[-(ncols+2):-2] 
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap=ana.get_best_fit()['parameters']
    
    if dataset=='sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf)==20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d=numpy.genfromtxt('%s/%s'%(outdir,datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset=='cosmos':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf)==24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d=numpy.genfromtxt('%s/%s'%(outdir,datafiles[0][8:]))
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d=numpy.genfromtxt(os.path.join(outdir,'sim.txt'))
    
    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0,29.2,0.4)
    bins3 = numpy.arange(18.,29.2,0.1)
    print len(expt.parameters)
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap# [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters
    #novak 2017
    L_n   =[21.77,22.15,22.46,22.77,23.09,23.34]
    rho_n =[-2.85,-2.88,-3.12,-3.55,-4.05,-4.63]
    L_ner_u =[0.23,0.18,0.19, 0.2, 0.21, 0.28]
    L_ner_d =[1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner=[0.09, 0.03,0.0355,0.059,0.1,0.234]
    mcalpine=openlit('mcalpine-2013-tot.txt')
    padovani=openlit('Padovani_2015_RL_AGN')[1:]
    mcalpine_panels=[0,1,2,3,4,4,5,6,6]
    padovani_panels=[0,1,0,2,2,3,3,5,6,6]
    #print padovani
    print padovani[0][:,0],padovani[0][:,1],padovani[0][:,2],padovani[0][:,3]
    #sys.exit()
    
            

     #novak 2018
    L_n2   =[[21.77,22.24,22.68,23.16,23.69,24.34, 24.74,25.56],\
             [22.30,22.61,22.96,23.38,23.80,24.10, 24.55,25.14],\
             [22.61,22.86,23.14,23.45,23.82,24.14, 24.40,24.71],\
             [22.85,23.16,23.69,24.24,24.80,25.31, 25.96,26.69],\
             [23.10,23.38,23.86,24.36,24.86,25.35, 25.94,26.36],\
             [23.32,23.57,23.94,24.32,24.67,25.06, 25.47,25.96],\
             [23.54,23.75,24.13,24.45,24.90,25.27, 25.74,26.10],\
             [23.73,23.99,24.57,25.10,25.68,26.18, 26.83,27.51],\
             [24.01,24.26,24.76,25.26,25.91,26.19, 27.45],\
             [24.30,24.56,24.80,25.13,25.37,25.80, 25.97,26.49]]
             
 
    L_ner_u2  =[[0.23,0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03],\
                [0.11,0.20, 0.26, 0.25, 0.24, 0.35, 0.31, 0.15],\
                [0.08,0.15, 0.20, 0.22, 0.17, 0.18, 0.24, 0.28],\
                [0.072,0.33,0.38, 0.40, 0.48, 0.42, 0.41, 0.28],\
                [0.080,0.30,0.32, 0.32, 0.32, 0.33, 0.24, 0.34],\
                [0.068,0.22,0.24, 0.25, 0.29, 0.30, 0.28, 0.21],\
                [0.067,0.22,0.21, 0.26, 0.18, 0.17,0.075, 0.11],\
                [0.093,0.36,0.31, 0.30, 0.25, 0.28, 0.16,0.028],\
                [0.076,0.34,0.36, 0.38, 0.24, 0.47, 0.27],\
                [0.097,0.14,0.20, 0.16, 0.23, 0.092,0.22,0.026]]
                
    
    L_ner_d2  =[[1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50],\
               [0.29, 0.21, 0.15, 0.16, 0.17, 0.06, 0.099,0.29],\
               [0.24, 0.17, 0.12, 0.10, 0.15, 0.15, 0.08,0.074],\
               [0.16, 0.24, 0.19, 0.17, 0.15, 0.09, 0.16, 0.33],\
               [0.30, 0.19, 0.18, 0.18, 0.18, 0.17, 0.26, 0.18],\
               [0.14, 0.18, 0.15, 0.14, 0.10, 0.095,0.11, 0.21],\
               [0.19, 0.14, 0.15, 0.11, 0.19, 0.19, 0.29, 0.28],\
               [0.40, 0.17, 0.21, 0.23, 0.27, 0.25, 0.37, 0.53],\
               [0.20, 0.17, 0.16, 0.14, 0.27, 0.042, 0.27],\
               [0.22, 0.16, 0.10, 0.14,0.072, 0.21, 0.08, 0.30]]

    rho_n2 =[[-2.84,-2.90,-3.34,-4.00,-4.92,-4.92, -5.22,-5.07],\
             [-2.95,-3.17,-3.46,-4.24,-4.76,-5.41, -5.23,-5.44],\
             [-2.95,-3.11,-3.44,-3.81,-4.37,-4.48, -4.90,-5.14],\
             [-2.99,-3.24,-3.89,-4.54,-5.27,-5.33, -5.69,-5.89],\
             [-3.32,-3.51,-4.06,-4.74,-5.28,-5.43, -6.08,-5.70],\
             [-3.29,-3.54,-4.02,-4.45,-5.11,-5.56, -5.37,-6.07],\
             [-3.43,-3.61,-4.19,-4.56,-5.09,-5.34, -5.70,-5.75],\
             [-3.88,-3.98,-4.64,-5.33,-5.73,-6.27, -6.14,-6.77],\
             [-3.85,-4.28,-5.05,-5.60,-5.68,-6.44, -6.59],\
             [-4.43,-4.91,-5.46,-5.58,-5.89,-6.23, -6.26,-6.91]]
       
    rho_ner_u2=[[0.08,0.024,0.038,0.083,0.28,0.28 , 0.45, 0.34],\
                [0.048,0.027,0.036,0.089,0.17,0.45, 0.34, 0.45],\
                [0.062,0.024,0.032,0.048,0.096, 0.11,0.18,0.25],\
                [0.042,0.018,0.035,0.073,0.180, 0.20,0.34,0.45],\
                [0.045,0.019,0.033,0.072,0.15,  0.17,0.45,0.25],\
                [0.040,0.022,0.033,0.055,0.13,  0.22,0.17,0.45],\
                [0.061,0.020,0.035,0.055,0.099, 0.14,0.22,0.25],\
                [0.044,0.022,0.044,0.11, 0.16, 0.34, 0.28,0.76],\
                [0.048,0.025,0.058,0.13, 0.24, 0.34, 0.45],\
                [0.084,0.058,0.11 ,0.24, 0.20, 0.28, 0.28,0.76]]
                
    rho_ner_d2=[[0.07,0.023,0.035,0.070,0.25,0.25 , 0.37, 0.30],\
                [0.043,0.026,0.033,0.074,0.16,0.37, 0.30, 0.37],\
                [0.054,0.023,0.030,0.043,0.079,0.086,0.17,0.22],\
                [0.038,0.017,0.032,0.062,0.17,0.19, 0.30, 0.37],\
                [0.041,0.019,0.031,0.062,0.11,0.16, 0.37, 0.22],\
                [0.037,0.021,0.031,0.049,0.098,0.20,0.16, 0.37],\
                [0.054,0.019,0.032,0.049,0.081,0.11,0.20, 0.22],\
                [0.040,0.021,0.040,0.085,0.15, 0.30, 0.25,0.52],\
                [0.043,0.024,0.051,0.10, 0.15, 0.30, 0.37],\
                [0.070,0.051,0.087,0.16,0.19, 0.25, 0.25, 0.52]]

    
    fig = plt.figure()
    pre_chain='12'
    #pre_chain='01'
    chains=['12a','12b','12c','12d','12e','12f','12g','12h','12i']#chains_191062
    chains=['22a','22b','22c','22d','22e','22f','22g','22h','22i']
    chains=['32a','32b','32c','32d','32e','32f','32g','32h','32i']
    chains=['42a','42b','42c','42d','42e','42f','42g','42h','42i']
    chains=['62a_2','62b_2','62c_2','62d_2','62e_2','62f_2','62g_2','62h_2','62i_2'] #chains_191062
    chains=['01a_3','01b_3','01c_3','01d_3','01e','01f_3','01g_3','01h_3','01i_3']#chains_191101
    chains=['01a_4','01b_4','01c_4','01d_4','01e_4','01f_4','01g_4','01h_4','01i_4_2']#chains_191101 7x7 grid
    chains=['02a_4','02b_4','02c_4','02d_4','02e_4','02f_4','02g_5','02h_4','02i_4']#chains_191101 7x7 grid lognorm
    #chains=['01a_5','01b_5','01c_5','01d_5','01e_5','01f_5','01g_5','01h_5','01i_5']#chains_191101 3x3 grid scaled
    #chains=['01a_6','01b_6_3','01c_6','01d_6_2','01e_6_2','01f_6','01g_6_2','01h_6_2','01i_6_2']#chains_191101 11x11 grid
    #chains=['01a','01b','01c','01d','01e','01f','01g','01h','01i'] #chains_1912 #includeing maskregion
    chains=['01a_2_1','01b_2_1','01c_2_1','01d_2','01e_2','01f_2','01g_2','01h_2','01i_2'] #1912 exclding peterinclde match
    #chains=['01a_2','01b_2','01c_2_1','01d_2','01e_2','01f_2','01g_2','01h_2','01i_2'] #chains_1912 excluding peter
    #chains=['01a_3','01b_3','01c_3','01d_3','01e_3','01f_3_1','01g','01h','01i'] #chains_1912 including peter
    #chains=['01a_4_1','01b_4_1','01c_4','01d_4','01e_4','01f_4_1','01g_4','01h_4','01i_4'] #chains_1912 no mass selection
    chains=['02a','02b_2','02c','02d','02e','02f','02g','02h','02i'] #lgnorm #chains_1912 excluding peter
    chains=['01a_1','01b','01c','01d','01e','01f_1','01g','01h','01i'] #chains_2001 DR4
    chains4=['01a_4','01b_2','01c_2','01d_2','01e_2','01f_2','01g','01h_2','01i_2'] #chains_2001 DR4 remove phi2
    #chains=['01a_9','01b_9','01c_9','01d_9','01e_9','01f_9','01g_9','01h_9','01i_9','01j_9'] #chains_2001 DR4 dpl_dpl no mass selection
    chains=['01a_7','01b_7','01c_7','01d_7','01e_7','01f_7','01g_7','01h_7','01i_7','01j_7'] #chains_2001 DR4 dpl_dpl
    chains4=['01a_6','01b_6','01c_6','01d_6','01e_6_3','01f_6','01g_6','01h_6','01i_6','01j_6'] #chains_2001 DR4 dpl_dpl Lmin=15
    #chains=['01a_6_3','01b_6_3','01c_6_3','01d_6_2','01e_6_2','01f_6_2','01g_6_2','01h_6_3','01i_6_3','01j_6_3'] #chains_2001 DR4 dpl_dpl Lmin=21
    chains2=['02a_z_6x','02b_z_6x','02c_z_6x','02d_z_6x','02e_z_6x','02f_z_6x','02g_z_6x','02h_z_6x','02i_z_6x','02j_z_6x']#Novak individual model
    chains2=['02a_z_6x_1','02a_z_6x_2','02b_z_7x','02c_z_7x','02d_z_7x','02e_z_7x','02f_z_7x','02g_z_7x','02h_z_7x','02i_z_7x','02j_z_7x']#Novak individual model newz
    #chains=['02a_4','02b_3','02c_4','02d_4','02e_4','02f_4','02g_4','02h_4','02i_4','02j_3'] ##chains_2001 DR4 logn_dpl Lmin=19
    #chains=['01a_9_2','01b_9_2','01c_9_2','01d_9_2','01e_9_2_1','01f_9_2','01g_9_2_2','01h_9_2','01i_9_2_1','01j_9_2_1'] #chains_2001 DR4 dpl_dpl no mass selection fixed zmean
    
    #chains=['01a_6_1','01a_8_2','01b_6_3','01c_6_3','01d_6_2','01e_6_2','01f_6_2','01g_6_2','01h_6_3','01i_6_3','01j_6_3'] #chains_2001 DR4 dpl_dpl Lmin=19 newz
    #chains=['02a_4','02b_4','02c_4','02d_4','02e_4','02f_4','02g_4','02h_4','02i_4','02j_3'] ##chains_2001 DR4 logn_dpl Lmin=21 newz  
    #chains=['02a_z_6x','02b_z_7x','02c_z_7x','02d_z_7x','02e_z_7x','02f_z_7x','02g_z_7x','02h_z_7x','02i_z_7x','02j_z_7x']#Novak individual model newz
    
    chains=['01a_1','01b_1','01c_1','01d_1','01e_1','01f_1','01g_1','01h_1','01i_1','01j_1'] #95% mass sample
    chains=['02a_z_9x','02b_z_9x','02c_z_9x','02d_z_9x','02e_z_9x','02f_z_9x','02g_z_9x','02h_z_9x','02i_z_9x','02j_z_9x']#95 mass limit
    
    chains=['01a_2','01b_2','01c_2','01d_2','01e_2','01f_2','01g_2','01h_2','01i_2','01j_2'] #50% mass sample
    chains=['02a_z_9x_1','02b_z_9x_1','02c_z_9x_1','02d_z_9x_1','02e_z_9x_1','02f_z_9x_1','02g_z_9x_1','02h_z_9x_1','02i_z_9x_1','02j_z_9x_1']#50 mass limi1
    
    chains2=['01a_5','01b_5','01c_5','01d_5','01e_5','01f_5','01g_5','01h_5','01i_5','01j_5'] #stellar mass>10.2 dpl
    chains2=['02a_5','02b_5','02c_5','02d_5','02e_5','02f_5','02g_5','02h_5','02i_5','02j_5'] #stellar mass>10.2 dpl
    chains=['02a_z_7x','02b_z_7x','02c_z_7x','02d_z_7x','02e_z_7x','02f_z_7x','02g_z_7x','02h_z_7x','02i_z_7x','02j_z_7x'] #stellar mass>10.2
    
    chains=['01a_8','01b_8','01c_8','01d_8','01e_8','01f_8','01g_8','01h_8','01i_8','01j'] #stellar mass<10. dpl
    chains4=['02a_3','02b_3','02c_3','02d_3','02e_3','02f_3','02g_3','02h_3','02i_3','02j_3'] #stellar mass<10. logn
    chains3=['02a_z_5x','02b_z_5x','02c_z_5x','02d_z_5x','02e_z_5x','02f_z_5x','02g_z_5x','02h_z_5x','02i_z_5x','02j_z_5x']#stellar mass limit mass<10
     #chains3=['02a_z_5f','02b_z_5f','02c_z_5f','02d_z_5f','02e_z_5f','02f_z_5f','02g_z_5f','02h_z_5f','02i_z_5f','02j_z_8x']#stellar mass limit mass<10
    
    #chains=['01a','01b','01c','01d','01e','01f','01g','01h','01i','01j'] #dpl #chains_2001 DR4 newz new_area
    chains=['02a','02b','02c','02d','02e','02f','02g','02h','02i','02j'] #lgnorm #chains_2001 DR4 newz new_area
    chains=['02a_z_8x','02b_z_8x','02c_z_8x','02d_z_8x','02e_z_8x','02f_z_8x','02g_z_8x','02h_z_8x','02i_z_8x','02j_z_8x']#fixed model newz area
    chains=['02a_z_8x_6','02b_z_8x_6','02c_z_8x_6','02d_z_8x_6','02e_z_8x_6','02f_z_8x_6','02g_z_8x_6','02h_z_8x_6','02i_z_8x_6','02j_z_8x_6']#fixed cut data more bins _el lmin lose
    chains=['02a_z_8x_6_1','02b_z_8x_6_1','02c_z_8x_6_1','02d_z_8x_6_1','02e_z_8x_6_1','02f_z_8x_6_1','02g_z_8x_6_3','02h_z_8x_6_3','02i_z_8x_6_3','02j_z_8x_6_3']#fixed cut data more bins _el lmin lose
    
    #chains3='02z_31_3' #Novak evolution fit
    #chains3='02z_31_5' #Fixed evolution newz, area
    #chains3='02z_31_6' #Fixed evolution newz, area, 10.2 mass lim
    #z = [0, 0.5, 1 , 1.5, 2, 2.3, 2.6, 3, 3.5, 4] #old
    #z = [ 0.7, 1 , 1.35, 1.7, 2, 2.3, 2.6, 3, 3.5, 4]# older
    print expt.parameters
    n,m=3,3
        
    #print xrecon
    #print yrecon
    #sys.exit()
    
    z_new=True
    Replot=False
    z_nov = [0.31, 0.5, 0.69, 0.9, 1.16, 1.44, 1.81, 2.18, 2.81, 3.71, 4.83]
    if z_new:
        z =[0.1,0.3,0.4,0.6,0.8,1.0,1.3,1.6,2.0,2.5,3.2,4.0]
        z=[0.1,0.4,0.6,0.8,1.0,1.3,1.6,2.0,2.5,3.2,4.0]#oldest ;)
        #chains=['11a','11b','11c_3','11d_3','11e_3','11f_3','11g_3','11h','11i','11j', '11k', '11l' ,'11m', '11n']#chains_201111
    else:
        z=[0.1,0.4,0.6,0.8,1.0,1.3,1.6,2.0,2.5,3.2,4.0]#oldest ;)
    
    
    #ana3=pymultinest.analyse.Analyzer(ncols-1,\
    #    outputfiles_basename=os.path.join('chains_2002%s'%chains3,outstem))
    #drawmap3=ana3.get_best_fit()['parameters']
    #params3 = drawmap3
    
    #parameters2= ['noise', 'A_SF', 'A_agn', 'LMIN', 'LMAX']
    #parameters3= ['noise', 'A_agn', 'A_SF', 'B_agn', 'B_SF', 'LMIN', 'LMAX']
    #parameters3= ['noise', 'A_agn', 'A_SF', 'B_agn', 'B_SF', 'LMIN_1', 'LMIN_2', 'LMIN_3', 'LMIN_4', 'LMIN_5', 'LMIN_6', 'LMIN_7', 'LMIN_8', 'LMIN_9', 'LMIN', 'LMAX']
    #parameters4=['noise', 'LMIN', 'LMAX2', 'LMIN2', 'LMAX', 'LNORM', 'LSTAR', 'LSLOPE', 'LSLOPE2', 'LNORM_2', 'LSTAR_2', 'LSLOPE_2', 'LSLOPE2_2']
    parameters2= ['noise', 'A_SF', 'A_agn', 'LMIN', 'LMAX']
    parameters3= ['noise', 'LMIN', 'LMAX', 'LNORM_2', 'LSTAR_2', 'LSLOPE_2', 'LSLOPE2_2']
    parameters4= ['noise', 'LMIN', 'LMAX', 'LNORM_2', 'LSTAR_2', 'LSLOPE_2', 'LSIGMA'] #lognorm
    parameters2=['noise', 'LMIN', 'LMAX2', 'LMIN2', 'LMAX', 'LNORM', 'LSTAR', 'LSLOPE', 'LSLOPE2', 'LNORM_2', 'LSTAR_2', 'LSLOPE_2', 'LSLOPE2_2']
    parameters3= ['noise', 'A_SF', 'A_agn', 'LMIN', 'LMAX']#fixed
    parameters2=['noise', 'LMIN', 'LMAX2', 'LMIN2', 'LMAX', 'LNORM', 'LSTAR', 'LSLOPE', 'LSLOPE2', 'LNORM_2', 'LSTAR_2', 'LSLOPE_2', 'LSIGMA']
        
    pass1=False
    for num in range(1,11):
    #num = 1.
     print num
     if num==2:pass1=False
     print 'new num ',num
     z_min,z_max, z_m = get_z(num)
     dl = get_dl(z_m)
     Vmax = get_Vmax(z_min,z_max)
     dsdl = get_dsdl(z_m,dl)

     #z_m = (z_min + z_max)/2                       
     dl = get_dl(z_m)
    
     print z_min,z_max
     print expt.kind
     area = SURVEY_AREA*sqDeg2sr 
     area1 = SURVEY_AREA*sqDeg2sr
     print SURVEY_AREA
     ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_20%s%s'%(pre_chain,chains[num-1]),outstem))
     drawmap=ana.get_best_fit()['parameters']
     drawmid=ana.get_stats()['marginals']
     params = drawmap
     
     ana2=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_20%s%s'%('11',chains2[num-1]),outstem))
     drawmap2=ana2.get_best_fit()['parameters']
     params2 = drawmap2
     
     ana3=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_20%s%s'%(pre_chain,chains3[num-1]),outstem))
     drawmap3=ana3.get_best_fit()['parameters']
     params3 = drawmap3
     
     ana4=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_20%s%s'%('11',chains4[num-1]),outstem))
     drawmap4=ana4.get_best_fit()['parameters']
     params4 = drawmap4

  
     
     settingf='chains_20%s%s/bayestack_settings.py'%(pre_chain,chains[num-1])
     f = open(settingf, 'r')
     mod = f.readlines()[31].split()[0]
     print mod
     if 'logn' in mod:
        if 'dpl' in mod:
            model='LFlognorm_dpl'
        elif '_el' in mod:
            model='LFevol_logn_el' 
        elif 'pl_' in mod:
            model='LFpl_lognorm'
        elif 'phi' in mod:
            model='LFevol_phi_logn_mat'
        elif 'mat' in mod:
            model='LFevol_logn_mat'
        else:
            model='LFlognorm'
     elif 'LFdpl' in mod or 'LFpl' in mod:
        if 'LFdpl_dpl' in mod:
            model='LFdpl_dpl'
        elif '_pl' in mod:
            model='LFdpl_pl'
        elif 'LFpl_' in mod:
            model='LFpl_dpl'
        elif 'LFpl' in mod:
            model='LFpl'
        else:
            model = 'LFdpl'
     
     with open('chains_20%s%s/params.tex'%(pre_chain,chains[num -1])) as f:
        parameters=[line.split(None,1)[0] for line in f]
    #model='LFdpl_pl'
     print parameters
     print model
     print 'LSIGMA' in parameters
     '''
     if model in ['LFsch','LFdpl_pl','LFpl_dpl','LFdpl_dpl','LFlognorm_dpl','LFpl_lognorm']:
        Lnorm=params[parameters.index('LNORM')]
        Lstar=params[parameters.index('LSTAR')]
        Lslope=params[parameters.index('LSLOPE')]
        #Lzevol=params[parameters.index('LZEVOL')]
     if model in ['LFdpl_pl','LFpl_dpl','LFdpl_dpl','LFlognorm_dpl']:
        Lslope2=params[parameters.index('LSLOPE2')]
     if model in ['LFlognorm','LFpl', 'LFdpl', 'LFdpl_pl','LFpl_dpl', 'LFlognorm_dpl','LFpl_lognorm','LFdpl_dpl']:
        Lnorm_2=params[parameters.index('LNORM_2')]
        Lstar_2=params[parameters.index('LSTAR_2')]
        Lslope_2=params[parameters.index('LSLOPE_2')]

     if model in ['LFdpl_dpl','LFdpl']:
        Lslope2_2=params[parameters.index('LSLOPE2_2')]
    
     if model in ['LFlognorm','LFlognorm_dpl','LFpl_lognorm']:
        Lsigma = params[parameters.index('LSIGMA')]
     '''
     Lmin=params[parameters.index('LMIN')]
     Lmax=params[parameters.index('LMAX')]
     
     #Lmin=params[expt.parameters.index('LMIN')]
     #Lmax=params[expt.parameters.index('LMAX')]
     

     SMIN  = get_sbins(numpy.power(10,Lmin),z_m,dl)*1e6
     SMAX  = get_sbins(numpy.power(10,Lmax),z_m,dl)*1e6
     sigma,fsigma,Lmin = numpy.log10(get_Lbins([SURVEY_NOISE,18.9, Lmin],z_m,dl,'muJy')*(1.4/3)**(-.7))
     sigma2,fsigma2 = numpy.log10(get_Lbins([450,2400],z_m,dl,'muJy'))
     print z_m,dl, sigma,fsigma
     print SURVEY_NOISE,SURVEY_NOISE*5,SURVEY_AREA
     
     s=numpy.loadtxt('chains_20%s%s/recon_stats.txt'%(pre_chain,chains[num -1]))
     s2=numpy.loadtxt('chains_20%s%s/recon_stats.txt'%('11',chains2[num -1]))
     s3=numpy.loadtxt('chains_20%s%s/recon_stats.txt'%(pre_chain,chains3[num -1]))
     s4=numpy.loadtxt('chains_20%s%s/recon_stats.txt'%('11',chains4[num -1]))
     xrecon=s[:-1,0]; yrecon=s[:-1,1]
     yrecon_d=s[:-1,2]; yrecon_u=s[:-1,3]
     yrecon_rms = s[:-1,4]
     yrecon_avr = s[:-1,5]
     yrecon_rms_down = yrecon_rms
    
     xreco = get_Lbins(xrecon,z_m,dl,'muJy')#*(1.4/3)**(-.7)
     yreco = yrecon
     lin_yrecon = numpy.log10(yreco)
     lin_xrecon = numpy.log10(xreco)
     
     xrecon2=s2[:-1,0]; yrecon2=s2[:-1,1]
     yrecon_d2=s2[:-1,2]; yrecon_u2=s2[:-1,3]
     lin_xrecon2 = numpy.log10(get_Lbins(xrecon2,z_m,dl,'muJy'))
     
     xrecon3=s3[:-1,0]; yrecon3=s3[:-1,1]
     yrecon_d3=s3[:-1,2]; yrecon_u3=s3[:-1,3]
     lin_xrecon3 = numpy.log10(get_Lbins(xrecon3,z_m,dl,'muJy'))
     
     xrecon4=s4[:-1,0]; yrecon4=s4[:-1,1]
     yrecon_d4=s4[:-1,2]; yrecon_u4=s4[:-1,3]
     lin_xrecon4 = numpy.log10(get_Lbins(xrecon4,z_m,dl,'muJy'))
    
    
     bins2 = numpy.arange(15.,25.,0.4)
     bins  = numpy.arange(fsigma-0.4,29.2,0.4)#bin +0.2
     if not os.path.isfile('cos_data/cos_s%s_LF.el'%num) and z_new or not os.path.isfile('cos_data/cos_s%s_LF.el'%num) and not z_new or Replot:
      print 'doing all calculations'
      #l,z_l = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,21), F='uJy',L=True,getz=True)
      #l2,z_l2 = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,24), F='uJy',L=True,getz=True)
      if z_new:
        L,z_L = open_anytype('cos_data/cos_s%s.txt'%num,(2,3), F='uJy',L=True,getz=True,band='S')
        print 'this is the new z bins (please check if lumfuncUtils and cos_manifest are using the right z)'
      else:
        L,z_L = open_anytype('cos_data/cos_s%s.txt'%num,(2,3), F='uJy',L=True,getz=True,band='S')
        print 'this is the old z binning style. (please check if lumfuncUtils and cos_manifest are using the right z)'
      L_c,z_c=open_anytype('cosmos_counter_parts_II.txt',(3,4),[z_min,z_max], F='uJy',L=True,getz=True, band='S')
      z_c2,S_c2,L_c2 =numpy.loadtxt('cosmos_counter_parts_II.txt',unpack=True, usecols=(3,4,5))
      L_c2,z_c2=open_anytype('cosmos_comp_vla.el',(2,3),[z_min,z_max], F='uJy',L=True,getz=True, band='S')
      L_c3,z_c3=open_anytype('cosmos_vla.el',(2,3),[z_min,z_max], F='uJy',L=True,getz=True, band='S')
      L_c4,z_c4=open_anytype('/home/eliab/Documents/OC/Project/cosmos/Cosmos/dr4_cos2015_vla.tx',(-4,-1),[z_min,z_max], F='uJy',L=True,getz=True, band='S')
      L_c5,z_c5=open_anytype('/home/eliab/Documents/OC/Project/cosmos/Cosmos/dr4_cos2015_vla.tx',(3,-1),[z_min,z_max], F='uJy',L=True,getz=True, band='S')
      #L_c2=L_c2[(z_c2<z_max)&(z_c2 >z_min)]
      #S_c2=S_c2[(z_c2<z_max)&(z_c2 >z_min)]
      #z_c2=z_c2[(z_c2<z_max)&(z_c2 >z_min)]
    
    
    #rho_1,er1 = calc_Vmax(calcu_zeff(z_l,l,11.5e-32),l,bins,z_max,z_min,area)
    #rho_2,er2 = calc_Vmax(calcu_zeff(z_l2,l2,11.5e-32),l2,bins,z_max,z_min,area)
      rho_3,er3,b3,n3 = calc_Vmax(calcu_zeff(z_L,L,1.15e-31),L,bins,z_max,z_min,area,table=True)
    #rho_4,er4 = calc_Vmax(99.,L,bins2,z_max,z_min,area)
      print 'COS15 VLA'
      rho_5,er5,b5,n5 = calc_Vmax(calcu_zeff(z_c,L_c,1.15e-31),L_c,bins,z_max,z_min,1.77*sqDeg2sr,table=True)
      print 'mass lim DR4-vla'
      rho_6,er6,b6,n6 = calc_Vmax(calcu_zeff(z_c2,L_c2,1.15e-31),L_c2,bins,z_max,z_min,1.5*sqDeg2sr,table=True)
      print 'DR4-vla'
      rho_7,er7,b7,n7 = calc_Vmax(calcu_zeff(z_c3,L_c3,1.15e-31),L_c3,bins,z_max,z_min,1.5*sqDeg2sr,table=True)
      print 'cos-DR4-vla DR4 photo-z'
      rho_8,er8,b8,n8 = calc_Vmax(calcu_zeff(z_c4,L_c4,1.15e-31),L_c4,bins,z_max,z_min,1.5*sqDeg2sr,table=True)
      print 'cos-DR4-vla COS15 photo-z'
      rho_9,er9,b9,n9 = calc_Vmax(calcu_zeff(z_c5,L_c5,1.15e-31),L_c5,bins,z_max,z_min,1.5*sqDeg2sr,table=True)
      for i in range(len(b5)):
        print '%5.2f %7d %10d %13d %17d %11d'%(b5[i],n3[i],n7[i],n8[i],n9[i],n5[i])
      if z_new:
        f = open('cos_data/cos_s%s_LF_4.el'%num,'w') #I used LF_2 for the final results, _5 for stellar-mass 10.2
        print 'saving data for future use in cos_data/cos_s%s_LF_4.el'%num
      else:
        f = open('cos_data/cos_s%s_LF_old.el'%num,'w')
        print 'saving data for future use in cos_data/cos_s%s_LF.el'%num
      for i in range(len(bins)):
        f.write('%5.1f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f\n'%(bins[i], rho_3[i],er3[i],rho_5[i],er5[i],rho_6[i],er6[i],rho_7[i],er7[i],rho_8[i],er8[i],rho_9[i],er9[i]) )
      f.close()
    
      dl_c=get_dl(z_c2)
      L_c3=numpy.log10(get_Lbins(S_c2,z_c2,numpy.array(dl_c),'muJy')*(1.4/3.)**(-.7))
     else:
        if z_new:
            bins,rho_3,er3,rho_5,er5,rho_6,er6 ,rho_7,er7 ,rho_8,er8 ,rho_9,er9 = numpy.loadtxt('cos_data/cos_s%s_LF_2.el'%num, unpack=True)
            print 'Using stored RLF for the new z (The one with more z bins). If you want to calculate the plot the set "Replot=True"'
        else:
            bins,rho_3,er3,rho_5,er5,rho_6,er6 = numpy.loadtxt('cos_data/cos_s%s_LF_old.el'%num, unpack=True)  
            print 'Using stored RLF for the is old z bins. If you want to calculate the plot the set "Replot=True"'       
     #ssd = numpy.loadtxt('%s/data_cos_s%s.txt'%(outdir,num))
     ssd = numpy.loadtxt('cos_data/cos_s%s.txt'%(num), unpack=True, usecols=(-1,2))
     ssbin2 = ssd[:,0] #2 
     ssbin1 = ssd[:,2] #0
     Nbin2  =  ssd[:,3] 
     zbin3  = ssd[:,-1]
     dl1 = get_dl(z_min)
     dl2 = get_dl(z_max)
    #dl3 = get_dl(zbin3)
    
     Ncount = sum(Nbin2[fsigma>ssbin1])    
     Llmin = numpy.log10(get_Lbins([fsigma/numpy.sqrt(Ncount)],z_min,get_dl(z_min),'muJy'))[0]
     Llmin*=(1.4/3.)**(-.7)
     print Llmin
    #sys.exit()
       
     if z_new:
        
        try:pos=get_changed_multiplot(n,m,num)
        except:print 'changed pos doesnt work for ',num
        if num==4:
            pos = 10
        elif num==8:
            pos=11
        elif num==10:
            pos=11
        elif num==11:
            pos=11
        if num>4 and num!=8:
            n_s = 1
            if num>8:
                n_s+=1
            pos=get_changed_multiplot(n,m,num-n_s)
        ax=fig.add_subplot(n+1,m,pos)
        print 'plot change', n, m ,pos  
     else:
        ax=fig.add_subplot(n,m,get_changed_multiplot(n,m,num))
    
     plt.rc('lines', linewidth=2)
     
     #plt.errorbar(bins,rho_1 ,yerr=er1,fmt='*r',label='detected extracted',markersize=11) #bin
     
     
     '''
     if model in ['LFdpl','LFdpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lslope2_2,Lnorm_2)
     elif model in ['LFpl','LFdpl_pl']:
        faint =lumfuncUtils.powerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lnorm_2)
     elif model in ['LFpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar,Lslope,Lslope2,Lnorm)
     
     elif model =='LFevol_logn_mat':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=parameters,\
               family='LFevol_logn_mat',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for lL in bins3] 
     else:
        faint = lumfuncUtils.lognormpl(numpy.power(10,bins3), Lstar_2,Lslope_2,Lsigma,Lnorm_2)
     #phi_dpl =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar ,Lslope,Lslope2,Lnorm)
    '''
    #phi_dpl
    #dpl  = 
     dm =0.4#05
     hm=0.
     #if num==1:hm=-0.25 
     ##if num>1:num-=1
     L_1 = numpy.power(10,bins3)/(1 + z_m)**(2.86-z_m*0.7)
     L_2 = numpy.power(10,bins3)/(1 + z_m)**(2.95-z_m*0.29)
     print z_m, z_nov[num-1]
     Novak17=lumfuncUtils.lognormpl(L_2, numpy.log10(1.85e21),1.22,0.63, numpy.log10(3.55e-3/2.5))
     Novak17_2=lumfuncUtils.lognormpl(numpy.power(10,bins3)/(1 + z_nov[num-1])**(3.16-z_nov[num-1]*0.32),\
        numpy.log10(1.85e21),1.22,0.63, numpy.log10(3.55e-3/2.5))
     phi_agn_n=lumfuncUtils.doublepowerlaw(L_1,24.59,1.27,0.49,numpy.log10(10**(-5.5)))
     phi_tot_n = phi_agn_n+Novak17
     phi_tot_n2 = phi_agn_n+Novak17_2
     #phi_2 =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params2,paramsList=parameters2,\
     #   family='LFdpl_dpl',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True) for lL in bins3]
     #phi_3 =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params3,paramsList=parameters3,\
     #   family='LFlognorm',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True) for lL in bins3]
     phi = [lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=parameters,\
        family=model,inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True) for lL in bins3]
     #phi_2 =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params2,paramsList=parameters2,\
     #   family='LFlognorm_dpl',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True) for lL in bins3]
     phi_3 =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params3,paramsList=parameters3,\
        family='LFevol_logn_mat',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True) for lL in bins3]
     #faint_3 =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params3,paramsList=parameters3,\
     #   family='LFevol_logn',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for lL in bins3]   
     phi_4 =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params4,paramsList=parameters4,\
        family='LFlognorm',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0) for lL in bins3]
     #sys.exit()
     
     ##plt.plot(bins3+hm,numpy.log10(faint)-dm,'--k',linewidth=4 ,label='SF MAP Indiv. Novak 2018 fit')
     #plt.plot(numpy.log10(10**bins3),numpy.log10(phi_dpl)-dm,'--c', label='agn')
     #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7))+hm,numpy.log10(faint)-dm,'--b' ,label='faint-end')   
     #plt.errorbar(lin_xrecon+hm,lin_yrecon-dm ,fmt='-b', label='MAP No mass-limit',linewidth=1.8)
     
     plt.errorbar(bins[2:],rho_3[2:] ,yerr=er3[2:],fmt='hb', fillstyle= 'none', markeredgewidth=3 ,label=r'$\rm{1/V_{max}}$',markersize=12) #bin
     #plt.errorbar(lin_xrecon+hm,lin_yrecon-dm ,fmt='-b', label='MAP Model A $M/M_\odot > 10$',linewidth=1.8)
     #plt.errorbar(lin_xrecon+hm,lin_yrecon-dm ,fmt='-b', label='MAP $\rm{Model}$ $\rm{C}$ Individual',linewidth=1.8)
     #plt.errorbar(lin_xrecon+hm,lin_yrecon-dm ,fmt='-b', label='MAP $\rm{Model}$ $\rm{C}$ 50% mass limit',linewidth=1.8)
     ##plt.errorbar(lin_xrecon+hm,lin_yrecon-dm ,fmt='-k', label='MAP Fixed Individual fit',linewidth=2.)
     ##plt.errorbar(lin_xrecon+hm,lin_yrecon-dm ,fmt='-k', label=r'$\rm{Total}$ $\rm{MAP}$ $\rm{Model}$ $\rm{C}$',linewidth=3)
     #plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi) -0.4 ,fmt='-k', label=r'$\rm{Total}$ $\rm{MAP}$ $\rm{Model}$ $\rm{C}$',linewidth=3)
     #plt.plot(bins3+hm,numpy.log10(faint)-dm,'-.b' ,label='SF MAP $\rm{Model}$ $\rm{C}$ Individual $M > 10 M/M_\odot$')
     #plt.plot(bins3+hm,numpy.log10(faint_3)-dm,'-g' ,label='SF MAP $\rm{Model}$ $\rm{C}$ PLE $M > 10 M/M_\odot$')
     #plt.plot(bins3+hm,numpy.log10(faint)-dm,'-.b' ,label='SF MAP $\rm{Model}$ $\rm{B}$')
     
     #if num!=10:plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_4) -0.4,fmt='--',color='orange',linewidth=3,label=r'$8.5<\log_{10}(M/M_\odot) <10$ $\rm{MAP}$  $\rm{Model}$ $\rm{B}$ ')
     #if num!=10:plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_3) -0.4,fmt='.',color='purple',linewidth=3,label=r'$8.5<\log_{10}(M/M_\odot) <10$ $\rm{MAP}$  $\rm{Model}$ $\rm{C}$ ')
     #plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_2) -0.4,fmt='-.r',linewidth=5.,label=r'$\log_{10}(M/M_\odot) > 10$ $\rm{Model}$ $\rm{B}$')
     #phi_5=numpy.array(phi_2)+numpy.array(phi_3)
     #plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_5) -0.4,fmt='-.b',linewidth=3.,label=r'$\rm{Total}$ $\rm{Model C+B}$')
     
     
     #if num!=10:plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_4) -0.4,fmt='--',color='orange',linewidth=3,label=r'$10^{8.5} M_\odot<M <10^{10} M_\odot$ $\rm{MAP}$  $\rm{Model}$ $\rm{B}$ ')
     #if num!=10:plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_3) -0.4,fmt='.',color='purple',linewidth=3,label=r'$10^{8.5} M_\odot<M <10^{10} M_\odot$ $\rm{MAP}$  $\rm{Model}$ $\rm{C}$ ')
     #plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_2) -0.4,fmt='-.r',linewidth=5.,label=r'$M > 10^{10} M_\odot$ $\rm{Model}$ $\rm{B}$')
     
     #plt.errorbar(lin_xrecon+hm,numpy.log10(yrecon_avr)-dm,fmt='-c', label = 'Average')
     #plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_4) -0.4,fmt='--k',linewidth=3,label='MAP with mass limit')
     ##plt.errorbar(bins,rho_5 ,yerr=er5,fmt='^k',label='VLA-COSMOS2015',markersize=10) #bin
     ##plt.errorbar(bins,rho_8 ,yerr=er8,fmt='sc',label='VLA-COSMOS2015 in DR4 using DR4 z',markersize=10) #bin
     ##plt.errorbar(bins,rho_9 ,yerr=er9,fmt='*m',label='VLA-COSMOS2015 in DR4 using COS15z',markersize=14) #bin
     ##plt.errorbar(bins,rho_6 ,yerr=er6,fmt='ok',label='DR4 detected',fillstyle='none',markersize=14) #bin
     ##plt.errorbar(bins,rho_7 ,yerr=er6,fmt='dg',label='DR4 detected - Full NIR sample',markersize=12) #bin
     #if not pass1:plt.errorbar(numpy.array(L_n2[num-1]),numpy.array(rho_n2[num-1]) -0.4,xerr=[L_ner_d2[num-1],L_ner_u2[num-1]],yerr=[rho_ner_d2[num-1],rho_ner_u2[num-1]], fmt='sr',fillstyle='none',ecolor='k',markeredgewidth=1.5, label='Total Novak+2018')
     #plt.errorbar(numpy.log10(10**bins3), numpy.log10(phi_tot_n),fmt='--k',linewidth=3,label='Total Novak+2018')
     #plt.errorbar(bins3, numpy.log10(Novak17_2),fmt='.r',linewidth=0.4,label='SF Novak + 2017')
     #if num <9:
        #plt.errorbar(mcalpine[mcalpine_panels[num] -1][:,0] ,mcalpine[mcalpine_panels[num] -1][:,1]-0.4 ,yerr=mcalpine[mcalpine_panels[num] -1][:,2],fmt='>c', fillstyle= 'none', markeredgewidth=2 ,label='Total McAlpine+2013',markersize=12)
     #print padovani[num-1]
     #if num <9 and num!=2:
        #plt.errorbar(padovani[padovani_panels[num] -1][:,0],padovani[padovani_panels[num] -1][:,1] -(9-numpy.log10(10)),fmt='dk', fillstyle= 'none', markeredgewidth=1 ,label='padovani+2015 RL AGN',markersize=13) 
     #plt.errorbar(bins3, numpy.log10(Novak17)-0.4,fmt='--b',label='SF galaxies Novak + 2017')
     
     #plt.plot(bins3,numpy.log10(phi_agn_n),'--g', label='local agn nov')
     ##if num>1:num+=1
     
     #plt.plot(L_s, numpy.log10(rho_1), '*m',label='bins LF',markersize=8)
     #plt.errorbar(bins,rho_5 ,yerr=er5,fmt='*r',label='Total',markersize=10) #bin
     #plt.errorbar(bins,rho_6 ,yerr=er6,fmt='>g',label='Total LF',markersize=10) #bin
     #plt.fill_between(lin_xrecon+hm,numpy.log10((yrecon_d))-dm,numpy.log10(yrecon_u) -dm, color='k',label='95% Model C Individaul' ,alpha=0.2)
     #plt.fill_between(lin_xrecon+hm,numpy.log10((yrecon_d))-dm,numpy.log10(yrecon_u) -dm, color='k',label='95% Model A $M/M_\odot > 10$' ,alpha=0.2)
     plt.fill_between(lin_xrecon+hm,numpy.log10((yrecon_d))-dm,numpy.log10(yrecon_u) -dm, color='k',label=r'$\rm{95%}$  $\rm{Total}$ $\rm{Model}$ $\rm{C}$' ,alpha=0.5)
     plt.fill_between(lin_xrecon2+hm,numpy.log10((yrecon_d2))-dm,numpy.log10(yrecon_u2) -dm, color='r',label=r'$\rm{95%}$  $\log_{10}(M/M_\odot) > 10$ $\rm{Model}$ $\rm{B}$' ,alpha=0.5)
     plt.fill_between(lin_xrecon4+hm,numpy.log10((yrecon_d4))-dm,numpy.log10(yrecon_u4) -dm, color='orange',label=r'$\rm{95%}$  $8.5<\log_{10}(M/M_\odot) <10$ $\rm{Model}$ $\rm{B}$ ' ,alpha=0.7)
     plt.fill_between(lin_xrecon3+hm,numpy.log10((yrecon_d3))-dm,numpy.log10(yrecon_u3) -dm, color='purple',label=r'$\rm{95%}$  $8.5<\log_{10}(M/M_\odot) <10$ $\rm{Model}$ $\rm{C}$ ' ,alpha=0.7)
     #plt.errorbar(bins[1:],rho_3[1:] ,yerr=er3[1:],fmt='h', fillstyle= 'none', markeredgewidth=3 ,label='extracted fluxes (No mass limit)',markersize=12) #bin
    
    
     #plt.fill_between(lin_xrecon2+hm,numpy.log10((yrecon_d2))-dm,numpy.log10(yrecon_u2) -dm, color='r',label=r'$\rm{95%}$  $M > 10^{10} M_\odot$ $\rm{Model}$ $\rm{B}$' ,alpha=0.5)
     #if num!=10:plt.fill_between(lin_xrecon4+hm,numpy.log10((yrecon_d4))-dm,numpy.log10(yrecon_u4) -dm, color='orange',label=r'$\rm{95%}$  $10^{8.5} M_\odot<M <10^{10} M_\odot$ $\rm{Model}$ $\rm{B}$ ' ,alpha=0.7)
     #if num!=10:plt.fill_between(lin_xrecon3+hm,numpy.log10((yrecon_d3))-dm,numpy.log10(yrecon_u3) -dm, color='purple',label=r'$\rm{95%}$  $10^{8.5} M_\odot<M <10^{10} M_\odot$ $\rm{Model}$ $\rm{C}$ ' ,alpha=0.7)
    
     
     plt.ylim(-8.,-1.6)
     plt.axvline(fsigma,color='g',linestyle='dashed',label=r'$\rm{5\sigma}$')
     #plt.axvline(sigma,color='g')
     #plt.axvline(Lmin,color='r',linewidth=2)
     ##z_new=True

     if num<2 or num<6 and num>3 or num>6 and num<9:
        plt.xticks( visible=False)
        plt.ylim(-8.,-1.6)
     
     if num<5:
        plt.xlim(18.6,25.7)
        plt.text(18.8,-7.,r'$\rm{%.1f < z < %.1f}$ %s$\rm{z_{MED} = %.2f}$'%(z_min,z_max,'\n',z_m),fontsize = 28 ) # \n $M_i$ < -22
     elif num<9:
        plt.xlim(20.,27.2)
        plt.text(20.2,-7.,r'$\rm{%.1f < z < %.1f}$ %s$\rm{z_{MED} = %.2f}$'%(z_min,z_max,'\n',z_m),fontsize = 28 ) # \n $M_i$ < -22
     else:
        plt.xlim(20.6,27.8)   
        plt.text(21.,-7.,r'$\rm{%.1f < z < %.1f}$ %s$\rm{z_{MED} = %.2f}$'%(z_min,z_max,'\n',z_m),fontsize = 28 ) # \n $M_i$ < -22
        
     
     plt.tick_params(axis='both',which = 'minor',width=1)
     plt.tick_params(axis='both',which = 'major', width=1.5)
     ax.xaxis.set_minor_locator(AutoMinorLocator())
     #ax.yaxis.set_minor_locator(AutoMinorLocator())
     #plt.axes().xaxis.set_minor_locator(AutoMinorLocator())
     #plt.axes().yaxis.set_minor_locator(AutoMinorLocator())
     #plt.minorticks_on()
    
     if num==4:
    	plt.xticks([19,20,21,22,23,24,25],fontsize=30)
    	plt.xticks( visible=True)
    	handles,labels=plt.gca().get_legend_handles_labels()
    	print labels
    	print len(labels)
    	#order=[0, 5, 6,1, 2 ,3 ,4, 7, 8, 9]#model_C
    	order=[0,5,1,4,2,3]
    	#plt.legend(frameon=False).draggable()
    	plt.legend([handles[idx] for idx in order],[labels[idx] for idx in order],frameon=False).draggable()
     if num==8:
       plt.xticks([21,22,23,24,25,26,27],fontsize=30)
       plt.xticks( visible=True)
     if num == 10:
    	plt.xticks([21,22,23,24,25,26,27],fontsize=30)
    	plt.xticks( visible=True)
    	
     if num==1 or num ==2 or num==3 or num==4:
         plt.yticks([-2.,-3,-4,-5, -6, -7], fontsize=30)
         if num==4:
            plt.yticks([-2.,-3,-4,-5, -6, -7, -8], fontsize=30)
         continue
     plt.yticks(visible=False) 
     '''#z_new=False
          print 'Is this still num ',num
     if num<2 or num<6 and num>3 or num>6 and num<9:
        plt.xticks( visible=False)
        plt.ylim(-7.6,-1.6)
     
     if num<4:
        plt.xlim(19,25.8)
        plt.text(19.2,-7.,r'$\rm{%.1f < z < %.1f}$'%(z_min,z_max),fontsize = 32 ) # \n $M_i$ < -22
     elif num<7:
        plt.xlim(20.8,27.2)
        plt.text(21.,-7.,r'$\rm{%.1f < z < %.1f}$'%(z_min,z_max),fontsize = 33 ) # \n $M_i$ < -22
     else:
        plt.xlim(21.3,27.8)   
        plt.text(21.5,-7.,r'$\rm{%.1f < z < %.1f}$'%(z_min,z_max),fontsize = 32 ) # \n $M_i$ < -22
        
    
     if num==3:
    	plt.xticks([19,20,21,22,23,24,25],fontsize=22)
     if num==6:
       plt.xticks([21,22,23,24,25,26,27],fontsize=22)
     if num == 9:
    	plt.xticks([22,23,24,25,26,27],fontsize=22)
    	plt.legend(frameon=False).draggable()
     if num==1 or num ==2 or num==3 or num==10:
         plt.yticks([-2.,-3,-4,-5, -6], fontsize=22)
         if num==3:
            plt.yticks([-2.,-3,-4,-5, -6, -7], fontsize=22)
         continue
     plt.yticks(visible=False) 
     '''
     
    
    fig.text(0.06,0.5,r'$\rm{log_{10}[\Phi /(Mpc^{-3}mag^{-1})]}$',fontsize=32, ha='center',va='center', rotation='vertical')
    fig.text(0.5,0.04,r'$\rm{log_{10}[L_{1.4}/(W}$ $\rm{Hz^{-1})]}$',fontsize = 32, ha='center',va='center')    
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    #plt.tick_params(axis='both',which = 'major', labelsize=20,width =2)
    #plt.tick_params(axis='both',which = 'minor', labelsize=10, width=2)
    plt.subplots_adjust(hspace=0,wspace=0)
    #plt.xtick(fontsize=15)
    #plt.ytick(fontsize=15)
    
    #plt.ylim(-10.2,-5.8)
    #plt.ylim(-11,-5.5)
     #ax.xaxis.set_minor_locator(AutoMinorLocator())
     #ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']
    
    plotf='%s/LF_recon_s1.pdf' % (outdir)
    plt.show()
    
	
    return 0
Esempio n. 2
0
def simulate(family,params,paramsList,bins,\
             seed=None,N=None,noise=None,output=None,\
             dump=None,version=2,verbose=False,area=None,\
             skadsf=None,pole_posns=None,simarrayf=None,\
             simdocatnoise=True):
    """
    Based on lumfunc.simtable()
    Specify family + parameters
    Specify number of sources
    Build CDF (or set up function)
    Draw deviates
    Sample CDF given deviates
    Add noise (None or some value)
    Bin
    Write out
    Return

    Look at simulate.ipynb for an example run

    Need to add normalization capability
    
    Families:
    ========

    skads:
    -----

    r=countUtils.simulate('skads',[0.01,85.0],['S0','S1'],numpy.linspace(-60.0,100.0,26),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)
    
    ppl:
    ---

    r=countUtils.simulate('ppl',[1000.0,5.0,75.0,-1.6],['C','S0','S1','a0'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('ppl',[1000.0,5.0,25.0,75.0,-1.6,-2.5],['C','S0','S1','S2','a0','a1'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('ppl',[1000.0,5.0,25.0,40.0,75.0,-1.6,-2.5,-1.0],['C','S0','S1','S2','S3','a0','a1','a2'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('ppl',[1000.0,5.0,25.0,40.0,75.0,90.0,-1.6,-2.5,-1.0,2.0],['C','S0','S1','S2','S3','S4','a0','a1','a2','a3'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    poly:
    ----

    r=countUtils.simulate('poly',[5.0,75.0,1.0],['S0','S1','p0'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('poly',[5.0,75.0,1.0,-1.0],['S0','S1','p0','p1'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)
    
    r=countUtils.simulate('poly',[5.0,75.0,1.0,-1.0,5.0],['S0','S1','p0','p1','p2'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)
    
    bins:
    ----

    

    test:
    ----

    array:
    -----


    """

    # Initialize seed for variates AND any noise
    if seed is not None:
        numpy.random.seed(seed=SEED_SIM)

    if family == 'ppl':
        C = alpha = Smin = Smax = beta = S0 = gamma = S1 = delta = S2 = -99.0
        nlaws = int(0.5 * len(paramsList) - 1)
        C = params[paramsList.index('C')]
        Smin = params[paramsList.index('S0')]
        alpha = params[paramsList.index('a0')]
        if nlaws > 1:
            beta = params[paramsList.index('a1')]
            S0 = params[paramsList.index('S1')]
        if nlaws > 2:
            gamma = params[paramsList.index('a2')]
            S1 = params[paramsList.index('S2')]
        if nlaws > 3:
            delta = params[paramsList.index('a3')]
            S2 = params[paramsList.index('S3')]
        iSmax = int([i for i in paramsList if i.startswith('S')][-1][-1])
        Smax = params[paramsList.index('S%i' % iSmax)]

        function = lambda S:powerLawFuncWrap(nlaws,S,C,alpha,-99.0,beta,\
                                      Smin/1e6,Smax/1e6,S0/1e6,gamma,S1/1e6,delta,S2/1e6,1.0)

    elif family == 'test':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        function = lambda S: S**2

    elif family == 'poly':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        coeffs = [
            params[paramsList.index(p)] for p in paramsList
            if p.startswith('p')
        ]
        S_1 = 1.0
        function = lambda S: polyFunc(S, S_1, Smin, Smax, coeffs)

    elif family == 'bins':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        coeffs = [
            params[paramsList.index(p)] for p in paramsList
            if p.startswith('b')
        ]
        if pole_posns is None:
            pole_posns = numpy.logspace(numpy.log10(Smin), numpy.log10(Smax),
                                        len(coeffs) + 1)
        assert (len(coeffs) == len(pole_posns) -
                1), '***Mismatch in number of poles!!'
        Smin = pole_posns[0]
        Smax = pole_posns[-1]
        function = lambda S: polesFunc(S, pole_posns, Smin, Smax, coeffs)

    elif family == 'array':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        assert (simarrayf
                is not None), '***Need to specify an input simulation!'
        print 'Reading %s...' % simarrayf
        dataMatrix = numpy.genfromtxt(simarrayf)
        dndsInArr = dataMatrix[:, 4]
        binsDogleg = numpy.concatenate((dataMatrix[:, 0], [dataMatrix[-1, 1]]))
        binsMedian = dataMatrix[:, 2]
        assert ((
            medianArray(binsDogleg) == binsMedian).all()), '***bin mismatch!'
        Smin = binsDogleg[0]
        Smax = binsDogleg[-1]
        if not simdocatnoise:
            Smin = -5.01  #-2.01 # binsMedian[0]
        print dndsInArr
        function = lambda S: arrayFunc(S, binsMedian, dndsInArr, Smin, Smax)

        #function2=lambda S:arrayFunc(S,binsMedian,dndsInArr,Smin,Smax)
        #for x in numpy.linspace(-10.0,100.0,500):
        #    print x,function(x),function2(x)
        #sys.exit(0)

    elif family == 'skads':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        function = None
        assert (skadsf is not None), '***Need to specify input SKADS file!'
        print 'Reading %s...' % skadsf
        R = Jy2muJy * 10**numpy.genfromtxt(skadsf)
        numpy.ndarray.sort(R)
        iRmin, Rmin = find_nearest(R, Smin)
        iRmax, Rmax = find_nearest(R, Smax)
        F = R[iRmin:iRmax]
        print '%i/%i sources ingested after Smin/Smax cuts' % (len(F), len(R))
        if N is not None:
            F = numpy.random.choice(F, size=N, replace=False)
        N = len(F)
        print 'NSKADS = %i' % N

    elif family == 'Lrad':
        Smin = params[paramsList.index('LoptMIN')]
        Smax = params[paramsList.index('LoptMAX')]
        A = params[paramsList.index('A')]
        B = params[paramsList.index('B')]
        sigma_Lrad = params[paramsList.index('sigma_Lrad')]
        #print Loptmin,Loptmax
        print 'Doing LF simulation'
        inta = None
        #intg = integrate.quad(lambda Lopt:Lopt2Lrad(Lopt,A=A,B=B,flux=False),Loptmin,Loptmax,epsabs=0.)[0]

        function = lambda Lopt: Lopt2Lrad(Lopt, A=A, B=B, flux=False)
    elif family in ['LFsch', 'LFdpl']:
        redshift = 0.325
        z_min = 0.2
        z_max = 0.45
        Lmin = params[paramsList.index('LMIN')]
        Lmax = params[paramsList.index('LMAX')]
        [Smin, Smax] = SMIN_SIM, SMAX_SIM
        print Smin, Smax
        [Smin, Smax] = get_sbins([10**Lmin, 10**Lmax], redshift, dl) * 1e6
        print Smin, Smax, Lmin, Lmax
        print 'Doing LF simulation'
        Vmax = get_Vmax(z_min, z_max)
        dsdl = get_dsdl(redshift, dl)
        inta = None
        intg = integrate.quad(lambda S:LF(S,redshift,dsdl,Vmax,dl,params=params,paramsList=paramsList,\
                inta=inta,area=area,family=family),Smin*1e-6,Smax*1e-6,epsabs=0.)[0]
        print intg * Vmax
        print Vmax
        area = N / (Vmax * intg)
        area1 = area
        print N, area

        function = lambda S:dNdS_LF(S,z_min,redshift,z_max,dl,params=params,paramsList=paramsList,\
                area=area,family=family)

    if family != 'skads':
        # Set up the 'rough' array
        gridlength = 10000  # Good enough to prevent bleeding at the edges
        Ss = numpy.linspace(Smin, Smax, gridlength)
        print Smin, Smax
        print 'checking for one sample'
        kl = function(20 / 1e6)
        print kl
        #sys.exit()
        values = numpy.array([function(ix / 1e6) for ix in Ss])
        print values[:10]
        # Build the CDF
        CDF = buildCDF(values)
        plt.plot(CDF, Ss)
        #plt.xscale('log')
        #plt.yscale('log')
        plt.ylabel('Flux')
        plt.xlabel('CDF')
        plt.show()
        print CDF.max()
        # Create the interpolant object
        sampler = interp1d(CDF, Ss)

        plt.plot(Ss, values, '.')
        plt.xscale('log')
        plt.yscale('log')
        plt.xlabel('Flux')
        plt.ylabel('LF')
        plt.show()

        x = numpy.linspace(0., 1., 10000)
        z = numpy.logspace(0, 1, 1000) / 10.
        f = sampler(z)
        y = sampler(x)
        plt.yscale('log')
        #plt.xscale('log')
        plt.axhline(Smin)
        plt.axhline(Smax)
        plt.xlabel('R')
        plt.ylabel('Sampler(R) [flux]')
        #plt.plot(x,y)
        plt.plot(z, f)
        plt.show()
        #sys.exit()

        # Test that the sampler extrema match
        print Smin, sampler(0.0), 'you know wa mean'
        print Smax, sampler(0.99999)
        #        assert(numpy.isclose(sampler(0.0),Smin)[0])
        #        assert(numpy.isclose(sampler(0.99999),Smax,atol=1.0e-3)[0])

        # Draw the random deviates
        R = numpy.random.rand(N)
        print len(R)
        F = sampler(R)
        Nt = 0.
        for f in F:
            if f < 1.:
                Nt += 1.
        F = F[F > 1.]
        print N, Nt
        print len(F)
        Nt = len(F)
        #sys.exit()

        # Normalize here - this is N2C
        # EITHER N is specified explicitly
        # BOTH N2C and C2N are useful
        # Integrate the original function
        #intg = integrate.quad(lambda S:LF(S,redshift,dsdl,Vmax,dl,params=params,paramsList=paramsList,\
        #    inta=inta,area=area,family=family),Smin*1e-6,Smax*1e-6,epsabs=0.)[0]
        #print intg*Vmax
        #print Vmax
        #area = Nt/(Vmax*intg)
        #print N,area,area1
        #plt.show()
        #sys.exit()
        A = integrate.quad(function, Smin, Smax)[0]
        #        print A,N
        # Bin the random samples
        bbins = numpy.linspace(Smin, Smax, 100)
        E = numpy.histogram(F, bins=bbins)[0]
        # And calculate their area
        G = integrate.trapz(E, x=medianArray(bbins))
        #        print G
        #        print G/A
        # Gunpowder, treason and....
        if False:
            plt.xlim(0.0, 100.0)
            plt.xlabel('S / $\mu$Jy')
            plt.hist(F, bins=bbins)
            plt.plot(Ss, values * G / A, 'r')
            plt.savefig('N2C.pdf')
            plt.close()

    # Want: C given N, to compare to original C
    numbins = 1000
    if family == 'ppl':
        C_calc = N / N2C(function, F, Smin, Smax, numbins)
        #print N2C(function,F,Smin,Smax,numbins),C
        print 'For %i sources, C is %e (should be %e)' % (N, C_calc, C)
    elif family == 'poly':
        C_calc = log10(N / N2C(function, F, Smin, Smax, numbins))
        print 'For %i sources, C is %e (should be %e)' % (N, C_calc, coeffs[0])

    # Dump noiseless fluxes to file
    puredumpf = dump
    idl_style = False
    numpy.savetxt(puredumpf, F)
    print 'Draws (noiseless) are in %s' % puredumpf
    writeCountsFile(output[1],
                    bins,
                    F,
                    area,
                    idl_style=idl_style,
                    verbose=verbose)
    print output[1]
    # Now add noise if requested
    if simdocatnoise:
        numpy.random.seed(seed=SEED_SIM)
        poln = False
        if poln:
            F += rice.rvs(F / noise, size=N)
        else:
            F += numpy.random.normal(0.0, noise, Nt)

    # Dump noisy fluxes to file
    if dump is not None:
        noisydumpf = '%s_noisy.txt' % puredumpf.split('.')[0]
        numpy.savetxt(noisydumpf, F)
        print 'Draws (noisy) are in %s' % noisydumpf
        print 'Minimum flux in catalogue = %f' % F.min()
        print 'Maximum flux in catalogue = %f' % F.max()

    # Write counts file
    print output[0]
    writeCountsFile(output[0],
                    bins,
                    F,
                    area,
                    idl_style=idl_style,
                    verbose=verbose)
    print N, area  #,area1

    return F
Esempio n. 3
0
def main():
    """
    """

    # Import the settings variables
    print 'Settings file is %s' % param_file

    # Import the settings variables
    set_module = importlib.import_module(settingsf)
    globals().update(set_module.__dict__)

    # Set up the experiment
    #bins=[12.679592, 31.84969509, 80.00281696, 200.9579904, 504.78364938, 1010, 3267.95919972]# 0.4 bins
    bins = numpy.logspace(0, 3.01, 10)
    bins = list(bins)
    bins.append(2e3)
    bins1 = numpy.arange(17.2, 28.2, 0.1)
    print 'run expt'
    nbins = len(bins)

    z_m = redshifts[0]
    dl = get_dl(z_m)
    sbin1 = get_sbins(10**bins1, z_m, dl) * 1e6
    expt = countModel(modelFamily,
                      nlaws,
                      settingsf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True,
                      mybins=sbin1)

    #expt=countModel(modelFamily,nlaws,settingsf,dataset,floatNoise,\
    #               doRedshiftSlices=True)#numpy.logspace(0,3.0,20))

    #print 'these are my beens', expt.bins
    #sys.exit()

    f = '%spost_equal_weights.dat' % outstem
    #f='%sev.dat'% outstem
    f = os.path.join(outdir, f)
    # Fetch best-fit parameters and calculate best-fit line
    plotTruth = dict((name, -99.0) for name in expt.parameters)

    # Load equally-weighted posterior samples
    x = numpy.genfromtxt(f)
    nsamp = x.shape[0]
    ncols = x.shape[1]  # The fifth [seventh] column is the posterior value
    # There must be a better way, but:
    #ncols = 14
    z = numpy.zeros((nsamp, ncols - 1 + expt.nbins))
    z[:, :-(expt.nbins - 1)] = x
    # Shift posterior values to end
    z[:, -1] = z[:, ncols - 1]  # Copy...
    z[:, ncols - 1] = 0.0  # ...and blank

    # Fetch best-fit parameters and calculate best-fit line
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']
    #print 'These is MAP',drawml
    #sys.exit()

    #summf=os.path.join(outdir,'1-summary.txt')
    #summary=numpy.genfromtxt(summf)[-1,:]
    #drawmap=summary[-(ncols+1):-2]
    print 'Now this is MAP', drawmap
    #drawmap = [  1.76792100e+02,   5.24202324e+18,   7.67284256e+24,   2.52157587e+1, 9.63136831e+22,   3.30233162e+00]

    if True:
        print '--> Calculating *ML* reconstruction'
        drawmap = drawmap

    # Convert drawmap into correct units etc.
    power = 2.5
    #drawmap[6]-=0.6
    #ymap=expt.evaluate(expt.convertPosterior(drawmap,power))
    ymap = expt.evaluate(drawmap)[0]  #,expt.binsMedian)
    #ymap=expt.realise(drawmap)
    #print 'ymap'
    #print ymap
    #print 'yy',['%e'%y for y in ymap]
    #sys.exit(0)

    for isamp in xrange(nsamp):
        #z[isamp,ncols-1:]=expt.evaluate(expt.convertPosterior(z[isamp,:],power))
        #z[isamp,:][6]-=0.6
        z[isamp,
          ncols - 1:] = expt.evaluate(z[isamp, :])[0]  #,expt.binsMedian)
        #print z[isamp,:]
        #sys.exit()

    # Blanking, 0.0 -> NaN
    z[numpy.where(z == 0.0)] = 'NaN'
    #sys.exit()

    # Save the raw reconstructions
    reconf = 'recon_raw.txt'
    reconf = os.path.join(outdir, reconf)
    recons = z[:, ncols - 1:]
    #numpy.savetxt(reconf,recons)

    # Generate stats here...
    s = numpy.zeros((len(expt.binsMedian), 8))
    s[:, 0] = expt.binsMedian

    #print '# ibin flux fit low high dlower dupper skew kurtosis'
    #print '%6s %12s %12s %12s %12s %12s %12s %12s %12s'%('bin', 'lower phi_rms','lower phi', 'l_err','ymap','u_err', 'upper phi','u_phi_rms', '2*rms')
    for ibin in xrange(len(expt.binsMedian)):
        x = recons[:, ibin]
        # Remove NaNs from stats vectors
        # http://stackoverflow.com/questions/11620914/removing-nan-values-from-an-array
        x = x[~numpy.isnan(x)]
        #ss=stats.bayes_mvs(x,alpha=0.68)[0]
        #x*=numpy.power(s[ibin,0]/1.0e6,2.5)
        #print bins1[ibin]
        #plt.hist(numpy.log10(x),bins=15)
        #plt.xlabel(r'$\rm{log_{10}[\rho_m(Mpc^{-3} mag^{-1})]}$',fontsize = 20)
        #plt.show()
        #tt=peak_confidence(x,bins=10)

        try:
            ss = numpy.zeros(3)
            ss[0], dlow, dhigh, ss[1], ss[2] = calculate_confidence(
                x, alpha=0.95, ret_all=True)
            #ss[0],dlow,dhigh,ss[1],ss[2]=calculate_confidence2(x,alpha=0.68,ret_all=True,\
            #                                                   value_central=ymap[ibin],\
            #                                                   truncate_edges=True)
        except:
            ss = numpy.nan * numpy.ones(3)
            print "didn't work for ", x
            continue
        #sys.exit()
        #tt=peak_confidence(x,bins=10)
        #ss*=numpy.power(s[ibin,0]/1.0e6,2.5)
        #print ss[0],tt
#        s[ibin,1]=ss[0]  # median
#        s[ibin,1]=tt     # peak
        s[ibin, 1] = ymap[ibin]  # MAP
        #print ymap
        s[ibin, 2] = ss[1]  # lower
        s[ibin, 3] = ss[2]  # upper
        s[ibin, 4] = 2 * numpy.std(
            x)  # (s[ibin,3]- s[ibin,2])/(2*numpy.std(x))# skewness
        s[ibin, 5] = ss[0]

        #print '%6.1f %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f'%(bins1[ibin], numpy.log10((ymap[ibin] - s[ibin,4])), numpy.log10(ss[1]),numpy.log10(s[ibin,2]),numpy.log10(ymap[ibin]),numpy.log10(s[ibin,3]) ,numpy.log10(ss[2]), numpy.log10(s[ibin,4]+ ymap[ibin]), numpy.log10(s[ibin,4]) )
        #print ibin,s[ibin,0],s[ibin,1],dlow,dhigh,ss[1],ss[2],s[ibin,4],s[ibin,5]#,stats.skewtest(x)
        #sys.exit()

    # ...and output to file
    #sys.exit()
    rstatsf = 'recon_stats.txt'
    rstatsf = os.path.join(outdir, rstatsf)
    hdr = '# median_flux_uJy dnds_2p5_Jy1p5srm1 delta_dnds_2p5_lower_Jy1p5srm1 delta_dnds_2p5_upper_Jy1p5srm1 skewness kurtosis'
    fid = open(rstatsf, 'w')
    #print hdr
    #print s

    print '-> Writing stats (i.e. dnds2p5+/- v. S/uJy) to %s' % rstatsf
    fid.write('%s\n' % hdr)
    numpy.savetxt(fid, s)
    fid.close()
    print 'Finished.'

    return 0
Esempio n. 4
0
def main():
    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module = importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt = countModel(modelFamily,
                      nlaws,
                      setf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True)
    #recon_expt=countModel(modelFamily,nlaws,setf,[dataset],floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n' * 5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf = os.path.join(outdir, '1-summary.txt')
    summary = numpy.genfromtxt(summf)[-1, :]
    drawmap = summary[-(ncols + 2):-2]
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']

    if dataset == 'sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset == 'cosmos':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][8:]))
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d = numpy.genfromtxt(os.path.join(outdir, 'sim.txt'))

    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0, 29.2, 0.4)
    bins3 = numpy.arange(18., 29.2, 0.01)

    print len(expt.parameters)
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap  # [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters
    #novak 2017
    L_n = [21.77, 22.15, 22.46, 22.77, 23.09, 23.34]
    rho_n = [-2.85, -2.88, -3.12, -3.55, -4.05, -4.63]
    L_ner_u = [0.23, 0.18, 0.19, 0.2, 0.21, 0.28]
    L_ner_d = [1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner = [0.09, 0.03, 0.0355, 0.059, 0.1, 0.234]

    #novak 2018
    L_n2   =[[21.77,22.24,22.68,23.16,23.69,24.34, 24.74,25.56],\
             [22.30,22.61,22.96,23.38,23.80,24.10, 24.55,25.14],\
             [22.61,22.86,23.14,23.45,23.82,24.14, 24.40,24.71],\
             [22.85,23.16,23.69,24.24,24.80,25.31, 25.96,26.69],\
             [23.10,23.38,23.86,24.36,24.86,25.35, 25.94,26.36],\
             [23.32,23.57,23.94,24.32,24.67,25.06, 25.47,25.96],\
             [23.54,23.75,24.13,24.45,24.90,25.27, 25.74,26.10],\
             [23.73,23.99,24.57,25.10,25.68,26.18, 26.83,27.51],\
             [24.01,24.26,24.76,25.26,25.91,26.19, 27.45],\
             [24.30,24.56,24.80,25.13,25.37,25.80, 25.97,26.49]]


    L_ner_u2  =[[0.23,0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03],\
                [0.11,0.20, 0.26, 0.25, 0.24, 0.35, 0.31, 0.15],\
                [0.08,0.15, 0.20, 0.22, 0.17, 0.18, 0.24, 0.28],\
                [0.072,0.33,0.38, 0.40, 0.48, 0.42, 0.41, 0.28],\
                [0.080,0.30,0.32, 0.32, 0.32, 0.33, 0.24, 0.34],\
                [0.068,0.22,0.24, 0.25, 0.29, 0.30, 0.28, 0.21],\
                [0.067,0.22,0.21, 0.26, 0.18, 0.17,0.075, 0.11],\
                [0.093,0.36,0.31, 0.30, 0.25, 0.28, 0.16,0.028],\
                [0.076,0.34,0.36, 0.38, 0.24, 0.47, 0.27],\
                [0.097,0.14,0.20, 0.16, 0.23, 0.092,0.22,0.026]]


    L_ner_d2  =[[1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50],\
               [0.29, 0.21, 0.15, 0.16, 0.17, 0.06, 0.099,0.29],\
               [0.24, 0.17, 0.12, 0.10, 0.15, 0.15, 0.08,0.074],\
               [0.16, 0.24, 0.19, 0.17, 0.15, 0.09, 0.16, 0.33],\
               [0.30, 0.19, 0.18, 0.18, 0.18, 0.17, 0.26, 0.18],\
               [0.14, 0.18, 0.15, 0.14, 0.10, 0.095,0.11, 0.21],\
               [0.19, 0.14, 0.15, 0.11, 0.19, 0.19, 0.29, 0.28],\
               [0.40, 0.17, 0.21, 0.23, 0.27, 0.25, 0.37, 0.53],\
               [0.20, 0.17, 0.16, 0.14, 0.27, 0.042, 0.27],\
               [0.22, 0.16, 0.10, 0.14,0.072, 0.21, 0.08, 0.30]]

    rho_n2 =[[-2.84,-2.90,-3.34,-4.00,-4.92,-4.92, -5.22,-5.07],\
             [-2.95,-3.17,-3.46,-4.24,-4.76,-5.41, -5.23,-5.44],\
             [-2.95,-3.11,-3.44,-3.81,-4.37,-4.48, -4.90,-5.14],\
             [-2.99,-3.24,-3.89,-4.54,-5.27,-5.33, -5.69,-5.89],\
             [-3.32,-3.51,-4.06,-4.74,-5.28,-5.43, -6.08,-5.70],\
             [-3.29,-3.54,-4.02,-4.45,-5.11,-5.56, -5.37,-6.07],\
             [-3.43,-3.61,-4.19,-4.56,-5.09,-5.34, -5.70,-5.75],\
             [-3.88,-3.98,-4.64,-5.33,-5.73,-6.27, -6.14,-6.77],\
             [-3.85,-4.28,-5.05,-5.60,-5.68,-6.44, -6.59],\
             [-4.43,-4.91,-5.46,-5.58,-5.89,-6.23, -6.26,-6.91]]

    rho_ner_u2=[[0.08,0.024,0.038,0.083,0.28,0.28 , 0.45, 0.34],\
                [0.048,0.027,0.036,0.089,0.17,0.45, 0.34, 0.45],\
                [0.062,0.024,0.032,0.048,0.096, 0.11,0.18,0.25],\
                [0.042,0.018,0.035,0.073,0.180, 0.20,0.34,0.45],\
                [0.045,0.019,0.033,0.072,0.15,  0.17,0.45,0.25],\
                [0.040,0.022,0.033,0.055,0.13,  0.22,0.17,0.45],\
                [0.061,0.020,0.035,0.055,0.099, 0.14,0.22,0.25],\
                [0.044,0.022,0.044,0.11, 0.16, 0.34, 0.28,0.76],\
                [0.048,0.025,0.058,0.13, 0.24, 0.34, 0.45],\
                [0.084,0.058,0.11 ,0.24, 0.20, 0.28, 0.28,0.76]]

    rho_ner_d2=[[0.07,0.023,0.035,0.070,0.25,0.25 , 0.37, 0.30],\
                [0.043,0.026,0.033,0.074,0.16,0.37, 0.30, 0.37],\
                [0.054,0.023,0.030,0.043,0.079,0.086,0.17,0.22],\
                [0.038,0.017,0.032,0.062,0.17,0.19, 0.30, 0.37],\
                [0.041,0.019,0.031,0.062,0.11,0.16, 0.37, 0.22],\
                [0.037,0.021,0.031,0.049,0.098,0.20,0.16, 0.37],\
                [0.054,0.019,0.032,0.049,0.081,0.11,0.20, 0.22],\
                [0.040,0.021,0.040,0.085,0.15, 0.30, 0.25,0.52],\
                [0.043,0.024,0.051,0.10, 0.15, 0.30, 0.37],\
                [0.070,0.051,0.087,0.16,0.19, 0.25, 0.25, 0.52]]

    fig = plt.figure()
    pre_chain = 12
    pre_chain = '02'

    chains = [
        '01a_1', '01b', '01c', '01d', '01e', '01f_1', '01g', '01h', '01i'
    ]  #chains_2001 DR4
    chains = [
        '01a_4', '01b_2', '01c_2', '01d_2', '01e_2', '01f_2', '01g', '01h_2',
        '01i_2'
    ]  #chains_2001 DR4 remove phi2
    chains = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']
    #z = [0, 0.5, 1 , 1.5, 2, 2.3, 2.6, 3, 3.5, 4] #old
    #z = [ 0.7, 1 , 1.35, 1.7, 2, 2.3, 2.6, 3, 3.5, 4]# older
    print expt.parameters
    n, m = 3, 3

    z_new = True
    Replot = False
    z_nov = [0.31, 0.5, 0.69, 0.9, 1.16, 1.44, 1.81, 2.18, 2.81, 3.71, 4.83]
    if z_new:
        z = [0.1, 0.3, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]
        #chains=['11a','11b','11c_3','11d_3','11e_3','11f_3','11g_3','11h','11i','11j', '11k', '11l' ,'11m', '11n']#chains_201111
    else:
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]  #oldest ;)

    model = modelFamily
    if model in [
            'LFsch', 'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z',
            'LFlognorm_dpl', 'LFpl_lognorm'
    ]:
        Lnorm = params[expt.parameters.index('LNORM')]
        Lstar = params[expt.parameters.index('LSTAR')]
        Lslope = params[expt.parameters.index('LSLOPE')]
        #Lzevol=params[expt.parameters.index('LZEVOL')]
    if model in [
            'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z', 'LFlognorm_dpl'
    ]:
        Lslope2 = params[expt.parameters.index('LSLOPE2')]
    if model in [
            'LFlognorm', 'LFpl', 'LFdpl', 'LFdpl_pl', 'LFpl_dpl',
            'LFlognorm_dpl', 'LFpl_lognorm', 'LFdpl_dpl', 'LFdpl_dpl_z'
    ]:
        Lnorm_2 = params[expt.parameters.index('LNORM_2')]
        Lstar_2 = params[expt.parameters.index('LSTAR_2')]
        Lslope_2 = params[expt.parameters.index('LSLOPE_2')]

    if model in ['LFdpl_dpl', 'LFdpl', 'LFdpl_dpl_z']:
        Lslope2_2 = params[expt.parameters.index('LSLOPE2_2')]

    if model in ['LFlognorm', 'LFlognorm_dpl', 'LFpl_lognorm']:
        Lsigma = params[expt.parameters.index('LSIGMA')]

    if modelFamily in [
            'LFdpl_dpl_z', 'LFevol', 'LFevol_dpl', 'LFevol_logn',
            'LFevol_logn_L'
    ]:
        alpha_agn = params[expt.parameters.index('A_agn')]
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_agn = params[expt.parameters.index('B_agn')]
        beta_SF = params[expt.parameters.index('B_SF')]

    if modelFamily in ['LFevol_dpl_s', 'LFevol_logn_s']:
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_SF = params[expt.parameters.index('B_SF')]

    if modelFamily in ['LFevol_dpl_a', 'LFevol_logn_a']:
        alpha_agn = params[expt.parameters.index('A_agn')]
        beta_agn = params[expt.parameters.index('B_agn')]

    Lmin = params[expt.parameters.index('LMIN')]
    LMIN = params[expt.parameters.index('LMIN')]
    Lmax = params[expt.parameters.index('LMAX')]

    loglike = 0.
    loglike_nov = 0.
    print model

    bins3 = numpy.arange(15., 30.2, 0.2)
    #xbins  = numpy.arange(fsigma,26.2,0.4)#bin +0.2
    sbin4 = get_sbins(10**bins3, z[0], get_dl(z[0])) * 1e6
    expt2 = countModel(modelFamily,
                       nlaws,
                       setf, [dataset],
                       floatNoise,
                       doRedshiftSlices=True,
                       mybins=sbin4)
    sbin5 = medianArray(sbin4)
    phi_tot3 = expt2.evaluate(params)
    #print phi_tot3
    #print len(phi_tot3[0]), len(bins3)

    for num in range(1, 10):
        #num = 1.
        print num
        print 'new num ', num
        z_min, z_max, z_m = get_z(num, False)
        dl = get_dl(z_m)
        Vmax = get_Vmax(z_min, z_max)
        dsdl = get_dsdl(z_m, dl)

        #z_m = (z_min + z_max)/2
        dl = get_dl(z_m)

        print z_min, z_max, 'lmin ',

        SMIN = get_sbins(numpy.power(10, Lmin), z_m, dl) * 1e6
        SMAX = get_sbins(numpy.power(10, Lmax), z_m, dl) * 1e6
        sigma, fsigma, Lmin = numpy.log10(
            get_Lbins([SURVEY_NOISE, SURVEY_NOISE * 5, LMIN], z_m, dl, 'muJy')
            * (1.4 / 3)**(-.7))
        sigma2, fsigma2 = numpy.log10(get_Lbins([450, 2400], z_m, dl, 'muJy'))
        print Lmin
        print SURVEY_NOISE, SURVEY_NOISE * 5, SURVEY_AREA

        print num, '%s/recon_stats_%s.txt' % (outdir, chains[num - 1])
        s = numpy.loadtxt('%s/recon_stats_%s.txt' % (outdir, chains[num - 1]))
        print chains[num - 1]
        xrecon = s[:-1, 0]
        yrecon = s[:-1, 1]
        yrecon_d = s[:-1, 2]
        yrecon_u = s[:-1, 3]
        yrecon_rms = s[:-1, 4]
        yrecon_avr = s[:-1, 5]
        yrecon_rms_down = yrecon_rms

        #area = 6672*sqDeg2sr #143165.15  49996.49 59876.8861135
        sbin3 = get_sbins(10**bins2, z_m, dl) * 1e6
        #sbin4 = get_sbins(10**bins3,z_m,dl)*1e6

        xreco = get_Lbins(xrecon, z_m, dl, 'muJy')  #*(1.4/3)**(-.7)
        yreco = yrecon

        print SMIN, SMAX
        #sys.exit()
        lin_yrecon = numpy.log10(yreco)
        #print xrecon
        lin_xrecon = numpy.log10(xreco)

        #bins3 = numpy.arange(15.,30.,0.4)
        bins3 = numpy.log10(get_Lbins(sbin4, z_m, dl,
                                      'muJy'))  #*(1.4/3)**(-.7))
        #bins  = numpy.arange(fsigma,26.2,0.4)#bin +0.2
        #sbin4 = get_sbins(10**bins3,z_m,dl)*1e6
        if not os.path.isfile('cos_data/cos_s%s_LF.el' %
                              num) and z_new or not os.path.isfile(
                                  'cos_data/cos_s%s_LF_old.el' %
                                  num) and not z_new or Replot:
            print 'doing all calculations'
            #l,z_l = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,21), F='uJy',L=True,getz=True)
            #l2,z_l2 = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,24), F='uJy',L=True,getz=True)
            if z_new:
                L, z_L = open_anytype('cos_data/cos_s%s.txt' % num, (2, 3),
                                      F='uJy',
                                      L=True,
                                      getz=True,
                                      band='S')
                print 'this is the new z bins (please check if lumfuncUtils and cos_manifest are using the right z)'
            else:
                L, z_L = open_anytype('cos_data/cos_s%s_old.txt' % num, (2, 3),
                                      F='uJy',
                                      L=True,
                                      getz=True,
                                      band='S')
                print 'this is the old z binning style. (please check if lumfuncUtils and cos_manifest are using the right z)'
            L_c, z_c = open_anytype('cosmos_counter_parts_II.txt', (3, 4),
                                    [z_min, z_max],
                                    F='uJy',
                                    L=True,
                                    getz=True,
                                    band='S')
            z_c2, S_c2, L_c2 = numpy.loadtxt('cosmos_counter_parts_II.txt',
                                             unpack=True,
                                             usecols=(3, 4, 5))
            L_c2 = L_c2[(z_c2 < z_max) & (z_c2 > z_min)]
            S_c2 = S_c2[(z_c2 < z_max) & (z_c2 > z_min)]
            z_c2 = z_c2[(z_c2 < z_max) & (z_c2 > z_min)]

            #rho_1,er1 = calc_Vmax(calcu_zeff(z_l,l,11.5e-32),l,bins,z_max,z_min,area)
            #rho_2,er2 = calc_Vmax(calcu_zeff(z_l2,l2,11.5e-32),l2,bins,z_max,z_min,area)
            rho_3, er3 = calc_Vmax(calcu_zeff(z_L, L, 1.15e-31), L, bins,
                                   z_max, z_min, area)
            #rho_4,er4 = calc_Vmax(99.,L,bins2,z_max,z_min,area)
            rho_5, er5 = calc_Vmax(calcu_zeff(z_c, L_c, 1.15e-31), L_c, bins,
                                   z_max, z_min, area)
            rho_6, er6 = calc_Vmax(calcu_zeff(z_c2, 10**L_c2, 1.15e-31),
                                   10**L_c2, bins, z_max, z_min, area)
            if z_new:
                f = open('cos_data/cos_s%s_LF.el' % num, 'w')
            else:
                f = open('cos_data/cos_s%s_LF_old.el' % num, 'w')
            for i in range(len(bins)):
                f.write('%5.1f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f\n' %
                        (bins[i], rho_3[i], er3[i], rho_5[i], er5[i], rho_6[i],
                         er6[i]))
            f.close()

            dl_c = get_dl(z_c2)
            L_c3 = numpy.log10(
                get_Lbins(S_c2, z_c2, numpy.array(dl_c), 'muJy') *
                (1.4 / 3.)**(-.7))
        else:
            if z_new:
                #bins,rho_3,er3,rho_5,er5,rho_6,er6 = numpy.loadtxt('cos_data/cos_s%s_LF.el'%num, unpack=True)
                bins, rho_3, er3, rho_5, er5, rho_6, er6, rho_7, er7, rho_8, er8, rho_9, er9 = numpy.loadtxt(
                    'cos_data/cos_s%s_LF_2.el' % num, unpack=True)
                print 'Using stored RLF for the new z (The one with more z bins). If you want to calculate the plot the set "Replot=True"'
            else:
                bins, rho_3, er3, rho_5, er5, rho_6, er6 = numpy.loadtxt(
                    'cos_data/cos_s%s_LF_old.el' % num, unpack=True)
                print 'Using stored RLF for the is old z bins. If you want to calculate the plot the set "Replot=True"'
        ssd = numpy.loadtxt('%s/data_cos_s%s.txt' % (outdir, num))
        #ssd = numpy.loadtxt('cos_data/data_cos_s%s.txt'%(num))
        ssbin2 = ssd[:, 0]  #2
        ssbin1 = ssd[:, 2]  #0
        Nbin2 = ssd[:, 3]
        zbin3 = ssd[:, -1]
        dl1 = get_dl(z_min)
        dl2 = get_dl(z_max)
        #dl3 = get_dl(zbin3)

        Ncount = sum(Nbin2[fsigma > ssbin1])
        Llmin = numpy.log10(
            get_Lbins([fsigma / numpy.sqrt(Ncount)], z_min, get_dl(z_min),
                      'muJy'))[0]
        Llmin *= (1.4 / 3.)**(-.7)
        print Llmin
        dn = expt.realise(params)
        nov_real = expt.realise([2.3, 2.95, 2.86, -0.29, -0.7, 19.5, 26.0])
        #sys.exit()

        fig.add_subplot(n, m, get_changed_multiplot(n, m, num))

        plt.rc('lines', linewidth=2)

        #plt.errorbar(bins,rho_1 ,yerr=er1,fmt='*r',label='detected extracted',markersize=11) #bin
        plt.errorbar(bins[1:],
                     rho_3[1:],
                     yerr=er3[1:],
                     fmt='ob',
                     label='extracted',
                     markersize=8)  #bin
        '''
     if model in ['LFdpl','LFdpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lslope2_2,Lnorm_2)
     elif model in ['LFpl','LFdpl_pl']:
        faint =lumfuncUtils.powerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lnorm_2)
     elif model in ['LFpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar,Lslope,Lslope2,Lnorm)
     elif model in ['LFdpl_dpl_z']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar,Lslope,Lslope2,Lnorm)
     else:
        faint = lumfuncUtils.lognormpl(numpy.power(10,bins3), Lstar_2,Lslope_2,Lsigma,Lnorm_2)
        
    '''
        #phi_dpl =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar ,Lslope,Lslope2,Lnorm)

        #phi_dpl
        #dpl  =
        dm = 0.4  #05
        hm = 0.

        Novak17 = lumfuncUtils.lognormpl(
            numpy.power(10, bins3) /
            (1 + z_nov[num - 1])**(3.16 - z_nov[num - 1] * 0.32),
            numpy.log10(1.85e21), 1.22, 0.63, numpy.log10(3.55e-3))
        Novak18=[lumfuncUtils.LF(S,z_m,0,0,dl,[2.3,2.86, 2.95, -0.70, -0.29,0.01,28.],\
                ['noise','A_agn','A_SF','B_agn','B_SF','LMIN','LMAX'],area=SURVEY_AREA,\
                family='LFevol_logn') for S in sbin4/1.0e6]

        phi_tot2 = [lumfuncUtils.LF(S,z_m,0,0,dl,params,expt.parameters,area=expt.survey.SURVEY_AREA,\
                                  family=modelFamily) for S in sbin5/1.0e6]

        L_1 = numpy.power(10, bins3) / (1 + z_m)**(2.86 - z_m * 0.7)
        L_2 = numpy.power(10, bins3) / (1 + z_m)**(2.95 - z_m * 0.29)
        L_4 = numpy.power(10, bins3) / (1 + z_m)**(alpha_SF + z_m * beta_SF)
        #L_3 = numpy.power(10,bins3)/(1 + z_m)**(alpha_agn+z_m*beta_agn)
        print z_m
        #print L_4
        #print L_3
        #sys.exit()
        phi_agn_n = lumfuncUtils.doublepowerlaw(L_1, 24.59, 1.27, 0.49,
                                                numpy.log10(10**(-5.5)))
        phi_sf_n = lumfuncUtils.lognormpl(L_2, numpy.log10(1.85e21), 1.22,
                                          0.63, numpy.log10(3.55e-3))
        phi_exp =[lumfuncUtils.LF(S,z_m,0,0,dl,[2.3,3, 5.58, -0.9, -1.99,0.01,28.],\
                ['noise','A_agn','A_SF','B_agn','B_SF','LMIN','LMAX'],area=SURVEY_AREA,\
                family='LFevol_logn') for S in sbin4/1.0e6]
        #Novak18= phi_agn_n+phi_sf_n
        #print 'this is Lminz', numpy.log10(10**18/(1 + z_m)**(alpha_SF+z_m*beta_SF))
        #phi_agn=lumfuncUtils.doublepowerlaw(L_3,24.59,1.27,0.49,numpy.log10(2.5*10**(-5.5)))
        phi_agn = 0
        phi_sf = lumfuncUtils.doublepowerlaw(L_4, 22.41, 2.4, 0.43,
                                             -3.50)  #0.33 2.97
        phi_sf = lumfuncUtils.lognormpl(L_4, numpy.log10(1.85e21), 1.22, 0.63,
                                        numpy.log10(3.55e-3))
        phi_tot = phi_agn + phi_sf
        #for k in range(len(phi_sf)):
        #   print bins3[k],numpy.power(10,bins3[k]), numpy.log10(L_4[k]), numpy.log10(L_3[k]), numpy.log10(phi_sf[k]), numpy.log10(phi_agn[k]),numpy.log10(phi_tot[k])
        #sys.ek
        #phi_sf =lumfuncUtils.lognormpl(L_4,numpy.log10(1.85e21),1.22,0.63, numpy.log10(3.55e-3))

        #plt.plot(bins3+hm,numpy.log10(faint)-dm,'--b' ,label='faint-end')
        #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7))+hm,numpy.log10(faint)-dm,'--b' ,label='faint-end')
        #plt.plot(numpy.log10(10**bins3),numpy.log10(phi_sf)-dm,'--c', label=' SF')
        #plt.plot(bins3,numpy.log10(phi_agn)-dm,'--r', label='AGN')
        #plt.plot(numpy.log10(10**bins3),numpy.log10(phi_tot)-dm,'--g',linewidth=3, label='Tot')
        #plt.plot(numpy.log10(10**bins3[:-1]),numpy.log10(phi_tot2)-dm,'-k',linewidth=4, label='Tot2')
        #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7)),numpy.log10(phi_exp)-dm,'-k',linewidth=4, label='Expected')
        plt.errorbar(lin_xrecon + hm,
                     lin_yrecon - 0.4,
                     fmt='-b',
                     label='MAP',
                     linewidth=3)
        #plt.plot(numpy.log10(10**bins3[:-1] *(1.4/3)**(-.7)),numpy.log10(phi_tot3[num-1])-dm,'-r',linewidth=3, label='Tot3')
        plt.errorbar(lin_xrecon + hm,
                     numpy.log10(yrecon_avr) - dm,
                     fmt='-c',
                     label='Average')
        plt.errorbar(numpy.array(L_n2[num - 1]),
                     numpy.array(rho_n2[num - 1]) - 0.4,
                     xerr=[L_ner_d2[num - 1], L_ner_u2[num - 1]],
                     yerr=[rho_ner_d2[num - 1], rho_ner_u2[num - 1]],
                     fmt='sk',
                     label='Total RLF Novak et al 2018')
        #plt.errorbar(bins3, numpy.log10(Novak17)-0.4,fmt='--b',label='Local SF Novak et al 2017')
        #plt.plot(bins3,numpy.log10(phi_agn_n),'--g', label='Local AGN Smolcic et al. 2017')
        plt.errorbar(numpy.log10(10**bins3),
                     numpy.log10(Novak18) - 0.4,
                     fmt='--k',
                     label='Total RLF Novak et al 2018')
        #plt.plot(L_s, numpy.log10(rho_1), '*m',label='bins LF',markersize=8)
        #plt.errorbar(bins,rho_5 ,yerr=er5,fmt='*r',label='Total',markersize=10) #bin
        #plt.errorbar(bins,rho_6 ,yerr=er6,fmt='>g',label='Total LF',markersize=10) #bin
        plt.fill_between(lin_xrecon + hm,
                         numpy.log10((yrecon_d)) - dm,
                         numpy.log10(yrecon_u) - dm,
                         color='k',
                         alpha=0.2)
        #plt.axvline(Lmin,color='r')
        print 'This is the dn'
        print z_m
        #print dn.keys()
        '''
     for key in dn.keys():
        if round(key,2)==round(z_m,2):z_m=key
     
     dn=dn[z_m]
     nov_real=nov_real[z_m]
     #print nov_real
     #dn=dn[round(z_m,2)]
     for i in range(len(ssbin1)):
            loglike_i= Nbin2[i]*numpy.log(dn[i]) + Nbin2[i] - (Nbin2[i] + 0.5)*numpy.log(Nbin2[i]) - 0.5*numpy.log(2*numpy.pi)  - dn[i]
            loglike_nov_i= Nbin2[i]*numpy.log(nov_real[i]) + Nbin2[i] - (Nbin2[i] + 0.5)*numpy.log(Nbin2[i]) - 0.5*numpy.log(2*numpy.pi)  - nov_real[i]
            if nov_real[i]>0:loglike_nov+=loglike_nov_i
            if dn[i]>0:loglike+=loglike_i
            print '%10.5f %8.2d %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f'%(ssbin1[i], Nbin2[i], dn[i],nov_real[i],loglike_i,loglike_nov_i,loglike, loglike_nov)
    
    
     '''
        plt.ylim(-7.6, -1.6)
        plt.axvline(fsigma, color='k', linestyle='dashed')
        plt.axvline(sigma, color='g')
        #plt.axvline(Llmin,color='r',linewidth=5)
        print 'Is this still num ', num
        if num < 2 or num < 6 and num > 3 or num > 6 and num < 9:
            plt.xticks(visible=False)
            plt.ylim(-7.6, -1.6)

        if num < 4:
            plt.xlim(19, 25.8)
            plt.text(19.2,
                     -7.,
                     '%.1f < z < %.1f' % (z_min, z_max),
                     fontsize=19)  # \n $M_i$ < -22
        elif num < 7:
            plt.xlim(20.8, 27.2)
            plt.text(21., -7., '%.1f < z < %.1f' % (z_min, z_max),
                     fontsize=19)  # \n $M_i$ < -22
        else:
            plt.xlim(21.3, 27.8)
            plt.text(21.5,
                     -7.,
                     '%.1f < z < %.1f' % (z_min, z_max),
                     fontsize=19)  # \n $M_i$ < -22

        if num == 3:
            plt.xticks([19, 20, 21, 22, 23, 24, 25], fontsize=22)
        if num == 6:
            plt.xticks([21, 22, 23, 24, 25, 26, 27], fontsize=22)
        if num == 9:
            plt.xticks([22, 23, 24, 25, 26, 27], fontsize=22)
            plt.legend(frameon=False).draggable()
        if num == 1 or num == 2 or num == 3 or num == 10:
            plt.yticks([-2., -3, -4, -5, -6], fontsize=22)
            if num == 3:
                plt.yticks([-2., -3, -4, -5, -6, -7], fontsize=22)
            continue
        plt.yticks(visible=False)

    fig.text(0.06,
             0.5,
             r'$\rm{log_{10}[\Phi /(Mpc^{-3}mag^{-1})]}$',
             fontsize=30,
             ha='center',
             va='center',
             rotation='vertical')
    fig.text(0.5,
             0.04,
             r'$\rm{log_{10}[L_{1.4}/(W}$ $\rm{Hz^{-1})]}$',
             fontsize=30,
             ha='center',
             va='center')
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both', which='major', labelsize=20, width=3)
    plt.tick_params(axis='both', which='minor', labelsize=10, width=2)
    plt.subplots_adjust(hspace=0, wspace=0)
    #plt.xtick(fontsize=15)
    #plt.ytick(fontsize=15)

    #plt.ylim(-10.2,-5.8)
    #plt.ylim(-11,-5.5)
    #ax.xaxis.set_minor_locator(AutoMinorLocator())
    #ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']

    plotf = '%s/LF_recon_s1.pdf' % (outdir)
    plt.show()

    return 0
Esempio n. 5
0
def main():
    """
    """

    # Import the settings variables
    print 'Settings file is %s' % param_file

    # Import the settings variables
    set_module = importlib.import_module(settingsf)
    globals().update(set_module.__dict__)

    # Set up the experiment
    #bins=[12.679592, 31.84969509, 80.00281696, 200.9579904, 504.78364938, 1010, 3267.95919972]# 0.4 bins
    chains = [
        '01a_3', '01b_3', '01c_3', '01d_3', '01e', '01f', '01g', '01h', '01i',
        '01j'
    ]  #chains_1912 including peter
    chains = [
        '01a_3', '01b_2', '01c_2', '01d_2', '01e_2', '01f_2', '01g', '01h_2',
        '01i_2', '01j_3'
    ]  #chains_2001 DR4 remove phi2
    chains = [
        '01a_8', '01b_8', '01c_8', '01d_8', '01e_8', '01f_8', '01g_7', '01h_8',
        '01i_8', '01j_7'
    ]  #chains_2001 DR4 dpl_dpl
    chains = [
        '01a_9', '01b_9', '01c_9', '01d_9', '01e_9', '01f_9', '01g_9', '01h_9',
        '01i_9', '01j_9'
    ]  #chains_2001 DR4 dpl_dpl no mass selection
    chains = [
        '02a_4_1', '02a_4_2', '02b_4', '02c_4', '02d_4', '02e_4', '02f_4',
        '02g_4', '02h_4', '02i_4', '02j_3'
    ]
    chains = [
        '02a_z_6x_1', '02a_z_6x_2', '02b_z_7x', '02c_z_7x', '02d_z_7x',
        '02e_z_7x', '02f_z_7x', '02g_z_7x', '02h_z_7x', '02i_z_7x', '02j_z_7x'
    ]
    chains = [
        '02z_31_3', '02z_31_3', '02z_31_3', '02z_31_3', '02z_31_3', '02z_31_3',
        '02z_31_3', '02z_31_3', '02z_31_3', '02z_31_3', '02z_31_3', '02z_31_3'
    ]
    chains = [
        '02a_z_8x', '02b_z_8x', '02c_z_8x', '02d_z_8x', '02e_z_8x', '02f_z_8x',
        '02g_z_8x', '02h_z_8x', '02i_z_8x', '02j_z_8x'
    ]  #fixed model newz area
    chains = [
        '02a', '02b', '02c', '02d', '02e', '02f', '02g', '02h', '02i', '02j'
    ]  #lgnorm #chains_2001 DR4 newz new_area
    #chains=['02a_3','02b_3','02c_3','02d_3','02e_3','02f_3','02g_3','02h_3','02i_3','02j_3'] #mass <10
    #chains=['02a_z_6e','02b_z_6e','02c_z_6e','02d_z_6e','02e_z_6e','02e_z_6e','02g_z_6e','02h_z_6e','02i_z_6e','02j_z_6e']# New fixed 6e (using a)
    #chains=['02a_z_6f','02b_z_6f','02c_z_6f','02d_z_6f','02e_z_6f','02e_z_6f','02g_z_6f','02h_z_6f','02i_z_6f','02j_z_6f']# New fixed 6f (using a)
    #chains=['02a_z_6g','02b_z_6g','02c_z_6g','02d_z_6g','02e_z_6g','02e_z_6g','02g_z_6g','02h_z_6g','02i_z_6g','02j_z_6g']# New fixed 6f (using a)
    #chains=['01a_5','01b_5','01c_5','01d_5','01e_5','01f_5','01g_5','01h_5','01i_5','01j_5'] #stellar mass>10.2
    chains = [
        '02a_5', '02b_5', '02c_5', '02d_5', '02e_5', '02f_5', '02g_5', '02h_5',
        '02i_5', '02j'
    ]  #stellar mass>10
    chains = [
        '02a_3', '02b_3', '02c_3', '02d_3', '02e_3', '02f_3', '02g_3', '02h_3',
        '02i_3', '02j_3'
    ]  #stellar mass<10. logn
    #chains=['01a','01b','01c','01d','01e','01f','01g','01h','01i','01j'] #dpl #chains_2001 DR4 newz new_area
    #chains=['02a_z_5x','02b_z_5x','02c_z_5x','02d_z_5x','02e_z_5x','02f_z_5x','02g_z_5x','02h_z_5x','02i_z_5x','02j_z_5x']#stellar mass limit mass<10
    #chains=['02a_z_5f','02b_z_5f','02c_z_5f','02d_z_5f','02e_z_5f','02f_z_5f','02g_z_5f','02h_z_5f','02i_z_5f','02j_z_5x']#stellar mass limit mass<10
    #chains=['02a_z_8x_6_1','02b_z_8x_6_1','02c_z_8x_6_1','02d_z_8x_6_1','02e_z_8x_6_1','02f_z_8x_6_1','02g_z_8x_6_3','02h_z_8x_6_10','02i_z_8x_6_10','02j_z_8x_6_10']#fixed cut data more bins _el lmin lose
    #chains=['02a_z_8x_6_1','02b_z_8x_6_1','02c_z_8x_6_1','02d_z_8x_6_1','02e_z_8x_6_1','02f_z_8x_6_1','02g_z_8x_6_1','02h_z_8x_6_3','02i_z_8x_6_3','02j_z_8x_6_4']
    #chains='02z_31_5_15'
    pre_chain = '11'
    bins = numpy.logspace(0, 3.01, 10)
    bins = list(bins)
    bins.append(2e3)
    bins1 = numpy.arange(15.2, 30.2, 0.1)
    nbins = len(bins)
    z_m = redshifts[0]
    dl = get_dl(z_m)
    sbin1 = get_sbins(10**bins1, z_m, dl) * 1e6
    expt = countModel(modelFamily,
                      nlaws,
                      settingsf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True,
                      mybins=sbin1)

    Lmin = 21  #21.5# 19. 21.5
    Lmax = 26.
    z_med = []
    SFRD, SFRD_l, SFRD_h = [], [], []
    sfrd_map = []
    nov_z, nov_z_u, nov_z_l, nov_sfrd, nov_sfrd_u, nov_sfrd_l, Lower, lw_up, lw_lw = numpy.loadtxt(
        'novak_2017.txt', usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8), unpack=True)
    print modelFamily
    evaluations = []
    evaluate = True
    for num in range(1, 11):
        print num

        z_min, z_max, z_m = get_z(num, z_new=False)
        z_med.append(z_m)
        print z_m

        #f='%sev.dat'% outstem
        f = '1-post_equal_weights.dat'
        f = os.path.join('chains_20%s%s' % (pre_chain, chains[num - 1]), f)
        #f=os.path.join('chains_20%s%s'%(pre_chain,chains),f)
        print 'os.pathf', f

        #sfrd_map
        # Load equally-weighted posterior samples
        x = numpy.genfromtxt(f)
        nsamp = x.shape[0]
        ncols = x.shape[1]  # The fifth [seventh] column is the posterior value
        # There must be a better way, but:
        #ncols = 14
        z = numpy.zeros((nsamp, ncols - 1 + expt.nbins))
        z[:, :-(expt.nbins - 1)] = x
        # Shift posterior values to end
        z[:, -1] = z[:, ncols - 1]  # Copy...
        z[:, ncols - 1] = 0.0  # ...and blank

        print 'outstem', outstem

        # Fetch best-fit parameters and calculate best-fit line
        ana=pymultinest.analyse.Analyzer(ncols-1,\
           outputfiles_basename=os.path.join('chains_20%s%s'%(pre_chain,chains[num-1]),outstem))
        drawmap = ana.get_best_fit()['parameters']

        #ana=pymultinest.analyse.Analyzer(ncols-1,\
        #   outputfiles_basename=os.path.join('chains_20%s%s'%(pre_chain,chains),outstem))
        #drawmap=ana.get_best_fit()['parameters']

        if True:
            print '--> Calculating *ML* reconstruction'
            drawmap = drawmap

        #ymap=expt.evaluate(drawmap)[0]#,expt.binsMedian)
        q_l, q, q_h = get_q(z_m)
        yrecon, lin_xrecon2, str_q_l = 0, 0, 0
        sfrd = []
        sfrd_map.append(
            get_sfrd_z(yrecon, lin_xrecon2, str_q_l, drawmap, expt.parameters,
                       modelFamily, q_h, 26., Lmin, z_m)[0])
        print drawmap
        for isamp in xrange(nsamp):
            #z[isamp,ncols-1:]=expt.evaluate(z[isamp,:])[0]#,expt.binsMedian)
            #Lmin =z[isamp,:][expt.parameters.index('LMIN')]

            Lmax = z[isamp, :][expt.parameters.index('LMAX')]
            #sfrd_z_l=get_sfrd_z(yrecon,lin_xrecon2,str_q_l,z[isamp,:],expt.parameters,modelFamily,q_l ,Lmax,Lmin,z_m)[0] #lower limit
            #sfrd_z_h=get_sfrd_z(yrecon,lin_xrecon2,str_q_l,z[isamp,:],expt.parameters,modelFamily,q_h ,Lmax,Lmin,z_m)[0] #upper limit
            sfrd_z = get_sfrd_z(yrecon, lin_xrecon2, str_q_l, z[isamp, :],
                                expt.parameters, modelFamily, q, Lmax, Lmin,
                                z_m)[0]  #26, 21.5
            #plt.plot(z_m,numpy.log10(sfrd_z),'.', alpha=0.02)
            #plt.plot(z_m,numpy.log10(sfrd_z_l),'.', alpha=0.01)
            #plt.plot(z_m,numpy.log10(sfrd_z_h),'.', alpha=0.01)
            #sfrd.append(sfrd_z_l)
            sfrd.append(sfrd_z)
            #sfrd.append(sfrd_z_h)
        #plt.show()

    # Blanking, 0.0 -> NaN
    #sys.exit()

        s_med, dlow, dhigh, s_low, s_high = calculate_confidence(sfrd,
                                                                 alpha=0.95,
                                                                 ret_all=True)
        SFRD.append(s_med)
        SFRD_l.append(s_low)
        SFRD_h.append(s_high)
        '''
     plt.hist(numpy.log10(sfrd),20)
     plt.axvline(numpy.log10(s_med),color='r')
     plt.axvline(numpy.log10(s_low),color='k')
     plt.axvline(numpy.log10(s_high), color='k')
     plt.xlabel(r'$\rm{\log10(SFRD[M_\odot yr^{-1} Mpc^{-3}])}$',fontsize=20)
     plt.show()
     
    '''
    sfrdf = 'sfrd_chains_20%s%s_Lmin_%s' % (pre_chain, chains[0], '21_5')
    #sfrdf='sfrd_chains_20%s%s_Lmin_%s'%(pre_chain,chains,'21_5')
    fils = open(sfrdf, 'w')
    hdr = '# median redshift  sfrd_median  sfrd_low sfrd_high'
    fils.write('%s\n' % hdr)
    for i in range(len(SFRD)):
        fils.write('%f %f %f %f \n' %
                   (z_med[i], SFRD[i], SFRD_l[i], SFRD_h[i]))
    fils.close()

    z_b = numpy.arange(0, 60) / 10.
    Ilbert_h = sfrd_Behroozi(z_b,
                             z0=0.95 - 0.410,
                             A=-1.,
                             B=0.194 - 0.082,
                             C=0.111 + 0.04)
    Ilbert_l = sfrd_Behroozi(z_b,
                             z0=0.95 + 0.343,
                             A=-1.,
                             B=0.194 + 0.128,
                             C=0.111 - 0.029)
    G_x, Gruppioni = numpy.loadtxt('Gruppioni_2013',
                                   unpack=True,
                                   delimiter=',')
    G_x1, Gruppioni_yup = numpy.loadtxt('Gruppioni_2013_y_up',
                                        unpack=True,
                                        delimiter=',')
    G_x2, Gruppioni_ydown = numpy.loadtxt('Gruppioni_2013_y_down',
                                          unpack=True,
                                          delimiter=',')
    Burg_z, Burg_FIR, Burg_FIR_er, Burg_tot, Burg_tot_er = numpy.loadtxt(
        'Burgarella_2013', unpack=True)
    plt.fill_between(z_med,
                     numpy.log10((SFRD_l)),
                     numpy.log10(SFRD_h),
                     color='b',
                     alpha=0.2)
    plt.errorbar(z_med,
                 numpy.log10(SFRD),
                 fmt='*',
                 markersize=14,
                 label='Faint LF function')
    #plt.errorbar(z_med,numpy.log10(sfrd_map),fmt='pr',markersize=14, label='Faint LF function')
    plt.errorbar(z_b,
                 numpy.log10(sfrd_Behroozi(z_b)),
                 fmt='--',
                 markersize=12,
                 label='Behroozi et al. 2013')
    plt.errorbar(z_b,
                 numpy.log10(
                     sfrd_Behroozi(z_b, z0=0.95, A=-1., B=0.194, C=0.111)),
                 fmt=':',
                 markersize=12,
                 label='IIlbert et al. 2013 (UltraVista DR1)')
    plt.errorbar(z_b,
                 numpy.log10(sfrd_Madau(z_b)),
                 fmt='.-',
                 markersize=12,
                 label='Madau&Dickinson 2014')
    try:
        plt.errorbar(numpy.array(nov_z),
                     numpy.array(nov_sfrd),
                     xerr=[nov_z_l, nov_z_u],
                     yerr=[nov_sfrd_l, nov_sfrd_u],
                     fmt='sk',
                     label='Total SFRD Novak et al 2017')
    except:
        print ''
    plt.ylabel(r'$\rm{\log10(SFRD[M_\odot yr^{-1} Mpc^{-3}])}$', fontsize=30)
    plt.xlabel(r'$\rm{z} $', fontsize=30)
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both', which='major', labelsize=20, width=3)
    plt.tick_params(axis='both', which='minor', labelsize=10, width=2)
    plt.show()

    return 0
Esempio n. 6
0
def main():

    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module=importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt=countModel(modelFamily,nlaws,setf,[dataset],floatNoise)
    recon_expt=countModel(modelFamily,nlaws,setf,[dataset],floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n'*5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf=os.path.join(outdir,'1-summary.txt')
    summary=numpy.genfromtxt(summf)[-1,:]
    drawmap=summary[-(ncols+2):-2] 
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap=ana.get_best_fit()['parameters']
    
    if dataset=='sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf)==20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d=numpy.genfromtxt('%s/%s'%(outdir,datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset=='cosmos':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf)==24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d=numpy.genfromtxt('%s/%s'%(outdir,datafiles[0][8:]))
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d=numpy.genfromtxt(os.path.join(outdir,'sim.txt'))
    
    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0,29.2,0.4)
    bins3 = numpy.arange(18.,29.2,0.01)
    print len(expt.parameters)
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap# [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters
    #novak 2017
    L_n   =[21.77,22.15,22.46,22.77,23.09,23.34]
    rho_n =[-2.85,-2.88,-3.12,-3.55,-4.05,-4.63]
    L_ner_u =[0.23,0.18,0.19, 0.2, 0.21, 0.28]
    L_ner_d =[1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner=[0.09, 0.03,0.0355,0.059,0.1,0.234]

     #novak 2018

    nov_z,nov_z_u, nov_z_l,  nov_sfrd, nov_sfrd_u, nov_sfrd_l,  Lower, lw_up, lw_lw, nov_phi_L, nov_phi_L2 = numpy.loadtxt('novak_2017.txt',usecols=(0,1,2, 3,4,5, 6,7,8,-2,-1),unpack=True)
    
    #fig,ax = subplots()
    pre_chain='12'
    chains=['01a_4','01b_4','01c_4','01d_4','01e_4','01f_4','01g_4','01h_4','01i_4_2', '01j_4_2']#chains_191101 7x7 grid
    chains=['02a_4','02b_4','02c_4','02d_4','02e_4','02f_4','02g_5','02h_4','02i_4','02j_4']#chains_191101 7x7 grid lognorm
    #chains=['01a_5','01b_5','01c_5','01d_5','01e_5','01f_5','01g_5','01h_5','01i_5']#chains_191101 3x3 grid scaled
    #chains=['01a_6','01b_6','01c_6','01d_6','01e_6','01f_6','01g_6','01h_6','01i_6']#chains_191101 11x11 grid
    #chains=['01a','01b','01c','01d','01e','01f','01g','01h','01i'] #chains_1912 #includeing maskregion
    chains=['01a_3','01b_3','01c_3','01d_3','01e','01f','01g','01h','01i','01j'] #chains_1912 including peter
    #chains=['01a_2_1','01b_2_1','01c_2_1','01d_2','01e_2','01f_2','01g_2','01h_2','01i_2','01j_2']
    #chains=['01a_4_1','01b_4_1','01c_4','01d_4','01e_4','01f_4_1','01g_4','01h_4','01i_4','01j_4'] #chains_1912 no mass selection
    #chains=['01a_3','01b_2','01c_2','01d_2','01e_2','01f_2','01g','01h_2','01i_2','01j_3'] #chains_2001 DR4 remove phi2
    chains=['01a_5','01b_5','01c_5','01d_5','01e_5','01f_5','01g_5','01h_5','01i_5','01j_5'] #chains_2001 DR4 remove phi2 new changes
    chains4=['01a_8','01b_8','01c_8','01d_8','01e_8','01f_8','01g_7','01h_8','01i_8','01j_7'] #chains_2001 DR4 dpl_dpl
    chains=['01a_9','01b_9','01c_9','01d_9','01e_9','01f_9','01g_9','01h_9','01i_9','01j_9'] #chains_2001 DR4 dpl_dpl no mass selection
    #chains=['02a_z_9_6','02b_z_9_6','02c_z_9_6','02d_z_9_6','02e_z_9_6','02f_z_9_6','02g_z_9_6','02h_z_9_6','02i_z_9_6','02j_z_9_6']
    chains=['01a_6_1','01a_8_2','01b_6_3','01c_6_3','01d_6_2','01e_6_2','01f_6_2','01g_6_2','01h_6_3','01i_6_3','01j_6_3'] #chains_2001 DR4 dpl_dpl Lmin=19 newz
    chains=['02a_4_1','02a_4_2','02b_4','02c_4','02d_4','02e_4','02f_4','02g_4','02h_4','02i_4','02j_3']
    chains2=['02a_z_5x','02b_z_5x','02c_z_5x','02d_z_5x','02e_z_5x','02f_z_5x','02g_z_5x','02h_z_5x','02i_z_5x_2','02j_z_5x']
    chains2=['02a_z_6x_1','02a_z_6x_2','02b_z_7x','02c_z_7x','02d_z_7x','02e_z_7x','02f_z_7x','02g_z_7x','02h_z_7x','02i_z_7x','02j_z_7x']
    
    #chains=['01a','01b','01c','01d','01e','01f','01g','01h','01i','01j'] #dpl #chains_2001 DR4 newz new_area
    chains4=['02a','02b','02c','02d','02e','02f','02g','02h','02i','02j'] #lgnorm #chains_2001 DR4 newz new_area
    chains2=['02a_z_8x','02b_z_8x','02c_z_8x','02d_z_8x','02e_z_8x','02f_z_8x','02g_z_8x','02h_z_8x','02i_z_8x','02j_z_8x']#fixed model newz area
    chains=['02a_z_8x_4','02b_z_8x_4','02c_z_8x_4','02d_z_8x_4','02e_z_8x_4','02f_z_8x_4','02g_z_8x_4','02h_z_8x_4','02i_z_8x_4','02j_z_8x_4']#fixed model newz area
    #chains=['02a_z_8x_6','02b_z_8x_6','02c_z_8x_6','02d_z_8x_6','02e_z_8x_6','02f_z_8x_6','02g_z_8x_6','02h_z_8x_6','02i_z_8x_6','02j_z_8x_6']#fixed cut data more bins wrong noise
    chains=['02a_z_8x_6_1','02b_z_8x_6_1','02c_z_8x_6_1','02d_z_8x_6_1','02e_z_8x_6_1','02f_z_8x_6_1','02g_z_8x_6_3','02h_z_8x_6_3','02i_z_8x_6_3','02j_z_8x_6_3']#fixed cut data more bins _el lmin lose
    chains2=['02a_z_8x_6_1','02b_z_8x_6_1','02c_z_8x_6_1','02d_z_8x_6_1','02e_z_8x_6_1','02f_z_8x_6_1','02g_z_8x_6_3','02h_z_8x_6_3','02i_z_8x_6_3','02j_z_8x_6_3']#fixed cut data more bins _el lmin lose
    chains3='02z_31_5_15'
    print expt.parameters
    
    z_new=True
    Replot=False
    z_nov = [0.31, 0.5, 0.69, 0.9, 1.16, 1.44, 1.81, 2.18, 2.81, 3.71, 4.83]
    if z_new:
        z =[0.1,0.3,0.4,0.6,0.8,1.0,1.3,1.6,2.0,2.5,3.2,4.0]
        #chains=['11a','11b','11c_3','11d_3','11e_3','11f_3','11g_3','11h','11i','11j', '11k', '11l' ,'11m', '11n']#chains_191111
    else:
        z=[0.1,0.4,0.6,0.8,1.0,1.3,1.6,2.0,2.5,3.2,4.0]#oldest ;)
        
    sfrd, sfrd_l,sfrd_h,z_med = numpy.zeros(len(z)+1),numpy.zeros(len(z)+1) ,\
         numpy.zeros(len(z)+1) ,numpy.zeros(len(z)+1) 
    sfrd_nov, sfrd_nov_l,sfrd_nov_h, sfrd_2, sfrd_3, sfrd_4, sfrd_2_l, sfrd_3_l, sfrd_2_h, sfrd_3_h  = numpy.zeros(len(z)+1),\
         numpy.zeros(len(z)+1), numpy.zeros(len(z)+1) ,numpy.zeros(len(z)+1),numpy.zeros(len(z)+1),\
         numpy.zeros(len(z)+1), numpy.zeros(len(z)+1) ,numpy.zeros(len(z)+1),numpy.zeros(len(z)+1) ,\
         numpy.zeros(len(z)+1)
    
    
    ana3=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_2012%s'%chains3,outstem))
    drawmap3=ana3.get_best_fit()['parameters']
    params3 = drawmap3
    print 'chains_2002%s'%chains3
    print params3
    parameters2= ['noise', 'A_SF', 'A_agn', 'LMIN', 'LMAX']
    parameters3= ['noise', 'A_agn', 'A_SF', 'B_agn', 'B_SF', 'LMIN', 'LMAX']
    parameters3= ['noise', 'A_agn', 'A_SF', 'B_agn', 'B_SF', 'LMIN_1', 'LMIN_2', 'LMIN_3', 'LMIN_4', 'LMIN_5', 'LMIN_6', 'LMIN_7', 'LMIN_8', 'LMIN_9', 'LMIN', 'LMAX']
    parameters4=['noise', 'LMIN', 'LMAX2', 'LMIN2', 'LMAX', 'LNORM', 'LSTAR', 'LSLOPE', 'LSLOPE2', 'LNORM_2', 'LSTAR_2', 'LSLOPE_2', 'LSLOPE2_2']
    for num in range(1,11):
    #num = 1.
     print num
     z_min,z_max, z_m = get_z(num,False)
     dl = get_dl(z_m)
     Vmax = get_Vmax(z_min,z_max)
     dsdl = get_dsdl(z_m,dl)

     dl = get_dl(z_m)
    
     print z_min,z_m,z_max
     print expt.kind
     area = SURVEY_AREA*sqDeg2sr 
     area1 = SURVEY_AREA*sqDeg2sr
     print SURVEY_AREA
     ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_20%s%s'%(pre_chain,chains[num-1]),outstem))
     drawmap=ana.get_best_fit()['parameters']
     drawmid=ana.get_stats()['marginals']
     params = drawmap
     
     print params
     
     ana2=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join('chains_2012%s'%(chains2[num-1]),outstem))
     drawmap2=ana2.get_best_fit()['parameters']
     params2 = drawmap2
     
     #ana4=pymultinest.analyse.Analyzer(ncols-1,\
     #   outputfiles_basename=os.path.join('chains_20%s%s'%(pre_chain,chains4[num-1]),outstem))
     #drawmap4=ana4.get_best_fit()['parameters']
     #params4 = drawmap4
     
     print 'parameter 1 ', params
     print 'parameters 2 ', params2
     print 'parameters 3 ', params3
     
     settingf='chains_20%s%s/bayestack_settings.py'%(pre_chain,chains[num-1])
     f = open(settingf, 'r')
     mod = f.readlines()[31].split()[0]
     print mod
     if 'logn' in mod:
        if 'dpl' in mod:
            model='LFlognorm_dpl'
        elif '_el' in mod:
            model='LFevol_logn_el' 
        elif 'pl_' in mod:
            model='LFpl_lognorm'
        else:
            model='LFlognorm'
     elif 'LFdpl' in mod or 'LFpl' in mod:
        if 'LFdpl_dpl' in mod:
            model='LFdpl_dpl'
        elif '_pl' in mod:
            model='LFdpl_pl'
        elif 'LFpl_' in mod:
            model='LFpl_dpl'
        elif 'LFpl' in mod:
            model='LFpl'
        else:
            model = 'LFdpl'    
     
     with open('chains_20%s%s/params.tex'%(pre_chain,chains[num -1])) as f:
        parameters=[line.split(None,1)[0] for line in f]
    #model='LFdpl_pl'
     print parameters
     print model
     print 'LSIGMA' in parameters
     
     if model in ['LFsch','LFdpl_pl','LFpl_dpl','LFdpl_dpl','LFlognorm_dpl']:
        Lnorm=params[parameters.index('LNORM')]
        Lstar=params[parameters.index('LSTAR')]
        Lslope=params[parameters.index('LSLOPE')]
        #Lzevol=params[parameters.index('LZEVOL')]
     if model in ['LFdpl_pl','LFpl_dpl','LFdpl_dpl','LFlognorm_dpl']:
        Lslope2=params[parameters.index('LSLOPE2')]
     if model in ['LFlognorm','LFpl', 'LFdpl', 'LFdpl_pl','LFpl_dpl', 'LFlognorm_dpl','LFdpl_dpl']:
        Lnorm_2=params[parameters.index('LNORM_2')]
        Lstar_2=params[parameters.index('LSTAR_2')]
        Lslope_2=params[parameters.index('LSLOPE_2')]

     if model in ['LFdpl_dpl','LFdpl']:
        Lslope2_2=params[parameters.index('LSLOPE2_2')]
    
     if model in ['LFlognorm','LFlognorm_dpl']:
        Lsigma = params[parameters.index('LSIGMA')]

     Lmin=params[parameters.index('LMIN')]
     Lmax=params[parameters.index('LMAX')]
     #Lmax2=params[parameters.index('LMAX2')]
     Lmax2=Lmax

    
     SMIN  = get_sbins(numpy.power(10,Lmin),z_m,dl)*1e6
     SMAX  = get_sbins(numpy.power(10,Lmax),z_m,dl)*1e6
     sigma,fsigma = numpy.log10(get_Lbins([SURVEY_NOISE,SURVEY_NOISE*5],z_m,dl,'muJy')*(1.4/3)**(-.7))
     sigma2,fsigma2 = numpy.log10(get_Lbins([450,2400],z_m,dl,'muJy'))
     print z_m,dl, sigma,fsigma
     print SURVEY_NOISE,SURVEY_NOISE*5,SURVEY_AREA
     
     s=numpy.loadtxt('chains_20%s%s/recon_stats.txt'%(pre_chain,chains[num -1]))
     xrecon=s[:-1,0]; yrecon=s[:-1,1]
     yrecon_d=s[:-1,2]; yrecon_u=s[:-1,3]
     yrecon_rms = s[:-1,4]
     yrecon_avr = s[:-1,5]
     yrecon_rms_down = yrecon_rms
     
     yrec_u = yrecon_u - yrecon
     yrec_d = yrecon - yrecon_d
     

     #print yrecon_d
     #print yrecon
     #print yrecon_u
     #sys.exit()
     
     #y_err_u = sqrt(yrec)     
     
     xreco = get_Lbins(xrecon,z_m,dl,'muJy')#*(1.4/3)**(-.7)
     xreco2 = get_Lbins(xrecon,z_m,dl,'muJy')
     yreco = yrecon
     lin_yrecon = numpy.log10(yreco)
     lin_xrecon = numpy.log10(xreco)
     lin_xrecon2 = numpy.log10(xreco2)
     q_l,q,q_h = get_q(z_m)
     
     #print z_nov[num -1]
     try:
        yrecon_nov = lumfuncUtils.lognormpl(get_Lbins(xrecon,z_m,dl,'muJy')/(1 + z_nov[num-1])**(3.16-z_nov[num-1]*0.32), numpy.log10(1.85e21),1.22,0.63, numpy.log10(3.55e-3))
        
     except:
        print ''
     
     str_q_l = get_sfr_q(1.,q_l,xreco2)
     str_q_h = get_sfr_q(1.,q_h,xreco2)
     str_q   = get_sfr_q(1.,q,xreco2)
     
     
     #sys.exit()
     
     lmin = 21.5#. 21.5
     Lmax=26.
     sfrd_z_l=get_sfrd_z(yrecon,lin_xrecon2,str_q_l,params,parameters,model,q_l ,Lmax2,lmin,z_m)[0] #lower limit
     sfrd_z_h=get_sfrd_z(yrecon,lin_xrecon2,str_q_h,params,parameters,model,q_h ,Lmax2,lmin,z_m)[0] #upper limit
     sfrd_z  =get_sfrd_z(yrecon,lin_xrecon2,str_q  ,params,parameters,model,q ,Lmax2,lmin,z_m)[0]  #26, 21.5
     
     sfrd_2_z =get_sfrd_z(yrecon,lin_xrecon2,str_q  ,params2,parameters2,'LFevol_logn_mat',q ,Lmax2,lmin,z_m)[0]
     sfrd_3_z =get_sfrd_z(yrecon,lin_xrecon2,str_q  ,params3,parameters3,'LFevol_logn_L',q ,Lmax2,lmin,z_m)[0]
     
     #sfrd_4_z =get_sfrd_z(yrecon,lin_xrecon2,str_q  ,params4,parameters4,'LFdpl_dpl',q ,Lmax2,lmin,z_m)[0]
     
     sfrd_2_z_l =get_sfrd_z(yrecon,lin_xrecon2,str_q_l  ,params2,parameters2,'LFevol_logn_mat',q_l ,Lmax2,lmin,z_m)[0]
     sfrd_3_z_l =get_sfrd_z(yrecon,lin_xrecon2,str_q_l  ,params3,parameters3,'LFevol_logn_L',q_l ,Lmax2,lmin,z_m)[0]
     sfrd_2_z_h =get_sfrd_z(yrecon,lin_xrecon2,str_q_h  ,params2,parameters2,'LFevol_logn_mat',q_h ,Lmax2,lmin,z_m)[0]
     sfrd_3_z_h =get_sfrd_z(yrecon,lin_xrecon2,str_q_h  ,params3,parameters3,'LFevol_logn_L',q_h ,Lmax2,lmin,z_m)[0]
     
     #sfrd_z_l=get_sfrd_z(yrecon,lin_xrecon2,str_q_l,params,parameters,model,q_l ,Lmax2,Lmin)[0] #lower limit
     #sfrd_z_h=get_sfrd_z(yrecon,lin_xrecon2,str_q_h,params,parameters,model,q_h ,Lmax2,Lmin)[0] #upper limit
     #sfrd_z  =get_sfrd_z(yrecon,lin_xrecon2,str_q  ,params,parameters,model,q ,Lmax2,Lmin)[0]  #26, 21.5
     #sys.exit()
     
     #sfrd_nov_z =get_sfrd_z(yrecon_nov,lin_xrecon,str_q ,params,parameters,'novak',get_q(z_nov[num-1])[1] ,26,lmin, z=z_nov[num-1])[0] 
     #print 'This is nov z ', z_nov[num-1]
     #sys.exit()
     #sfrd_z  =get_sfrd_z(yrecon,lin_xrecon,str_q  ,params,parameters,model,q ,Lmax2,Lmin)[0]
     
     
     #sfrd_z,sfrd_zerr= get_sfrd_z(yrecon,lin_xrecon,str_q,numpy.inf,0.)
     
     
     sfrd[num-1]   = sfrd_z
     sfrd_l[num-1] = sfrd_z_l
     sfrd_h[num-1] = sfrd_z_h
     z_med[num-1]    = z_m
     #sfrd_nov[num-1] =sfrd_nov_z
     sfrd_2[num-1] = sfrd_2_z
     sfrd_3[num-1] = sfrd_3_z
     #sfrd_4[num-1] = sfrd_4_z
     sfrd_2_l[num-1] = sfrd_2_z_l
     sfrd_3_l[num-1] = sfrd_3_z_l
     sfrd_2_h[num-1] = sfrd_2_z_h
     sfrd_3_h[num-1] = sfrd_3_z_h
     
     #plt.plot(lin_xrecon,numpy.log10(str_q),'*',markersize=8)

    try:
        zrecon, srecon, srecon_l, srecon_h =numpy.loadtxt('sfrd_chains_2012%s_Lmin_%s'%(chains[0],'21_5'),unpack=True)
    except:
        print 'Please note that the 95 percent region has to be run for chains_2001%s ... python reconstruct_lf_plot.py'%chains[0]
        print 'Ensure that chains in reconstruct_lf_plot.py cooresponds to chains in this file!'
        zrecon, srecon, srecon_l, srecon_h=0,0,0,0
    try:
        zrecon, srecon2, srecon_l2, srecon_h2 =numpy.loadtxt('sfrd_chains_2012%s_Lmin_%s'%(chains[0],'19'),unpack=True)
    except:
        print 'Please note that the 95 percent region has to be run for chains_2001%s ... python reconstruct_lf_plot.py'%chains[0]
        print 'Ensure that chains in reconstruct_lf_plot.py cooresponds to chains in this file!'
        zrecon2, srecon2, srecon_l2, srecon_h2=0,0,0,0
    

    try:
        zrecon_2, srecon_2, srecon_l_2, srecon_h_2 =numpy.loadtxt('sfrd_chains_2011%s_Lmin_%s'%(chains4[0],'21_5'),unpack=True)
    except:
        print 'Please note that the 95 percent region has to be run for chains_2002%s ... python reconstruct_lf_plot.py'%(chains2[0])
        print 'Ensure that chains in reconstruct_lf_plot.py cooresponds to chains in this file!'
        zrecon_2, srecon_2, srecon_l_2, srecon_h_2=0,0,0,0
    
    try:
        zrecon_3, srecon_3, srecon_l_3, srecon_h_3 =numpy.loadtxt('sfrd_chains_2012%s_Lmin_%s'%(chains3,'21_5'),unpack=True)
    except:
        print 'Please note that the 95 percent region has to be run for chains_2002%s ... python reconstruct_lf_plot.py'%chains3[0]
        print 'Ensure that chains in reconstruct_lf_plot.py cooresponds to chains in this file!'
        zrecon_3, srecon_3, srecon_l_3, srecon_h_3=0,0,0,0
        
    try:
        zrecon_3_2, srecon_3_2, srecon_l_3_2, srecon_h_3_2 =numpy.loadtxt('sfrd_chains_2012%s_Lmin_%s'%(chains3,'21_5'),unpack=True)
    except:
        print 'Please note that the 95 percent region has to be run for chains_2002%s ... python reconstruct_lf_plot.py'%chains3[0]
        print 'Ensure that chains in reconstruct_lf_plot.py cooresponds to chains in this file!'
        zrecon_3_2, srecon_3_2, srecon_l_3_2, srecon_h_3_2=0,0,0,0
    #plt.rc('lines', linewidth=2)
    #plt.xlabel(r'$\rm{log_{10}[L_{1.4}/(W}$ $\rm{Hz^{-1})]}$',fontsize = 30)
    #plt.ylabel(r'$\rm{log_{10}[SFR_{IR}(M_\odot yr^{-1})]}$',fontsize = 30)
    #plt.tick_params(axis='both',which = 'major', labelsize=20,width =3)
    #plt.tick_params(axis='both',which = 'minor', labelsize=10, width=2)
    
    #plt.show()
    #fig = plt.figure()
    #print z_med
    #print sfrd_l
    #print sfrd
    #print sfrd_h
    #print len(z),len(sfrd)
    #Salpeter to Chabrier * 0.63
    
    
    print zrecon_2,srecon_2, srecon_l_2, srecon_h_2
    srecon_2_err=2*0.434*(srecon_h_2)/numpy.log10(srecon_2)
    z_b=numpy.arange(0,60)/10.
    Ilbert_h = sfrd_Behroozi(z_b,z0=0.95-0.410,A=-1.,B=0.194-0.082,C=0.111+0.04)
    Ilbert_l = sfrd_Behroozi(z_b,z0=0.95+0.343,A=-1.,B=0.194+0.128,C=0.111-0.029)
    parasa   = parsa_z(z_b,a=0.11,b=1.48,c=2.75)
    Koprowski= parsa_z(z_b,a=0.18,b=1.04,c=1.77)

    #plt.errorbar(z_med,numpy.log10(sfrd),fmt='h',fillstyle='none',markeredgewidth=3,markersize=18, label=r'$\rm{Model}$ $\rm{C}$')
    #plt.errorbar(z_med,numpy.log10(sfrd_3),fmt='h',fillstyle='none',markeredgewidth=3,markersize=18, label=r'$\rm{Model}$ $\rm{C}$ $\rm{PLE}$')
    plt.errorbar(zrecon_2,numpy.log10(srecon_2),yerr=srecon_2_err,fmt='h',fillstyle='none',markeredgewidth=3,markersize=18, label=r'$\rm{Model}$ $\rm{B}$')
    #plt.errorbar(z_med,numpy.log10(sfrd),fmt='h',fillstyle='none',markeredgewidth=3,markersize=18, label=r'$\rm{Model}$ $\rm{C}$')
    #plt.errorbar(z_med,numpy.log10(sfrd_2),fmt='h',fillstyle='none',markeredgewidth=3,markersize=15, label=r'$\rm{Model}$ $\rm{C}$')
    #plt.errorbar(z_med,numpy.log10(sfrd_3),fmt='-k',linewidth=5, label=r'$\rm{Model}$ $\rm{C}$ $\rm{PLE}$')
    
    #plt.errorbar(zrecon_3_2,numpy.log10(srecon_3_2),fmt='-m',linewidth=5, label=r'$\rm{Model}$ $\rm{C}$ $\rm{PLE}$ $\rm{q(z=0)}$')
    #plt.errorbar(zrecon_2,numpy.log10(srecon_2),fmt='.-k',linewidth=5, label=r'$\rm{Model}$ $\rm{B}$')

    G_x , Gruppioni       = numpy.loadtxt('Gruppioni_2013',unpack=True,delimiter=',')
    G_x1, Gruppioni_yup   = numpy.loadtxt('Gruppioni_2013_y_up',unpack=True,delimiter=',')
    G_x2, Gruppioni_ydown = numpy.loadtxt('Gruppioni_2013_y_down',unpack=True,delimiter=',')
    Burg_z, Burg_FIR, Burg_FIR_er, Burg_tot, Burg_tot_er = numpy.loadtxt('Burgarella_2013',unpack=True)
    Lzl,Lzh,Lphi_tot,Lphi_ir,Ler = numpy.loadtxt('Liu_2018',unpack=True)
    print Lzl,Lzh
    Lz = numpy.mean(numpy.array([Lzl,Lzh]),axis=0)
    print Lz

    #plt.errorbar(z_med,numpy.log10(sfrd_4),fmt='--k',linewidth=7, label='No mass-limit')
    plt.errorbar(Lz,Lphi_tot,yerr=Ler,fmt='*g',markeredgewidth=1.8,markersize=16, fillstyle='none', label=r'$\rm{Liu+2018}$ $\rm{FIR+UV}$')
    try:
        plt.errorbar(numpy.array(nov_z),numpy.array(nov_sfrd),xerr=[nov_z_l,nov_z_u],yerr=[nov_sfrd_l,nov_sfrd_u], fmt='sr',fillstyle='none',ecolor='k',markeredgewidth=1.5, markersize=10, label=r'$\rm{Novak+2017}$ $\rm{PLE}$ $\rm{radio}$')
    except:
        print ''
    
    plt.errorbar(z_b,numpy.log10(Koprowski),fmt='--k',linewidth=3, label=r'$\rm{Koprowski+2017}$ $\rm{IR}$')
    #plt.errorbar(z_b,numpy.log10(parasa),fmt='.g',linewidth=3, label=r'$\rm{Parsa}$ + $\rm{2016}$ $\rm{UV}$')
    plt.errorbar(z_b,numpy.log10(sfrd_Madau(z_b)),fmt='o-c',linewidth=3,fillstyle='none', label=r'$\rm{Madau&Dickinson}$ $\rm{2014}$')
    #plt.errorbar(z_med,numpy.log10(sfrd_l)+0.4,fmt='--',markersize=8,label='low')
    #plt.errorbar(z_med,numpy.log10(sfrd_h)+0.4,fmt='--',markersize=8,label='high')
   
    #plt.errorbar(numpy.array(nov_z),numpy.array(Lower),xerr=[nov_z_l,nov_z_u],yerr=[lw_up, lw_lw], fmt='*g', label='lower limit SFRD Novak et al 2017')
    #plt.yscale('log')
    #plt.fill_between(z_med,numpy.log10((sfrd_l)),numpy.log10(sfrd_h), color='b',alpha=0.5)
    #plt.fill_between(z_med,numpy.log10((sfrd_2_l)),numpy.log10(sfrd_2_h), color='c',alpha=0.7)
    #plt.fill_between(z_med,numpy.log10((sfrd_3_l)),numpy.log10(sfrd_3_h), color='g',alpha=0.5)
    #plt.fill_between(zrecon,numpy.log10((srecon_l)),numpy.log10(srecon_h), label='95% Free Model',color='b',alpha=0.3)
    #plt.fill_between(z_b,numpy.log10((Ilbert_l)),numpy.log10(Ilbert_h), color='orange',alpha=0.2)
    #plt.fill_between(zrecon,numpy.log10((srecon_l_2)),numpy.log10(srecon_h_2), label='95% Model B',color='g',alpha=0.6)
    #plt.fill_between(zrecon,numpy.log10(srecon_l_3_2),numpy.log10(srecon_h_3_2),edgecolor="k",linewidth=5, label=r'$\rm{95\%}$ $\rm{Model}$ $\rm{C}$ $\rm{PLE}$ $\rm{q_{TIR}(z=0)}$',color='m',alpha=0.6)
    plt.fill_between(zrecon,numpy.log10((srecon_l_3)),numpy.log10(srecon_h_3), label=r'$\rm{95\%}$ $\rm{Model}$ $\rm{C}$ $\rm{PLE}$',color='m',alpha=0.6)
    plt.fill_between(zrecon,numpy.log10((srecon_l)),numpy.log10(srecon_h), label=r'$\rm{95\%}$ $\rm{Model}$ $\rm{C}$ $\rm{Individual}$',color='b',alpha=0.4)
    plt.fill_between(zrecon,numpy.log10((srecon_l2)),numpy.log10(srecon_h2), edgecolor="k", linewidth=4, label=r'$\rm{95\%}$ $\rm{Model}$ $\rm{C}$ $\rm{Individual}$ $\rm{q_{TIR}(z=0)}$',color='b',alpha=0.4)
    plt.fill_between(G_x,numpy.log10(Gruppioni_ydown),numpy.log10(Gruppioni_yup), color='k',alpha=0.3,label=r'$\rm{Gruppioni+2013}$ $\rm{IR}$')
    #plt.fill_between(nov_z,nov_phi_L, nov_phi_L2, color='r',alpha=0.4,label='Novak+2017 $\Phi$ and L Evolution')
    #plt.fill_between(Burg_z,numpy.log10(0.63*0.01*(Burg_FIR - Burg_FIR_er)),numpy.log10(0.63*0.01*(Burg_FIR + Burg_FIR_er)), color='r',alpha=0.2,label='Burgarella-2013 FIR')
    #plt.fill_between(Burg_z,numpy.log10(0.63*0.01*(Burg_tot - Burg_tot_er)),numpy.log10(0.63*0.01*(Burg_tot + Burg_tot_er)), color='g',alpha=0.2,label='Burgarella-2013 Total')
    plt.ylabel(r'$\rm{\log10(SFRD[M_\odot yr^{-1} Mpc^{-3}])}$',fontsize=32)
    plt.xlabel(r'$\rm{z} $',fontsize = 35)    
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both',which = 'major', labelsize=20,width =1)
    plt.tick_params(axis='both',which = 'minor', labelsize=10, width=1)
    plt.subplots_adjust(hspace=0,wspace=0)
    #plt.xtick(fontsize=15)
    #plt.ytick(fontsize=15)
    
    #plt.ylim(-10.2,-5.8)
    ##plt.ylim(-2.7,0)
    plt.ylim(-2.2,-0.5)
    plt.xlim(0,3.8)
    #plt.ylim(-2.3,-0.3)
    #ax.xaxis.set_minor_locator(AutoMinorLocator())
    #ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']
    
    plotf='%s/LF_recon_s1.pdf' % (outdir)
    handles,labels=plt.gca().get_legend_handles_labels()
    print labels
    print len(labels)
    order=[4, 1,2, 0,3,5, 6, 7,8]
    plt.legend([handles[idx] for idx in order],[labels[idx] for idx in order],frameon=False,ncol=2, prop={'size':24}).draggable()
    plt.show()
    
	
    return 0
Esempio n. 7
0
def main():
    """
    """

    # Import the settings variables
    print 'Settings file is %s' % param_file

    # Import the settings variables
    set_module = importlib.import_module(settingsf)
    globals().update(set_module.__dict__)

    # Set up the experiment
    #bins=[12.679592, 31.84969509, 80.00281696, 200.9579904, 504.78364938, 1010, 3267.95919972]# 0.4 bins

    bins = numpy.logspace(0, 3.01, 10)
    bins = list(bins)
    bins.append(2e3)
    bins2 = numpy.arange(18., 27., 0.2)
    bins1 = numpy.arange(18.2, 27.2, 0.2)
    print redshifts
    nbins = len(bins)
    z_m = redshifts[0]
    dl = get_dl(z_m)
    sbin1 = get_sbins(10**bins1, z_m, dl) * 1e6
    sbin2 = get_sbins(10**bins2, z_m, dl) * 1e6
    #L = 10**bins1*(1.4/3.)**(.7)
    #L =get_Lbins(sbin1,z_m,dl)*(1.4/3.)**(-.7)
    expt = countModel(modelFamily,
                      nlaws,
                      settingsf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True,
                      mybins=sbin2)
    f = '%spost_equal_weights.dat' % outstem
    f = os.path.join(outdir, f)
    print 'os.pathf', f
    chain = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']
    # Load equally-weighted posterior samples
    x = numpy.genfromtxt(f)
    nsamp = x.shape[0]
    ncols = x.shape[1]  # The fifth [seventh] column is the posterior value
    # There must be a better way, but:
    #ncols = 14
    z = numpy.zeros((nsamp, ncols - 1 + expt.nbins))
    z[:, :-(expt.nbins - 1)] = x
    # Shift posterior values to end
    z[:, -1] = z[:, ncols - 1]  # Copy...
    z[:, ncols - 1] = 0.0  # ...and blank

    print 'outstem', outstem

    # Fetch best-fit parameters and calculate best-fit line
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']

    if True:
        print '--> Calculating *ML* reconstruction'
        drawmap = drawmap

    ymap = expt.evaluate(drawmap)  #,expt.binsMedian)
    #print ymap

    evaluations = []
    evaluate = True
    for num in range(1, 12):
        print num

        z_min, z_max, z_m = get_z(num, False)

        # for k in range(len(phi_sf)):
        #    print sbin1[k],bins1[k],numpy.power(10,bins1[k]),numpy.log10(L_1[k]),numpy.log10(L_2[k]), numpy.log10(phi_sf[k]), numpy.log10(phi_agn[k]),numpy.log10(ymap[k]),numpy.log10(ymap2[k]),numpy.log10(ymap_ev[num-1][k])
        #sys.ek
        #print ymap

        for isamp in xrange(nsamp):
            if evaluate:
                evaluations.append(expt.evaluate(z[isamp, :]))

            z[isamp, ncols - 1:] = evaluations[isamp][num - 1]
            #[LF(S,z_m,0,0,dl,z[isamp,:],\
            #expt.parameters,area=expt.survey.SURVEY_AREA,\
            #family=modelFamily) for S in expt.binsMedian/1.0e6]
            #print             [LF(S,z_m,0,0,dl,z[isamp,:],\
            #                  expt.parameters,area=expt.survey.SURVEY_AREA,\
            #                  family=modelFamily) for S in expt.binsMedian/1.0e6]
            #sys.exit()

        #sys.exit()
        evaluate = False
        z[numpy.where(z == 0.0)] = 'NaN'

        s = numpy.zeros((len(expt.binsMedian), 8))
        s[:, 0] = expt.binsMedian
        recons = z[:, ncols - 1:]

        #print '# ibin flux fit low high dlower dupper skew kurtosis'
        print '%6s %12s %12s %12s %12s %12s %12s %12s %12s' % (
            'bin', 'lower phi_rms', 'lower phi', 'l_err', 'ymap', 'u_err',
            'upper phi', 'u_phi_rms', '2*rms')
        for ibin in xrange(len(expt.binsMedian)):
            x = recons[:, ibin]
            # Remove NaNs from stats vectors
            # http://stackoverflow.com/questions/11620914/removing-nan-values-from-an-array
            x = x[~numpy.isnan(x)]
            #ss=stats.bayes_mvs(x,alpha=0.68)[0]
            #x*=numpy.power(s[ibin,0]/1.0e6,2.5)
            #print bins1[ibin]
            #plt.hist(numpy.log10(x),bins=15)
            #plt.xlabel(r'$\rm{log_{10}[\rho_m(Mpc^{-3} mag^{-1})]}$',fontsize = 20)
            #plt.show()
            tt = peak_confidence(x, bins=10)

            try:
                ss = numpy.zeros(3)
                ss[0], dlow, dhigh, ss[1], ss[2] = calculate_confidence(
                    x, alpha=0.95, ret_all=True)
                #ss[0],dlow,dhigh,ss[1],ss[2]=calculate_confidence2(x,alpha=0.68,ret_all=True,\
                #                                                   value_central=ymap[ibin],\
                #                                                   truncate_edges=True)
            except:
                ss = numpy.nan * numpy.ones(3)
                print "didn't work for ", x
                continue
            #sys.exit()
            #tt=peak_confidence(x,bins=10)
            #ss*=numpy.power(s[ibin,0]/1.0e6,2.5)
            #print ss[0],tt
#        s[ibin,1]=ss[0]  # median
#        s[ibin,1]=tt     # peak
            s[ibin, 1] = ymap[num - 1][ibin]  # MAP
            #print ymap
            s[ibin, 2] = ss[1]  # lower
            s[ibin, 3] = ss[2]  # upper
            s[ibin, 4] = 2 * numpy.std(
                x)  # (s[ibin,3]- s[ibin,2])/(2*numpy.std(x))# skewness
            s[ibin, 5] = ss[0]

            #print '%6.1f %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f'%(bins1[ibin], numpy.log10((ymap[ibin] - s[ibin,4])), numpy.log10(ss[1]),numpy.log10(s[ibin,2]),numpy.log10(ymap[ibin]),numpy.log10(s[ibin,3]) ,numpy.log10(ss[2]), numpy.log10(s[ibin,4]+ ymap[ibin]), numpy.log10(s[ibin,4]) )
            #print ibin,s[ibin,0],s[ibin,1],dlow,dhigh,ss[1],ss[2],s[ibin,4],s[ibin,5]#,stats.skewtest(x)
            #sys.exit()

    # ...and output to file
    #sys.exit()
        rstatsf = 'recon_stats_%s.txt' % (chain[num - 1])
        rstatsf = os.path.join(outdir, rstatsf)
        hdr = '# median_flux_uJy dnds_2p5_Jy1p5srm1 delta_dnds_2p5_lower_Jy1p5srm1 delta_dnds_2p5_upper_Jy1p5srm1 skewness kurtosis'
        fid = open(rstatsf, 'w')
        print hdr
        print s

        print '-> Writing stats (i.e. dnds2p5+/- v. S/uJy) to %s' % rstatsf
        fid.write('%s\n' % hdr)
        numpy.savetxt(fid, s)
        fid.close()

        print 'Finished.'

    return 0
Esempio n. 8
0
def main():
    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module = importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt = countModel(modelFamily,
                      nlaws,
                      setf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True)
    recon_expt = countModel(modelFamily, nlaws, setf, [dataset], floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n' * 5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf = os.path.join(outdir, '1-summary.txt')
    summary = numpy.genfromtxt(summf)[-1, :]
    drawmap = summary[-(ncols + 2):-2]
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']

    if dataset == 'sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset == 'cosmos':
        #print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][8:]))
        #print '%s%s'%(outdir,datafiles[0][8:])
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d = numpy.genfromtxt(os.path.join(outdir, 'sim.txt'))

    ssbin = d[:, 2]
    Nbin = d[:, 3]
    dnds = d[:, 4]
    sbin2 = ssbin
    dnds2 = dnds
    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0, 29.2, 0.4)
    bins3 = numpy.arange(18., 29.2, 0.01)
    print len(expt.parameters)
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap  # [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters

    if modelFamily in [
            'LFsch', 'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z',
            'LFlognorm_dpl', 'LFpl_lognorm'
    ]:
        Lnorm = params[expt.parameters.index('LNORM')]
        Lstar = params[expt.parameters.index('LSTAR')]
        Lslope = params[expt.parameters.index('LSLOPE')]
        #Lzevol=params[expt.parameters.index('LZEVOL')]
    if modelFamily in ['LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFlognorm_dpl']:
        Lslope2 = params[expt.parameters.index('LSLOPE2')]
    if modelFamily in [
            'LFlognorm', 'LFpl', 'LFdpl', 'LFdpl_pl', 'LFpl_dpl',
            'LFlognorm_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z', 'LFpl_lognorm'
    ]:
        Lnorm_2 = params[expt.parameters.index('LNORM_2')]
        Lstar_2 = params[expt.parameters.index('LSTAR_2')]
        Lslope_2 = params[expt.parameters.index('LSLOPE_2')]

    if modelFamily in ['LFdpl_dpl', 'LFdpl', 'LFdpl_dpl_z']:
        Lslope2_2 = params[expt.parameters.index('LSLOPE2_2')]

    if modelFamily in [
            'LFlognorm', 'LFlognorm_dpl', 'LFpl_lognorm', 'LFevol_logn_sigma'
    ]:
        Lsigma = params[expt.parameters.index('LSIGMA')]
    if modelFamily in [
            'LFdpl_dpl_z', 'LFevol_dpl', 'LFevol_logn', 'LFevol_logn_all',
            'LFevol_logn_all_L'
    ]:
        alpha_agn = params[expt.parameters.index('A_agn')]
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_agn = params[expt.parameters.index('B_agn')]
        beta_SF = params[expt.parameters.index('B_SF')]
    if modelFamily in ['LFevol_dpl_s', 'LFevol_logn_s']:
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_SF = params[expt.parameters.index('B_SF')]
    if modelFamily in [
            'LFevol_logn_lnorm', 'LFevol_logn_all', 'LFevol_logn_all_L'
    ]:
        Lnorm = params[expt.parameters.index('LNORM')]
        Lstar = params[expt.parameters.index('LSTAR')]

    if modelFamily in [
            'LFevol_logn_mat', 'LFevol_phi_logn_mat', 'LFevol_logn_el',
            'LFevol_logn_sigma', 'LFevol_logn_lmin', 'LFevol_logn_lnorm'
    ]:
        alpha_SF = params[expt.parameters.index('A_SF')]
        alpha_agn = params[expt.parameters.index('A_agn')]
    if modelFamily in [
            'LFevol_logn_slope', 'LFevol_logn_all', 'LFevol_logn_all_L'
    ]:
        alpha_SF = params[expt.parameters.index('A_SF')]
        alpha_agn = params[expt.parameters.index('A_agn')]
        Lslope2_2 = params[expt.parameters.index('LSLOPE2_2')]

    Lmin = params[expt.parameters.index('LMIN')]
    Lmax = params[expt.parameters.index('LMAX')]
    truth = {
        'noise': 150,
        'LMIN': 22.,
        'LMAX': 24.5,
        'LNORM': numpy.log10(1e-7),
        'LSTAR': 23.3,
        'LSLOPE': 3.,
        'LSLOPE2': 1.
    }
    #z = [0, 0.5, 1 , 1.5, 2, 2.3, 2.6, 3, 3.5, 4] #old
    #z = [ 0.7, 1 , 1.35, 1.7, 2, 2.3, 2.6, 3, 3.5, 4]# older
    print expt.parameters
    s = pylab.loadtxt('%s/recon_stats.txt' % outdir)
    xrecon = s[:-1, 0]
    yrecon = s[:-1, 1]
    yrecon_d = s[:-1, 2]
    yrecon_u = s[:-1, 3]
    yrecon_rms = s[:-1, 4]
    yrecon_avr = s[:-1, 5]
    yrecon_rms_down = yrecon_rms

    #novak 2018
    L_n2   =[[21.77,22.24,22.68,23.16,23.69,24.34, 24.74,25.56],\
             [22.30,22.61,22.96,23.38,23.80,24.10, 24.55,25.14],\
             [22.61,22.86,23.14,23.45,23.82,24.14, 24.40,24.71],\
             [22.85,23.16,23.69,24.24,24.80,25.31, 25.96,26.69],\
             [23.10,23.38,23.86,24.36,24.86,25.35, 25.94,26.36],\
             [23.32,23.57,23.94,24.32,24.67,25.06, 25.47,25.96],\
             [23.54,23.75,24.13,24.45,24.90,25.27, 25.74,26.10],\
             [23.73,23.99,24.57,25.10,25.68,26.18, 26.83,27.51],\
             [24.01,24.26,24.76,25.26,25.91,26.19, 27.45],\
             [24.30,24.56,24.80,25.13,25.37,25.80, 25.97,26.49]]


    L_ner_u2  =[[0.23,0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03],\
                [0.11,0.20, 0.26, 0.25, 0.24, 0.35, 0.31, 0.15],\
                [0.08,0.15, 0.20, 0.22, 0.17, 0.18, 0.24, 0.28],\
                [0.072,0.33,0.38, 0.40, 0.48, 0.42, 0.41, 0.28],\
                [0.080,0.30,0.32, 0.32, 0.32, 0.33, 0.24, 0.34],\
                [0.068,0.22,0.24, 0.25, 0.29, 0.30, 0.28, 0.21],\
                [0.067,0.22,0.21, 0.26, 0.18, 0.17,0.075, 0.11],\
                [0.093,0.36,0.31, 0.30, 0.25, 0.28, 0.16,0.028],\
                [0.076,0.34,0.36, 0.38, 0.24, 0.47, 0.27],\
                [0.097,0.14,0.20, 0.16, 0.23, 0.092,0.22,0.026]]


    L_ner_d2  =[[1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50],\
               [0.29, 0.21, 0.15, 0.16, 0.17, 0.06, 0.099,0.29],\
               [0.24, 0.17, 0.12, 0.10, 0.15, 0.15, 0.08,0.074],\
               [0.16, 0.24, 0.19, 0.17, 0.15, 0.09, 0.16, 0.33],\
               [0.30, 0.19, 0.18, 0.18, 0.18, 0.17, 0.26, 0.18],\
               [0.14, 0.18, 0.15, 0.14, 0.10, 0.095,0.11, 0.21],\
               [0.19, 0.14, 0.15, 0.11, 0.19, 0.19, 0.29, 0.28],\
               [0.40, 0.17, 0.21, 0.23, 0.27, 0.25, 0.37, 0.53],\
               [0.20, 0.17, 0.16, 0.14, 0.27, 0.042, 0.27],\
               [0.22, 0.16, 0.10, 0.14,0.072, 0.21, 0.08, 0.30]]

    rho_n2 =[[-2.84,-2.90,-3.34,-4.00,-4.92,-4.92, -5.22,-5.07],\
             [-2.95,-3.17,-3.46,-4.24,-4.76,-5.41, -5.23,-5.44],\
             [-2.95,-3.11,-3.44,-3.81,-4.37,-4.48, -4.90,-5.14],\
             [-2.99,-3.24,-3.89,-4.54,-5.27,-5.33, -5.69,-5.89],\
             [-3.32,-3.51,-4.06,-4.74,-5.28,-5.43, -6.08,-5.70],\
             [-3.29,-3.54,-4.02,-4.45,-5.11,-5.56, -5.37,-6.07],\
             [-3.43,-3.61,-4.19,-4.56,-5.09,-5.34, -5.70,-5.75],\
             [-3.88,-3.98,-4.64,-5.33,-5.73,-6.27, -6.14,-6.77],\
             [-3.85,-4.28,-5.05,-5.60,-5.68,-6.44, -6.59],\
             [-4.43,-4.91,-5.46,-5.58,-5.89,-6.23, -6.26,-6.91]]

    rho_ner_u2=[[0.08,0.024,0.038,0.083,0.28,0.28 , 0.45, 0.34],\
                [0.048,0.027,0.036,0.089,0.17,0.45, 0.34, 0.45],\
                [0.062,0.024,0.032,0.048,0.096, 0.11,0.18,0.25],\
                [0.042,0.018,0.035,0.073,0.180, 0.20,0.34,0.45],\
                [0.045,0.019,0.033,0.072,0.15,  0.17,0.45,0.25],\
                [0.040,0.022,0.033,0.055,0.13,  0.22,0.17,0.45],\
                [0.061,0.020,0.035,0.055,0.099, 0.14,0.22,0.25],\
                [0.044,0.022,0.044,0.11, 0.16, 0.34, 0.28,0.76],\
                [0.048,0.025,0.058,0.13, 0.24, 0.34, 0.45],\
                [0.084,0.058,0.11 ,0.24, 0.20, 0.28, 0.28,0.76]]

    rho_ner_d2=[[0.07,0.023,0.035,0.070,0.25,0.25 , 0.37, 0.30],\
                [0.043,0.026,0.033,0.074,0.16,0.37, 0.30, 0.37],\
                [0.054,0.023,0.030,0.043,0.079,0.086,0.17,0.22],\
                [0.038,0.017,0.032,0.062,0.17,0.19, 0.30, 0.37],\
                [0.041,0.019,0.031,0.062,0.11,0.16, 0.37, 0.22],\
                [0.037,0.021,0.031,0.049,0.098,0.20,0.16, 0.37],\
                [0.054,0.019,0.032,0.049,0.081,0.11,0.20, 0.22],\
                [0.040,0.021,0.040,0.085,0.15, 0.30, 0.25,0.52],\
                [0.043,0.024,0.051,0.10, 0.15, 0.30, 0.37],\
                [0.070,0.051,0.087,0.16,0.19, 0.25, 0.25, 0.52]]
    #print xrecon
    #print yrecon
    #sys.exit()
    z_new = True
    Replot = False
    loglike = 0.
    loglike_nov = 0.
    lmin3 = [19.2, 19.8, 20.5, 20.8, 21.6, 22.2, 22.5, 23., 22.9, 23.]
    lmin3 = [19.7, 20.3, 21., 21.3, 22.1, 22.7, 23., 23.5, 23.4, 23.5]
    lmin3 = [20.2, 20.8, 21.5, 21.8, 22.6, 23.2, 23.5, 24., 23.9, 24.]
    lmin3 = [20.7, 21.3, 22., 22.3, 23.1, 23.7, 24., 24.5, 24.4, 24.5]
    lmin3 = [21.7, 22.3, 23., 23.3, 24.1, 24.7, 25., 25.5, 25.4, 25.5]
    lmin3 = [21.2, 21.8, 22.5, 22.8, 23.6, 24.2, 24.5, 25., 24.9, 25.]

    sm = [
        0.05162624, 0.0651364, 0.17144366, 0.19570955, 0.73934002, 1.58958387
    ]
    sm = [
        0.16325651, 0.20597938, 0.54215247, 0.61888793, 2.33799844, 5.02670556
    ]
    sm = [
        0.51626243, 0.651364, 1.71443663, 1.95709547, 7.39340024, 15.89583871
    ]
    sm = [
        1.63256513, 2.05979383, 5.42152466, 6.18887928, 23.37998442,
        50.26705564
    ]
    sm = [
        16.32565134, 20.5979383, 54.21524659, 61.88879277, 233.79984425,
        502.67055637
    ]
    sm = [5.16, 6.51, 17.14, 19.57, 73.93, 158.95, 206.55]

    if not z_new:
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]
    else:
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]  #oldest ;)
    num = int(num)
    #num = 1.
    print num
    z_min, z_max, z_m = get_z(num, z_new=False)
    dl = get_dl(z_m)
    Vmax = get_Vmax(z_min, z_max)
    dsdl = get_dsdl(z_m, dl)

    #z_m = (z_min + z_max)/2
    dl = get_dl(z_m)

    print z_min, z_max
    print expt.kind
    area = SURVEY_AREA * sqDeg2sr
    area1 = SURVEY_AREA * sqDeg2sr
    print SURVEY_AREA

    SMIN = get_sbins(numpy.power(10, Lmin), z_m, dl) * 1e6
    SMAX = get_sbins(numpy.power(10, Lmax), z_m, dl) * 1e6
    sigma, fsigma = numpy.log10(
        get_Lbins([SURVEY_NOISE, SURVEY_NOISE * 5], z_m, dl, 'muJy') *
        (1.4 / 3)**(-.7))
    print z_m, dl, sigma, fsigma
    print SURVEY_NOISE, SURVEY_NOISE * 5, SURVEY_AREA

    #area = 6672*sqDeg2sr #143165.15  49996.49 59876.8861135
    sbin3 = get_sbins(10**bins2, z_m, dl) * 1e6
    sbin4 = get_sbins(10**bins3, z_m, dl) * 1e6
    #L_s   = numpy.log10(get_Lbins(ssbin,z_m,dl,'muJy'))
    #print expt.binsMedian
    #sys.exit()

    xreco = get_Lbins(xrecon, z_m, dl, 'muJy')  #*(1.4/3)**(-.7)
    yreco = yrecon

    print SMIN, SMAX
    #sys.exit()
    lin_yrecon = numpy.log10(yreco)
    lin_xrecon = numpy.log10(xreco)

    bins2 = numpy.arange(15., 25., 0.4)
    bins = numpy.arange(fsigma - 0.2, 29.2, 0.4)  #bin +0.2
    #bins =[23.6,23.9,24.1,24.3,24.9,25.6,26.,26.7,28] #2< z<3.2
    #bins =[23.6, 23.9,24.1,24.4,24.6,24.9,25.2,25.6,26.,26.4,27.,27.5,28] #3.2< z<4
    bins = numpy.array(bins)
    if not os.path.isfile(
            'cos_data/cos_s%s_LF.el' % num) and z_new or not os.path.isfile(
                'cos_data/cos_s%s_LF_old.el' % num) and not z_new or Replot:
        print 'Reploting the RLF and storing them for next time.'
        #l,z_l = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,21), F='uJy',L=True,getz=True)
        #l2,z_l2 = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,24), F='uJy',L=True,getz=True)
        if z_new:
            L, z_L = open_anytype('cos_data/cos_s%s.txt' % num, (2, 3),
                                  F='uJy',
                                  L=True,
                                  getz=True,
                                  band='S')
            print 'this is the new z bins (please check if lumfuncUtils and cos_manifest are using the right z)'
        else:
            L, z_L = open_anytype('cos_data/cos_s%s.txt' % num, (2, 3),
                                  F='uJy',
                                  L=True,
                                  getz=True,
                                  band='S')
            print 'this is the old z binning style. (please check if lumfuncUtils and cos_manifest are using the right z)'
        L_c, z_c = open_anytype('cosmos_counter_parts_II.txt', (3, 4),
                                [z_min, z_max],
                                F='uJy',
                                L=True,
                                getz=True,
                                band='S')
        L_c2, z_c2 = open_anytype('cosmos_comp_vla.el', (2, 3), [z_min, z_max],
                                  F='uJy',
                                  L=True,
                                  getz=True,
                                  band='S')
        L_c3, z_c3 = open_anytype('cosmos_vla.el', (2, 3), [z_min, z_max],
                                  F='uJy',
                                  L=True,
                                  getz=True,
                                  band='S')
        L_c4, z_c4 = open_anytype(
            '/home/eliab/Documents/OC/Project/cosmos/Cosmos/dr4_cos2015_vla.tx',
            (-4, -1), [z_min, z_max],
            F='uJy',
            L=True,
            getz=True,
            band='S')
        L_c5, z_c5 = open_anytype(
            '/home/eliab/Documents/OC/Project/cosmos/Cosmos/dr4_cos2015_vla.tx',
            (3, -1), [z_min, z_max],
            F='uJy',
            L=True,
            getz=True,
            band='S')
        #z_c2,S_c2,L_c2 =numpy.loadtxt('cosmos_counter_parts_II.txt',unpack=True, usecols=(3,4,5))
        #L_c2=L_c2[(z_c2<z_max)&(z_c2 >z_min)]
        #S_c2=S_c2[(z_c2<z_max)&(z_c2 >z_min)]
        #z_c2=z_c2[(z_c2<z_max)&(z_c2 >z_min)]

        #rho_1,er1 = calc_Vmax(calcu_zeff(z_l,l,11.5e-32),l,bins,z_max,z_min,area)
        #rho_2,er2 = calc_Vmax(calcu_zeff(z_l2,l2,11.5e-32),l2,bins,z_max,z_min,area)
        #print numpy.log10(L)
        #print (1.4/3)**(-.7)
        #print numpy.log10(L*(1.4/3)**(-.7))
        #sys.exit()
        rho_3, er3, b3, n3 = calc_Vmax(calcu_zeff(z_L, L, 1.15e-31),
                                       L,
                                       bins,
                                       z_max,
                                       z_min,
                                       area,
                                       table=True)
        #rho_4,er4 = calc_Vmax(99.,L,bins,z_max,z_min,area)
        print 'COS15 VLA'
        rho_5, er5, b5, n5 = calc_Vmax(calcu_zeff(z_c, L_c, 1.15e-31),
                                       L_c,
                                       bins,
                                       z_max,
                                       z_min,
                                       1.77 * sqDeg2sr,
                                       table=True)
        print 'mass lim DR4-vla'
        rho_6, er6, b6, n6 = calc_Vmax(calcu_zeff(z_c2, L_c2, 1.15e-31),
                                       L_c2,
                                       bins,
                                       z_max,
                                       z_min,
                                       1.5 * sqDeg2sr,
                                       table=True)
        print 'DR4-vla'
        rho_7, er7, b7, n7 = calc_Vmax(calcu_zeff(z_c3, L_c3, 1.15e-31),
                                       L_c3,
                                       bins,
                                       z_max,
                                       z_min,
                                       1.5 * sqDeg2sr,
                                       table=True)
        print 'cos-DR4-vla DR4 photo-z'
        rho_8, er8, b8, n8 = calc_Vmax(calcu_zeff(z_c4, L_c4, 1.15e-31),
                                       L_c4,
                                       bins,
                                       z_max,
                                       z_min,
                                       1.5 * sqDeg2sr,
                                       table=True)
        print 'cos-DR4-vla COS15 photo-z'
        rho_9, er9, b9, n9 = calc_Vmax(calcu_zeff(z_c5, L_c5, 1.15e-31),
                                       L_c5,
                                       bins,
                                       z_max,
                                       z_min,
                                       1.5 * sqDeg2sr,
                                       table=True)
        for i in range(len(b3)):
            print '%5.2f %7d %10d %13d %17d %11d' % (b3[i], n3[i], n7[i],
                                                     n8[i], n9[i], n5[i])
        if z_new:
            f = open('cos_data/cos_s%s_LF_5.el' % num, 'w')
            #_2 paper _5 stellar mass 10.2
            print 'saving data for future use in cos_data/cos_s%s_LF_5.el' % num
        else:
            f = open('cos_data/cos_s%s_LF_old.el' % num, 'w')
            print 'saving data for future use in cos_data/cos_s%s_LF_old.el' % num
        for i in range(len(bins)):
            f.write(
                '%5.1f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f\n'
                %
                (bins[i], rho_3[i], er3[i], rho_5[i], er5[i], rho_6[i], er6[i],
                 rho_7[i], er7[i], rho_8[i], er8[i], rho_9[i], er9[i]))
        f.close()

    else:
        if z_new:
            bins, rho_3, er3, rho_5, er5, rho_6, er6, rho_7, er7, rho_8, er8, rho_9, er9 = numpy.loadtxt(
                'cos_data/cos_s%s_LF_2.el' % num, unpack=True)
            print 'Using stored RLF for the new z (The one with more z bins ) from cos_data/cos_s%s_LF.el. If you want to calculate the plot the set "Replot=True"' % num
        else:
            bins, rho_3, er3, rho_5, er5, rho_6, er6, rho_7, er7, rho_8, er8, rho_9, er9 = numpy.loadtxt(
                'cos_data/cos_s%s_LF_old.el' % num, unpack=True)
            print 'Using stored RLF for the is old z bins in fr cos_data/cos_s%s_LF.el. If you want to calculate the plot the set "Replot=True"' % num

    #novak 2017
    '''
    L_n   =[21.77,22.15,22.46,22.77,23.09,23.34]
    rho_n =[-2.85,-2.88,-3.12,-3.55,-4.05,-4.63]
    L_ner_u =[0.23,0.18,0.19, 0.2, 0.21, 0.28]
    L_ner_d =[1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner=[0.09, 0.03,0.0355,0.059,0.1,0.234]
    
    #novak 2018
    L_n2   =[21.77,22.24,22.68,23.16,23.69,24.34, 24.74,25.56]
    rho_n2 =[-2.84,-2.90,-3.34,-4.00,-4.92,-4.92, -5.22,-5.07]	    
    L_ner_u2  =[0.23,0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03]
    L_ner_d2  =[1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50]
    rho_ner_u2=[0.08,0.024,0.038,0.083,0.28,0.28 , 0.45, 0.34]
    rho_ner_d2=[0.07,0.023,0.035,0.070,0.25,0.25 , 0.37, 0.30]
    #l*= (1.4/3)**(-.7)
    #l2*= (1.4/3)**(-.7)
    #L*= (1.4/3)**(-.7) 
    '''

    #Lbins2 = numpy.log10(lf.get_Lbins(sbin2[sbin2>0],z_m,dl))
    print z_min, z_max

    #bins  = numpy.arange(fsigma -4.2,30,0.4) #bin
    #s,s_z = numpy.loadtxt('sdss/dr12s_s1_vol.txt', unpack=True, usecols=(-1,2))
    s, s_z = numpy.loadtxt('cos_data/cos_s%s.txt' % (num),
                           unpack=True,
                           usecols=(-1, 2))
    #s=s*1e6
    print fsigma

    L_s = (get_Lbins(ssbin, z_m, dl, 'muJy')) * (1.4 / 3.)**(-.7)
    L_s = numpy.log10(L_s)
    rho_1 = lumfuncs(
        Nbin, L_s,
        calc_Vmax(calcu_zeff(z_m, 10**L_s),
                  L_s,
                  L_s,
                  z_max,
                  z_min,
                  area,
                  getLF=False))
    #L_s = numpy.log10(10**L_s*(1.4/3.)**(-.7))
    #sys.exit()

    rho_11 = dntoLF(L_s, Nbin, dsdl, Vmax)
    #dn     = expt.realise(params)
    #nov_real=expt.realise([2.3,2.95,2.86,-0.29,-0.7,19.5,26.0])

    fig, ax = plt.subplots()

    plt.rc('lines', linewidth=2)

    if modelFamily in ['LFdpl', 'LFdpl_dpl', 'LFdpl_dpl_z']:
        faint = lumfuncUtils.doublepowerlaw(numpy.power(10, bins3), Lstar_2,
                                            Lslope_2, Lslope2_2, Lnorm_2)
    elif modelFamily in ['LFpl', 'LFdpl_pl']:
        faint = lumfuncUtils.powerlaw(numpy.power(10, bins3), Lstar_2,
                                      Lslope_2, Lnorm_2)
    elif modelFamily in ['LFpl_dpl', 'LFdpl_dpl_z']:
        faint = lumfuncUtils.doublepowerlaw(numpy.power(10, bins3), Lstar,
                                            Lslope, Lslope2, Lnorm)
    elif modelFamily == 'LFevol_logn_mat':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_mat',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for lL in bins3]
    elif modelFamily == 'LFevol_phi_logn_mat':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_phi_logn_mat',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for lL in bins3]
    elif modelFamily == 'LFevol_logn_el':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_el',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for lL in bins3]
    elif modelFamily == 'LFevol_phi_logn':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_phi_logn',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]
    elif modelFamily == 'LFevol_logn':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]

    elif modelFamily == 'LFevol_logn_slope':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_slope',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]
    elif modelFamily == 'LFevol_logn_sigma':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_sigma',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]
    elif modelFamily == 'LFevol_logn_lstar':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_lstar',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]
    elif modelFamily == 'LFevol_logn_lmin':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_lmin',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]
    elif modelFamily == 'LFevol_logn_lnorm':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_lnorm',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]
    elif modelFamily == 'LFevol_logn_all':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_all',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]

    elif modelFamily == 'LFevol_logn_all_L':
        faint =[lumfuncUtils.LF(L=numpy.power(10,lL),params=params,paramsList=expt.parameters,\
               family='LFevol_logn_all_L',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True,SF=True) for  lL in bins3]

    else:
        faint = lumfuncUtils.lognormpl(numpy.power(10, bins3), Lstar_2,
                                       Lslope_2, Lsigma, Lnorm_2)

    #phi_dpl =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar ,Lslope,Lslope2,Lnorm)

    L_1 = numpy.power(10, bins3) / (1 + z_m)**(2.86 - z_m * 0.7)
    L_2 = numpy.power(10, bins3) / (1 + z_m)**(2.95 - z_m * 0.29)
    #L_4 = numpy.power(10,bins3)/(1 + z_m)**(alpha_SF)
    #L_3 = numpy.power(10,bins3)/(1 + z_m)**(alpha_agn)
    #L_4 = numpy.power(10,bins3)/(10)**(alpha_SF)
    #L_3 = numpy.power(10,bins3)/(10)**(1)#alpha_agn)
    #for i in range(len(L_3)):
    #print bins3[i],numpy.log10(L_3[i])
    #L_4 = numpy.power(10,bins3)/(1 + z_m)**(alpha_SF+z_m*beta_SF)
    #L_3 = numpy.power(10,bins3)/(1 + z_m)**(alpha_agn+z_m*beta_agn)
    phi_agn_n = lumfuncUtils.doublepowerlaw(L_1, 24.59, 1.27, 0.49,
                                            numpy.log10(10**(-5.5)))
    phi_sf_n = lumfuncUtils.lognormpl(L_2, numpy.log10(1.85e21), 1.22, 0.63,
                                      numpy.log10(3.55e-3 / 2.5))  #0.33 2.97

    #phi_sf =lumfuncUtils.lognormpl(L_4, 20.56,1.22,0.63,-2.26)#numpy.log10(3.55e-3/2.5))#0.33 2.97
    phi_sf2 = lumfuncUtils.lognormpl(L_2, numpy.log10(1.85e21), 1.22, 0.63,
                                     numpy.log10(3.55e-3 / 2.5))  #0.33 2.97

    #phi_sf =lumfuncUtils.lognormpl(L_4, Lstar,1.22,0.63,Lnorm)#numpy.log10(3.55e-3/2.5))#0.33 2.97
    #phi_sf =lumfuncUtils.lognormpl(L_4, numpy.log10(1.85e21),1.22,0.63,numpy.log10(3.55e-3/2.5))#0.33 2.97

    nov_Tot_n = phi_agn_n + phi_sf_n
    #phi_agn=lumfuncUtils.doublepowerlaw(L_3,24.59,1.27,0.49,numpy.log10(10**(-5.5)))
    #print 'this is Lminz', numpy.log10(10**18/(1 + z_m)**(alpha_SF+z_m*beta_SF))
    #phi_agn=lumfuncUtils.doublepowerlaw(L_3,24.59,1.27,0.49,numpy.log10(10**(-5.5)))
    phi_1 = lumfuncUtils.doublepowerlaw(numpy.power(10, bins3), 23.68, 3.68,
                                        0.8, -3.36)  #0.33 2.97
    phi_2 = lumfuncUtils.doublepowerlaw(numpy.power(10, bins3), 24.5, 1.37,
                                        0.5, -4.)
    #tot = phi_1+phi_2
    dm = 0.4  #02
    hm = 0.
    #Map =expt.evaluate(params)[0]
    bins_map = get_Lbins(expt.binsMedian, z_m, dl, 'muJy')
    bins1_4 = numpy.log10(10**bins * (1.4 / 3.)**(-.7))
    #fix=[lumfuncUtils.LF(L=numpy.power(10,lL),params=[3.75,2.55,4.74,0,0,20.3,26.65],paramsList=expt.parameters,\
    #           family='LFevol_logn',inta=None,area=0,S=0, z=z_m, dlds=0,Vmax=0,dl=0,bypassLim=True) for  lL in bins3]

    #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7)),numpy.log10(faint)-dm,'--b' ,label='faint-end')

    #plt.plot(numpy.log10(bins_map),numpy.log10(Map), label='my MAP')
    #plt.plot(bins3,numpy.log10(fix)-dm,'--c', label='Fix')
    #plt.plot(bins3,numpy.log10(phi_agn),'-.c', label='local agn')

    #plt.plot(bins3,numpy.log10(phi_sf),'--r', label='local sf')
    #plt.plot(bins3,numpy.log10(phi_sf2),'--c', label='local sf2')
    #plt.plot(numpy.log10(10**bins3),numpy.log10(phi_dpl)-dm,'--c', label='agn')
    #plt.plot(numpy.log10(10**bins3*(1.4/3.)**(.7)),numpy.log10(tot)-0.4,'-.g',linewidth=5, label='Tot')

    #plt.plot(bins3,numpy.log10(phi_agn),'--r', label='local agn nov')
    plt.errorbar(lin_xrecon + hm,
                 lin_yrecon - dm,
                 fmt='-b',
                 label='This work Total',
                 linewidth=2)
    plt.plot(numpy.log10(10**bins3),
             numpy.log10(faint) - dm,
             '--b',
             label='This work SFG')
    #plt.errorbar(lin_xrecon+hm,numpy.log10(yrecon_avr)-dm,fmt='-g', label = 'Average')
    #plt.plot(L_s2+.2, numpy.log10(rho_10), '*c',label='average LF',markersize=13)#bin + 0.2
    plt.errorbar(bins,
                 rho_3,
                 yerr=er3,
                 fmt='ob',
                 label='This work 1/Vmax',
                 markersize=8)  #bin
    #plt.errorbar(bins2[17:],rho_3[17:] ,yerr=er3[17:],fmt='ob',label='extracted',markersize=8) #bin
    #plt.errorbar(bins,rho_5 ,yerr=er5,fmt='^k',label='VLA-COSMOS2015',markersize=10) #bin
    #plt.errorbar(bins,rho_8 ,yerr=er8,fmt='sc',label='VLA-COSMOS2015 in DR4 using DR4 z',markersize=10) #bin
    #plt.errorbar(bins,rho_9 ,yerr=er9,fmt='*m',label='VLA-COSMOS2015 in DR4 using COS15z',markersize=14) #bin
    #plt.errorbar(bins,rho_6 ,yerr=er6,fmt='ok',label='DR4 detected',fillstyle='none',markersize=14) #bin
    #plt.errorbar(bins,rho_7 ,yerr=er6,fmt='dg',label='DR4 detected - Full NIR sample',markersize=12) #bin
    #plt.plot(L_s, numpy.log10(rho_1), '*m',label='low LF',markersize=10)
    #plt.plot(L_s, numpy.log10(rho_11), 'sc',label='reconstruct LF',markersize=10)
    #plt.errorbar(numpy.array(L_n2[num-1]),numpy.array(rho_n2[num-1]) -0.4,xerr=[L_ner_d2[num-1],L_ner_u2[num-1]],yerr=[rho_ner_d2[num-1],rho_ner_u2[num-1]], fmt='sr',fillstyle='none',ecolor='r',markeredgewidth=1.5, label='Total RLF Novak+2018')
    plt.errorbar(numpy.log10(10**bins3),
                 numpy.log10(nov_Tot_n),
                 fmt='-r',
                 label='Total Novak + 2018')
    plt.plot(bins3, numpy.log10(phi_sf_n), '-.r', label='SFG Novak + 2017')
    '''
    print 'This is the dn'
    
    print dn
    
    for key in dn.keys():
        if round(key,2)==round(z_m,2):z_m=key

    dn=dn[z_m]
    nov_real=nov_real[z_m]
    for i in range(len(L_s)):
            loglike_i= Nbin[i]*numpy.log(dn[i]) + Nbin[i] - (Nbin[i] + 0.5)*numpy.log(Nbin[i]) - 0.5*numpy.log(2*numpy.pi)  - dn[i]
            loglike_nov_i= Nbin[i]*numpy.log(nov_real[i]) + Nbin[i] - (Nbin[i] + 0.5)*numpy.log(Nbin[i]) - 0.5*numpy.log(2*numpy.pi)  - nov_real[i]
            if nov_real[i]>0:loglike_nov+=loglike_nov_i
            if dn[i]>0:loglike+=loglike_i
            print '%10.5f %8.2d %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f'%(ssbin[i], Nbin[i], dn[i],nov_real[i],loglike_i,loglike_nov_i,loglike, loglike_nov)
    '''
    #plt.errorbar(bins[1:],rho_2[1:] ,yerr=er2[1:],fmt='ok',label='dectected catalog',markersize=10) #bin
    #plt.errorbar(bins2[1:]-0.2,rho_3[1:],yerr=er3[1:],fmt='sr',label='noisy',markersize=10) #bin
    #plt.errorbar(bins2[1:]-0.2,rho_4[1:],yerr=er4[1:],fmt='vm',label='noisy lim',markersize=10) #bin
    #plt.errorbar(numpy.array(L_n),numpy.array(rho_n) -0.4,xerr=[L_ner_d,L_ner_u],yerr=rho_ner, fmt='^c', label='Novak et al 2017')
    #plt.errorbar(numpy.array(L_n2),numpy.array(rho_n2) -0.4,xerr=[L_ner_d2,L_ner_u2],yerr=[rho_ner_d2,rho_ner_u2], fmt='sk', label='Total RLF Novak et al 2018')

    #plt.plot(bins3+0.4,numpy.log10(logn)-0.4 ,'--k', label='faint-end')

    #plt.plot(bins3,numpy.log10(logn) ,'--', label='lognorm')

    #plt.plot(bins3,numpy.log10(logn2)-dm,'--r', label='lognorm2')
    #

    #plt.plot(bins3,numpy.log10(phi_dpl2), label='dpl bright-end2')
    #plt.plot(Lbins4[(Lbins4<23.6) &(Lbins4>22.12)],numpy.log10(phi_dpl)[(Lbins4<23.6) &(Lbins4>22.12)], '-c',linewidth=5 ,label = r'$\rm{ MAP dpl < 5\sigma}$')
    #plt.plot(bins2,numpy.log10(logn_2),label='starforming_2')
    #plt.plot(bins2,numpy.log10(logn_3),label='starforming_3')
    #plt.plot(bins2,numpy.log10(logn_4),label='starforming_4')

    #plt.fill_between(xrecon,numpy.log10(yrecon - yrecon_down2 ) ,numpy.log10(yrecon+yrecon_up2), color='c',alpha=0.2)

    #plt.errorbar(lin_xrecon+0.4,lin_yrecon -0.4,fmt='-b', label='MAP',linewidth=2)
    #plt.errorbar(lin_xrecon+0.4,lin_yrecon- 0.4,yerr=numpy.log10(yrecon_rms),fmt='r',label='rms')
    #plt.plot(L_s, numpy.log10(rho_1), '*c',label='average LF',markersize=10)
    #plt.plot(L_s5, numpy.log10(rho_14)-0.2, '*r',label='average LF',markersize=13)
    #plt.plot(L_s6+0.0, numpy.log10(rho_16)-0.2, '*b',label='average LF(bin)',markersize=13)
    #plt.plot(bins2[:-1], numpy.log10(rho_15), '*g',label='LF average',markersize=13)
    #print len(rho_11),len(rho_10),len(rho_12)
    #plt.fill_betweenx(numpy.log10(rho_10) ,L_s3,L_s4, color='red',alpha=0.2)

    #plt.plot(L_s6, numpy.log10(rho_13), '*b',label='average LF(bin+0.2)',markersize=13)#bin + 0.2
    #plt.plot(L_s1, numpy.log10(rho_1), 'oc',label='average LF(bin)',markersize=13)#bin

    #plt.plot(Lbins4,lin_phi ,'--b',label='MAP')

    #plt.fill_between(lin_xrecon+.0,numpy.log10((yrecon_avr -yrecon_rms))-dm,numpy.log10(yrecon_avr +yrecon_rms)-dm , color='r',alpha=0.3)

    #plt.fill_between(lin_xrecon[1:-1]+0.2,numpy.log10(yreco[1:-1] - yrecon_down[1:-1] )-dm,numpy.log10(yreco[1:-1]+yrecon_up[1:-1])-dm , color='b',alpha=0.2)
    plt.fill_between(lin_xrecon + hm,
                     numpy.log10((yrecon_d)) - dm,
                     numpy.log10(yrecon_u) - dm,
                     color='k',
                     alpha=0.2)

    #plt.errorbar(bins[2:],rho_1[2:],yerr=er1[2:],fmt = 'ob',label='Detected')
    #plt.errorbar(bins2,rho_6-0.2,yerr=er6,fmt='ob',label='Detected') #working one
    #plt.plot(Lbins2,rho,'ob',label='simulation')
    #plt.plot(Lbins3,rho_,label='Noisy fluxes')
    #rho_2
    #plt.errorbar(bins,rho_2 -0.2,yerr=er2,fmt='ok',label='data',markersize=10) #bin +0.2

    #plt.errorbar(bins2,rho_6-0.2,yerr=er6,fmt='vm',label='Noisy NVSS')
    #plt.errorbar(bins2,rho_7-0.2,yerr=er6,fmt='xc',label='NVSS Detected')
    #for i in range(len(bins)):
    # print bins[i], rho_2[i]
    #sys.exit()

    #plt.errorbar(Lbins2,rho, err,fmt = 'ob',label='simulation')
    #plt.errorbar(Lbins2,rho_1,err_1,fmt = 'or',label='simulation_noisy')
    #plt.errorbar(L2,rho2,color='g',label='Analytic')
    #plt.errorbar(L3,rho3,color='g',label='Analytic II')
    #plt.axvspan(22.55 ,23.51,color='r',alpha=0.2)
    #plt.axvline(Lmin,color='r',linestyle='dashed')
    plt.axvline(fsigma, color='k', linestyle='dashed')
    #plt.axvline(sigma,color='g')
    #plt.axvline(Llmin,color='r',linewidth=5)
    #plt.axvline(sigma2,color='m')
    #plt.axvline(fsigma2,color='m')
    #plt.axvline(23.89,color='b')
    #plt.axvline(23.71,color='c')
    #plt.axvline(23.52,color='r')
    #plt.axvline(truth['LMIN'],color='r', linestyle='dashed', label = 'True params')
    #plt.axvline(truth['LMAX'],color='r', linestyle='dashed')
    #plt.axvline(truth['LSTAR'],color='b')
    #plt.text(truth['LSTAR']-0.2,-9., '$L_*$',fontsize=18)
    #plt.axvline(Lmax,color='r', label= 'MAP params')
    #plt.axvline(Lmin,color='b')
    #plt.axvline(Lmax, color='r',linestyle='dashed')
    #plt.text(21,-1, '$L_*$',fontsize=18)
    #plt.text(fsigma+0.1,-6.7, '$5\sigma$',fontsize=25)
    #plt.text(sigma+0.1,-6.7, '$\sigma$',fontsize=25)
    plt.xlabel(r'$\rm{log_{10}[L_{1.4 GHz}/(W}$ $\rm{Hz^{-1})]}$', fontsize=30)
    plt.ylabel(r'$\rm{log_{10}[\rho_m(Mpc^{-3} mag^{-1})]}$', fontsize=30)
    lmin3_14 = 10**lmin3[num - 1] * (1.4 / 3.)**(-.7)
    #plt.text(22,-7.7,'%.1f < z < %.1f %s Lmin=%6.2f %s Lmin_cut=%6.2f %s Smin_cut=%6.2f $\mu$Jy'%(z_min,z_max,'\n',Lmin,'\n',numpy.log10(lmin3_14),'\n',sm[num-1]),fontsize = 30,alpha=0.6 ) # \n $M_i$ < -22
    #plt.text(22,-7.7,'%.1f < z < %.1f %s Lmin=%6.2f'%(z_min,z_max,'\n',Lmin),fontsize = 30,alpha=0.6 ) # \n $M_i$ < -22
    plt.text(22,
             -7.7,
             '%.1f < z < %.1f' % (z_min, z_max),
             fontsize=30,
             alpha=0.6)  # \n $M_i$ < -22
    #plt.text(22.9,-8.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both', which='major', labelsize=20, width=3)
    plt.tick_params(axis='both', which='minor', labelsize=10, width=2)
    #plt.tight_layout()
    #plt.xtick(fontsize=15)
    #plt.ytick(fontsize=15)
    plt.xlim(20, 28.)
    plt.ylim(-9, -2)
    #plt.ylim(-11,-5.5)
    ax.xaxis.set_minor_locator(AutoMinorLocator())
    ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']
    plt.legend(frameon=False).draggable()
    plotf = '%s/LF_recon_s1.pdf' % (outdir)
    plt.show()

    return 0
Esempio n. 9
0
def main():
    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module = importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt = countModel(modelFamily,
                      nlaws,
                      setf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True)
    recon_expt = countModel(modelFamily, nlaws, setf, [dataset], floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n' * 5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf = os.path.join(outdir, '1-summary.txt')
    summary = numpy.genfromtxt(summf)[-1, :]
    drawmap = summary[-(ncols + 2):-2]
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']
    chains = ['a', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
    if dataset == 'sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset == 'cosmos':
        #print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][8:]))
        #print '%s%s'%(outdir,datafiles[0][8:])
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d = numpy.genfromtxt(os.path.join(outdir, 'sim.txt'))

    ssbin = d[:, 2]
    Nbin = d[:, 3]
    dnds = d[:, 4]
    sbin2 = ssbin
    dnds2 = dnds
    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0, 29.2, 0.4)
    bins3 = numpy.arange(18., 29.2, 0.01)
    print len(expt.parameters)
    num = 5
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap  # [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters

    if modelFamily in [
            'LFsch', 'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z',
            'LFlognorm_dpl', 'LFpl_lognorm'
    ]:
        Lnorm = params[expt.parameters.index('LNORM')]
        Lstar = params[expt.parameters.index('LSTAR')]
        Lslope = params[expt.parameters.index('LSLOPE')]
        #Lzevol=params[expt.parameters.index('LZEVOL')]
    if modelFamily in [
            'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z', 'LFlognorm_dpl'
    ]:
        Lslope2 = params[expt.parameters.index('LSLOPE2')]
    if modelFamily in [
            'LFlognorm', 'LFpl', 'LFdpl', 'LFdpl_pl', 'LFpl_dpl',
            'LFlognorm_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z', 'LFpl_lognorm'
    ]:
        Lnorm_2 = params[expt.parameters.index('LNORM_2')]
        Lstar_2 = params[expt.parameters.index('LSTAR_2')]
        Lslope_2 = params[expt.parameters.index('LSLOPE_2')]

    if modelFamily in ['LFdpl_dpl', 'LFdpl_dpl_z', 'LFdpl']:
        Lslope2_2 = params[expt.parameters.index('LSLOPE2_2')]

    if modelFamily in ['LFlognorm', 'LFlognorm_dpl', 'LFpl_lognorm']:
        Lsigma = params[expt.parameters.index('LSIGMA')]

    if modelFamily in ['LFdpl_dpl_z', 'LFevol']:
        alpha_agn = params[expt.parameters.index('A_agn')]
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_agn = params[expt.parameters.index('B_agn')]
        beta_SF = params[expt.parameters.index('B_SF')]
    if modelFamily in ['LFevol_dpl_s', 'LFevol_logn_s']:
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_SF = params[expt.parameters.index('B_SF')]

    Lmin = params[expt.parameters.index('LMIN')]
    Lmax = params[expt.parameters.index('LMAX')]
    truth = {
        'noise': 150,
        'LMIN': 22.,
        'LMAX': 24.5,
        'LNORM': numpy.log10(1e-7),
        'LSTAR': 23.3,
        'LSLOPE': 3.,
        'LSLOPE2': 1.
    }
    #z = [0, 0.5, 1 , 1.5, 2, 2.3, 2.6, 3, 3.5, 4] #old
    #z = [ 0.7, 1 , 1.35, 1.7, 2, 2.3, 2.6, 3, 3.5, 4]# older
    print expt.parameters
    s = pylab.loadtxt('%s/recon_stats_%s.txt' % (outdir, chains[num - 1]))
    xrecon = s[:-1, 0]
    yrecon = s[:-1, 1]
    yrecon_d = s[:-1, 2]
    yrecon_u = s[:-1, 3]
    yrecon_rms = s[:-1, 4]
    yrecon_avr = s[:-1, 5]
    yrecon_rms_down = yrecon_rms

    for i in range(len(yrecon_rms)):
        if yrecon_avr[i] < yrecon_rms[i]:
            yrecon_rms_down[i] = 10**(numpy.log10(yrecon_avr[i]) - 0.01)

    #print xrecon
    #print yrecon
    #sys.exit()
    z_new = False
    Replot = False

    if z_new:
        z = [
            0.1, 0.3, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.2,
            3.6, 4.0
        ]
    else:
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]  #oldest ;)
    num = int(num)
    #num = 1.
    print num
    z_min, z_max, z_m = get_z(num, z_new=z_new)
    dl = get_dl(z_m)
    Vmax = get_Vmax(z_min, z_max)
    dsdl = get_dsdl(z_m, dl)

    z_m = (z_min + z_max) / 2
    dl = get_dl(z_m)

    print z_min, z_max
    print expt.kind
    area = SURVEY_AREA * sqDeg2sr
    area1 = SURVEY_AREA * sqDeg2sr
    print SURVEY_AREA

    SMIN = get_sbins(numpy.power(10, Lmin), z_m, dl) * 1e6
    SMAX = get_sbins(numpy.power(10, Lmax), z_m, dl) * 1e6
    sigma, fsigma = numpy.log10(
        get_Lbins([SURVEY_NOISE, SURVEY_NOISE * 5], z_m, dl, 'muJy') *
        (1.4 / 3)**(-.7))
    print z_m, dl, sigma, fsigma
    print SURVEY_NOISE, SURVEY_NOISE * 5, SURVEY_AREA

    #area = 6672*sqDeg2sr #143165.15  49996.49 59876.8861135
    sbin3 = get_sbins(10**bins2, z_m, dl) * 1e6
    sbin4 = get_sbins(10**bins3, z_m, dl) * 1e6
    #L_s   = numpy.log10(get_Lbins(ssbin,z_m,dl,'muJy'))
    #print expt.binsMedian
    #sys.exit()

    xreco = get_Lbins(xrecon, z_m, dl, 'muJy')  #*(1.4/3)**(-.7)
    yreco = yrecon

    print SMIN, SMAX
    #sys.exit()
    lin_yrecon = numpy.log10(yreco)
    lin_xrecon = numpy.log10(xreco)

    bins2 = numpy.arange(15., 25., 0.4)
    bins = numpy.arange(fsigma, 26.2, 0.4)  #bin +0.2
    if not os.path.isfile(
            'cos_data/cos_s%s_LF.el' % num) and z_new or not os.path.isfile(
                'cos_data/cos_s%s_LF_old.el' % num) and not z_new or Replot:
        print 'Reploting the RLF and storing them for next time.'
        #l,z_l = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,21), F='uJy',L=True,getz=True)
        #l2,z_l2 = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,24), F='uJy',L=True,getz=True)
        if z_new:
            L, z_L = open_anytype('cos_data/cos_s%s.txt' % num, (2, 3),
                                  F='uJy',
                                  L=True,
                                  getz=True,
                                  band='S')
            print 'this is the new z bins (please check if lumfuncUtils and cos_manifest are using the right z)'
        else:
            L, z_L = open_anytype('cos_data/cos_s%s_old.txt' % num, (2, 3),
                                  F='uJy',
                                  L=True,
                                  getz=True,
                                  band='S')
            print 'this is the old z binning style. (please check if lumfuncUtils and cos_manifest are using the right z)'
        L_c, z_c = open_anytype('cosmos_counter_parts_II.txt', (3, 4),
                                [z_min, z_max],
                                F='uJy',
                                L=True,
                                getz=True,
                                band='S')
        z_c2, S_c2, L_c2 = numpy.loadtxt('cosmos_counter_parts_II.txt',
                                         unpack=True,
                                         usecols=(3, 4, 5))
        L_c2 = L_c2[(z_c2 < z_max) & (z_c2 > z_min)]
        S_c2 = S_c2[(z_c2 < z_max) & (z_c2 > z_min)]
        z_c2 = z_c2[(z_c2 < z_max) & (z_c2 > z_min)]

        #rho_1,er1 = calc_Vmax(calcu_zeff(z_l,l,11.5e-32),l,bins,z_max,z_min,area)
        #rho_2,er2 = calc_Vmax(calcu_zeff(z_l2,l2,11.5e-32),l2,bins,z_max,z_min,area)
        #print numpy.log10(L)
        #print (1.4/3)**(-.7)
        #print numpy.log10(L*(1.4/3)**(-.7))
        #sys.exit()
        rho_3, er3 = calc_Vmax(calcu_zeff(z_L, L, 1.15e-31), L, bins, z_max,
                               z_min, area)
        rho_4, er4 = calc_Vmax(99., L, bins, z_max, z_min, area)
        rho_5, er5 = calc_Vmax(calcu_zeff(z_c, L_c, 1.15e-31), L_c, bins,
                               z_max, z_min, area)
        rho_6, er6 = calc_Vmax(calcu_zeff(z_c2, 10**L_c2, 1.15e-31), 10**L_c2,
                               bins, z_max, z_min, area)
        if z_new:
            f = open('cos_data/cos_s%s_LF.el' % num, 'w')
        else:
            f = open('cos_data/cos_s%s_LF_old.el' % num, 'w')
        for i in range(len(bins)):
            f.write('%5.1f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f\n' %
                    (bins[i], rho_3[i], er3[i], rho_5[i], er5[i], rho_6[i],
                     er6[i]))
        f.close()

        dl_c = get_dl(z_c2)
        L_c3 = numpy.log10(
            get_Lbins(S_c2, z_c2, numpy.array(dl_c), 'muJy') *
            (1.4 / 3.)**(-.7))
    else:
        if z_new:
            bins, rho_3, er3, rho_5, er5, rho_6, er6 = numpy.loadtxt(
                'cos_data/cos_s%s_LF.el' % num, unpack=True)
            print 'Using stored RLF for the new z (The one with more z bins). If you want to calculate the plot the set "Replot=True"'
        else:
            bins, rho_3, er3, rho_5, er5, rho_6, er6 = numpy.loadtxt(
                'cos_data/cos_s%s_LF_old.el' % num, unpack=True)
            print 'Using stored RLF for the is old z bins. If you want to calculate the plot the set "Replot=True"'

    #novak 2017
    L_n = [21.77, 22.15, 22.46, 22.77, 23.09, 23.34]
    rho_n = [-2.85, -2.88, -3.12, -3.55, -4.05, -4.63]
    L_ner_u = [0.23, 0.18, 0.19, 0.2, 0.21, 0.28]
    L_ner_d = [1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner = [0.09, 0.03, 0.0355, 0.059, 0.1, 0.234]

    #novak 2018
    L_n2 = [21.77, 22.24, 22.68, 23.16, 23.69, 24.34, 24.74, 25.56]
    rho_n2 = [-2.84, -2.90, -3.34, -4.00, -4.92, -4.92, -5.22, -5.07]
    L_ner_u2 = [0.23, 0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03]
    L_ner_d2 = [1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50]
    rho_ner_u2 = [0.08, 0.024, 0.038, 0.083, 0.28, 0.28, 0.45, 0.34]
    rho_ner_d2 = [0.07, 0.023, 0.035, 0.070, 0.25, 0.25, 0.37, 0.30]
    #l*= (1.4/3)**(-.7)
    #l2*= (1.4/3)**(-.7)
    #L*= (1.4/3)**(-.7)

    #Lbins2 = numpy.log10(lf.get_Lbins(sbin2[sbin2>0],z_m,dl))
    print z_min, z_max

    #bins  = numpy.arange(fsigma -4.2,30,0.4) #bin
    #s,s_z = numpy.loadtxt('sdss/dr12s_s1_vol.txt', unpack=True, usecols=(-1,2))
    s, s_z = numpy.loadtxt('cos_data/cos_s%s.txt' % (num),
                           unpack=True,
                           usecols=(-1, 2))
    #s=s*1e6
    print fsigma

    #sys.exit()

    Ncount = sum(Nbin[fsigma > ssbin])
    Llmin = numpy.log10(
        get_Lbins([fsigma / numpy.sqrt(Ncount)], z_min, get_dl(z_min),
                  'muJy'))[0]
    Llmin *= (1.4 / 3.)**(-.7)
    print Llmin

    L_s = (get_Lbins(ssbin, z_m, dl, 'muJy'))
    L_s *= (1.4 / 3.)**(-.7)
    L_s = numpy.log10(L_s)
    rho_1 = lumfuncs(
        Nbin, L_s,
        calc_Vmax(calcu_zeff(z_m, 10**L_s),
                  L_s,
                  L_s,
                  z_max,
                  z_min,
                  area,
                  getLF=False))
    #sys.exit()

    fig, ax = plt.subplots()

    plt.rc('lines', linewidth=2)
    '''
    if modelFamily in ['LFdpl','LFdpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lslope2_2,Lnorm_2)
    elif modelFamily in ['LFpl','LFdpl_pl']:
        faint =lumfuncUtils.powerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lnorm_2)
    elif modelFamily in ['LFpl_dpl','LFdpl_dpl_z']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar,Lslope,Lslope2,Lnorm)
    else:
        faint = lumfuncUtils.lognormpl(numpy.power(10,bins3), Lstar_2,Lslope_2,Lsigma,Lnorm_2)
    '''

    #phi_dpl =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar ,Lslope,Lslope2,Lnorm)
    #L_2 = numpy.power(10,bins3)/(1 + z_m)**(alpha_SF+z_m*beta_SF)
    L_2 = numpy.power(
        10, bins3) * (1.4 / 3.)**(-.7) / (1 + z_m)**(2.95 - z_m * 0.29)
    L_1 = numpy.power(
        10, bins3) * (1.4 / 3.)**(-.7) / (1 + z_m)**(2.86 - z_m * 0.7)
    phi_agn = lumfuncUtils.doublepowerlaw(L_1, 24.29, 1.27, 0.49,
                                          numpy.log10(2.5 * 10**(-5.5)))
    phi_sf = lumfuncUtils.doublepowerlaw(L_2, 22.11, 2.4, 0.43,
                                         -3.10)  #0.33 2.97
    phi_logn = lumfuncUtils.lognormpl(L_2, numpy.log10(1.85e21), 1.22, 0.63,
                                      numpy.log10(3.55e-3))
    #phi_pl =lumfuncUtils.powerlaw(numpy.power(10,bins3),Lstar ,Lslope,Lnorm)
    dm = 0.  #05
    hm = 0.
    Map = expt.evaluate(params)[0]
    bins_map = get_Lbins(expt.binsMedian, z_m, dl, 'muJy')

    #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7)),numpy.log10(faint)-dm,'--b' ,label='faint-end')
    plt.plot(bins3, numpy.log10(phi_sf) - dm, '--c', label='local sf')
    plt.plot(bins3, numpy.log10(phi_agn) - dm, '--c', label='local agn')
    plt.plot(bins3, numpy.log10(phi_logn) - dm, '--r', label='local lognorm')
    #plt.plot(numpy.log10(bins_map),numpy.log10(Map), label='my MAP')
    plt.errorbar(lin_xrecon + hm,
                 lin_yrecon - dm,
                 fmt='-k',
                 label='MAP',
                 linewidth=2)
    plt.errorbar(lin_xrecon + hm,
                 numpy.log10(yrecon_avr) - dm,
                 fmt='-g',
                 label='Average')
    #plt.plot(L_s2+.2, numpy.log10(rho_10), '*c',label='average LF',markersize=13)#bin + 0.2
    plt.errorbar(bins,
                 rho_3,
                 yerr=er3,
                 fmt='ob',
                 label='extracted',
                 markersize=8)  #bin
    #plt.errorbar(bins2[17:],rho_3[17:] ,yerr=er3[17:],fmt='ob',label='extracted',markersize=8) #bin
    #plt.errorbar(bins,rho_5 ,yerr=er5,fmt='*r',label='Total',markersize=8) #bin
    #plt.errorbar(bins,rho_6 ,yerr=er6,fmt='>g',label='Total LF',markersize=10) #bin
    plt.plot(L_s, numpy.log10(rho_1), '*m', label='low LF', markersize=10)
    #plt.errorbar(bins[1:],rho_2[1:] ,yerr=er2[1:],fmt='ok',label='dectected catalog',markersize=10) #bin
    #plt.errorbar(bins2[1:]-0.2,rho_3[1:],yerr=er3[1:],fmt='sr',label='noisy',markersize=10) #bin
    #plt.errorbar(bins2[1:]-0.2,rho_4[1:],yerr=er4[1:],fmt='vm',label='noisy lim',markersize=10) #bin
    #plt.errorbar(numpy.array(L_n),numpy.array(rho_n) -0.4,xerr=[L_ner_d,L_ner_u],yerr=rho_ner, fmt='^c', label='Novak et al 2017')
    #plt.errorbar(numpy.array(L_n2),numpy.array(rho_n2) -0.4,xerr=[L_ner_d2,L_ner_u2],yerr=[rho_ner_d2,rho_ner_u2], fmt='sk', label='Total RLF Novak et al 2018')

    #plt.plot(bins3+0.4,numpy.log10(logn)-0.4 ,'--k', label='faint-end')

    #plt.plot(bins3,numpy.log10(logn) ,'--', label='lognorm')

    #plt.plot(bins3,numpy.log10(logn2)-dm,'--r', label='lognorm2')
    #

    #plt.plot(bins3,numpy.log10(phi_dpl2), label='dpl bright-end2')
    #plt.plot(Lbins4[(Lbins4<23.6) &(Lbins4>22.12)],numpy.log10(phi_dpl)[(Lbins4<23.6) &(Lbins4>22.12)], '-c',linewidth=5 ,label = r'$\rm{ MAP dpl < 5\sigma}$')
    #plt.plot(bins2,numpy.log10(logn_2),label='starforming_2')
    #plt.plot(bins2,numpy.log10(logn_3),label='starforming_3')
    #plt.plot(bins2,numpy.log10(logn_4),label='starforming_4')

    #plt.fill_between(xrecon,numpy.log10(yrecon - yrecon_down2 ) ,numpy.log10(yrecon+yrecon_up2), color='c',alpha=0.2)

    #plt.errorbar(lin_xrecon+0.4,lin_yrecon -0.4,fmt='-b', label='MAP',linewidth=2)
    #plt.errorbar(lin_xrecon+0.4,lin_yrecon- 0.4,yerr=numpy.log10(yrecon_rms),fmt='r',label='rms')
    #plt.plot(L_s, numpy.log10(rho_1), '*c',label='average LF',markersize=10)
    #plt.plot(L_s5, numpy.log10(rho_14)-0.2, '*r',label='average LF',markersize=13)
    #plt.plot(L_s6+0.0, numpy.log10(rho_16)-0.2, '*b',label='average LF(bin)',markersize=13)
    #plt.plot(bins2[:-1], numpy.log10(rho_15), '*g',label='LF average',markersize=13)
    #print len(rho_11),len(rho_10),len(rho_12)
    #plt.fill_betweenx(numpy.log10(rho_10) ,L_s3,L_s4, color='red',alpha=0.2)

    #plt.plot(L_s6, numpy.log10(rho_13), '*b',label='average LF(bin+0.2)',markersize=13)#bin + 0.2
    #plt.plot(L_s1, numpy.log10(rho_1), 'oc',label='average LF(bin)',markersize=13)#bin

    #plt.plot(Lbins4,lin_phi ,'--b',label='MAP')

    #plt.fill_between(lin_xrecon+.0,numpy.log10((yrecon_avr -yrecon_rms))-dm,numpy.log10(yrecon_avr +yrecon_rms)-dm , color='r',alpha=0.3)

    #plt.fill_between(lin_xrecon[1:-1]+0.2,numpy.log10(yreco[1:-1] - yrecon_down[1:-1] )-dm,numpy.log10(yreco[1:-1]+yrecon_up[1:-1])-dm , color='b',alpha=0.2)
    plt.fill_between(lin_xrecon + hm,
                     numpy.log10((yrecon_d)),
                     numpy.log10(yrecon_u) - dm,
                     color='k',
                     alpha=0.2)

    #plt.errorbar(bins[2:],rho_1[2:],yerr=er1[2:],fmt = 'ob',label='Detected')
    #plt.errorbar(bins2,rho_6-0.2,yerr=er6,fmt='ob',label='Detected') #working one
    #plt.plot(Lbins2,rho,'ob',label='simulation')
    #plt.plot(Lbins3,rho_,label='Noisy fluxes')
    #rho_2
    #plt.errorbar(bins,rho_2 -0.2,yerr=er2,fmt='ok',label='data',markersize=10) #bin +0.2

    #plt.errorbar(bins2,rho_6-0.2,yerr=er6,fmt='vm',label='Noisy NVSS')
    #plt.errorbar(bins2,rho_7-0.2,yerr=er6,fmt='xc',label='NVSS Detected')
    #for i in range(len(bins)):
    # print bins[i], rho_2[i]
    #sys.exit()

    #plt.errorbar(Lbins2,rho, err,fmt = 'ob',label='simulation')
    #plt.errorbar(Lbins2,rho_1,err_1,fmt = 'or',label='simulation_noisy')
    #plt.errorbar(L2,rho2,color='g',label='Analytic')
    #plt.errorbar(L3,rho3,color='g',label='Analytic II')
    #plt.axvspan(22.55 ,23.51,color='r',alpha=0.2)
    #plt.axvline(Lmin,color='r',linestyle='dashed')
    plt.axvline(fsigma, color='k', linestyle='dashed')
    #plt.axvline(sigma,color='g')
    plt.axvline(Llmin, color='r', linewidth=5)
    #plt.axvline(sigma2,color='m')
    #plt.axvline(fsigma2,color='m')
    #plt.axvline(23.89,color='b')
    #plt.axvline(23.71,color='c')
    #plt.axvline(23.52,color='r')
    #plt.axvline(truth['LMIN'],color='r', linestyle='dashed', label = 'True params')
    #plt.axvline(truth['LMAX'],color='r', linestyle='dashed')
    #plt.axvline(truth['LSTAR'],color='b')
    #plt.text(truth['LSTAR']-0.2,-9., '$L_*$',fontsize=18)
    #plt.axvline(Lmax,color='r', label= 'MAP params')
    #plt.axvline(Lstar,color='b',linestyle='dashed')
    #plt.axvline(Lmax, color='r',linestyle='dashed')
    #plt.text(Lstar-0.12,-10.5, '$L_*$',fontsize=18)
    #plt.text(fsigma+0.1,-6.7, '$5\sigma$',fontsize=25)
    #plt.text(sigma+0.1,-6.7, '$\sigma$',fontsize=25)
    plt.xlabel(r'$\rm{log_{10}[L_{1.4 GHz}/(W}$ $\rm{Hz^{-1})]}$', fontsize=30)
    plt.ylabel(r'$\rm{log_{10}[\rho_m(Mpc^{-3} mag^{-1})]}$', fontsize=30)
    plt.text(19.9,
             -7.7,
             '%.1f < z < %.1f' % (z_min, z_max),
             fontsize=30,
             alpha=0.6)  # \n $M_i$ < -22
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both', which='major', labelsize=20, width=3)
    plt.tick_params(axis='both', which='minor', labelsize=10, width=2)
    #plt.tight_layout()
    #plt.xtick(fontsize=15)
    #plt.ytick(fontsize=15)
    plt.xlim(18, 27.)
    plt.ylim(-11.2, 0.)
    #plt.ylim(-11,-5.5)
    ax.xaxis.set_minor_locator(AutoMinorLocator())
    ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']
    plt.legend(frameon=False).draggable()
    plotf = '%s/LF_recon_s1.pdf' % (outdir)
    plt.show()

    return 0
Esempio n. 10
0
def main():
    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module = importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt = countModel(modelFamily, nlaws, setf, [dataset], floatNoise)
    recon_expt = countModel(modelFamily, nlaws, setf, [dataset], floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n' * 5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf = os.path.join(outdir, '1-summary.txt')
    summary = numpy.genfromtxt(summf)[-1, :]
    drawmap = summary[-(ncols + 2):-2]
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']

    if dataset == 'sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset == 'cosmos':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][8:]))
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d = numpy.genfromtxt(os.path.join(outdir, 'sim.txt'))

    ssbin = d[:, 2]
    Nbin = d[:, 3]
    dnds = d[:, 4]
    sbin2 = ssbin
    dnds2 = dnds
    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0, 29.2, 0.4)
    bins3 = numpy.arange(18., 29.2, 0.01)
    print len(expt.parameters)
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap  # [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters

    if modelFamily in ['LFsch', 'LFdpl_pl', 'LFdpl_dpl', 'LFlognorm_dpl']:
        Lnorm = params[expt.parameters.index('LNORM')]
        Lstar = params[expt.parameters.index('LSTAR')]
        Lslope = params[expt.parameters.index('LSLOPE')]
        #Lzevol=params[expt.parameters.index('LZEVOL')]
    if modelFamily in ['LFdpl_pl', 'LFdpl_dpl', 'LFlognorm_dpl']:
        Lslope2 = params[expt.parameters.index('LSLOPE2')]
    if modelFamily in [
            'LFlognorm', 'LFpl', 'LFdpl', 'LFdpl_pl', 'LFlognorm_dpl',
            'LFdpl_dpl'
    ]:
        Lnorm_2 = params[expt.parameters.index('LNORM_2')]
        Lstar_2 = params[expt.parameters.index('LSTAR_2')]
        Lslope_2 = params[expt.parameters.index('LSLOPE_2')]

    if modelFamily in ['LFdpl_dpl', 'LFdpl']:
        Lslope2_2 = params[expt.parameters.index('LSLOPE2_2')]

    if modelFamily in ['LFlognorm', 'LFlognorm_dpl']:
        Lsigma = params[expt.parameters.index('LSIGMA')]

    Lmin = params[expt.parameters.index('LMIN')]
    Lmax = params[expt.parameters.index('LMAX')]
    truth = {
        'noise': 150,
        'LMIN': 22.,
        'LMAX': 24.5,
        'LNORM': numpy.log10(1e-7),
        'LSTAR': 23.3,
        'LSLOPE': 3.,
        'LSLOPE2': 1.
    }
    #z = [0, 0.5, 1 , 1.5, 2, 2.3, 2.6, 3, 3.5, 4] #old
    #z = [ 0.7, 1 , 1.35, 1.7, 2, 2.3, 2.6, 3, 3.5, 4]# older
    print expt.parameters
    s = pylab.loadtxt('%s/recon_stats.txt' % outdir)
    xrecon = s[:-1, 0]
    yrecon = s[:-1, 1]
    yrecon_d = s[:-1, 2]
    yrecon_u = s[:-1, 3]
    yrecon_rms = s[:-1, 4]
    yrecon_avr = s[:-1, 5]
    yrecon_rms_down = yrecon_rms

    for i in range(len(yrecon_rms)):
        if yrecon_avr[i] < yrecon_rms[i]:
            yrecon_rms_down[i] = 10**(numpy.log10(yrecon_avr[i]) - 0.01)

    #print xrecon
    #print yrecon
    #sys.exit()

    z = [
        0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.15, 2.35, 2.55, 2.85, 3.15,
        3.5
    ]  #oldest ;)
    num = int(num)
    #num = 1.
    print num
    z_min, z_max, z_m = get_z(num)
    dl = get_dl(z_m)
    Vmax = get_Vmax(z_min, z_max)
    dsdl = get_dsdl(z_m, dl)

    z_m = (z_min + z_max) / 2
    dl = get_dl(z_m)

    print z_min, z_max
    print expt.kind
    area = SURVEY_AREA * sqDeg2sr
    area1 = SURVEY_AREA * sqDeg2sr
    print SURVEY_AREA

    SMIN = get_sbins(numpy.power(10, Lmin), z_m, dl) * 1e6
    SMAX = get_sbins(numpy.power(10, Lmax), z_m, dl) * 1e6
    sigma, fsigma = numpy.log10(
        get_Lbins([SURVEY_NOISE, SURVEY_NOISE * 5], z_m, dl,
                  'muJy'))  #*(1.4/3)**(-.7))
    sigma2, fsigma2 = numpy.log10(get_Lbins([450, 2400], z_m, dl, 'muJy'))
    print z_m, dl, sigma, fsigma
    print SURVEY_NOISE, SURVEY_NOISE * 5, SURVEY_AREA

    #area = 6672*sqDeg2sr #143165.15  49996.49 59876.8861135
    sbin3 = get_sbins(10**bins2, z_m, dl) * 1e6
    sbin4 = get_sbins(10**bins3, z_m, dl) * 1e6
    L_s = numpy.log10(get_Lbins(ssbin, z_m, dl, 'muJy'))
    #print expt.binsMedian
    #sys.exit()

    xreco = get_Lbins(xrecon, z_m, dl, 'muJy')  #*(1.4/3)**(-.7)
    yreco = yrecon

    print SMIN, SMAX
    #sys.exit()
    lin_yrecon = numpy.log10(yreco)
    print xrecon
    lin_xrecon = numpy.log10(xreco)

    bins2 = numpy.arange(15., 25., 0.4)

    bins5, rho_5, er5, rho_6, er6 = numpy.loadtxt('cos_data/skads_s1_3_LF.el',
                                                  unpack=True)

    #novak 2017
    L_n = [21.77, 22.15, 22.46, 22.77, 23.09, 23.34]
    rho_n = [-2.85, -2.88, -3.12, -3.55, -4.05, -4.63]
    L_ner_u = [0.23, 0.18, 0.19, 0.2, 0.21, 0.28]
    L_ner_d = [1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner = [0.09, 0.03, 0.0355, 0.059, 0.1, 0.234]

    #novak 2018
    L_n2 = [21.77, 22.24, 22.68, 23.16, 23.69, 24.34, 24.74, 25.56]
    rho_n2 = [-2.84, -2.90, -3.34, -4.00, -4.92, -4.92, -5.22, -5.07]
    L_ner_u2 = [0.23, 0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03]
    L_ner_d2 = [1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50]
    rho_ner_u2 = [0.08, 0.024, 0.038, 0.083, 0.28, 0.28, 0.45, 0.34]
    rho_ner_d2 = [0.07, 0.023, 0.035, 0.070, 0.25, 0.25, 0.37, 0.30]
    #l*= (1.4/3)**(-.7)
    #l2*= (1.4/3)**(-.7)
    #L*= (1.4/3)**(-.7)

    #Lbins2 = numpy.log10(lf.get_Lbins(sbin2[sbin2>0],z_m,dl))
    print z_min, z_max

    bins = numpy.arange(fsigma - 0., 26.2, 0.4)  #bin +0.2
    #bins  = numpy.arange(fsigma -4.2,30,0.4) #bin
    #s,s_z = numpy.loadtxt('sdss/dr12s_s1_vol.txt', unpack=True, usecols=(-1,2))

    fig, ax = plt.subplots()

    plt.rc('lines', linewidth=2)

    if modelFamily in ['LFdpl', 'LFdpl_dpl']:
        faint = lumfuncUtils.doublepowerlaw(numpy.power(10, bins3), Lstar_2,
                                            Lslope_2, Lslope2_2, Lnorm_2)
    elif modelFamily in ['LFpl', 'LFdpl_pl']:
        faint = lumfuncUtils.powerlaw(numpy.power(10, bins3), Lstar_2,
                                      Lslope_2, Lnorm_2)
    else:
        faint = lumfuncUtils.lognormpl(numpy.power(10, bins3), Lstar_2,
                                       Lslope_2, Lsigma, Lnorm_2)

    dm = 0.  #05
    hm = 0.

    plt.errorbar(bins5,
                 rho_6,
                 yerr=er6,
                 fmt='sr',
                 label=r'$\rm{25 >\log_{10}(L) > %s}$' % (20.8),
                 markersize=10)
    plt.errorbar(bins5,
                 rho_5,
                 yerr=er5,
                 fmt='*b',
                 label=r'$\rm{25 >\log_{10}(L) > %s}$' % (20.8),
                 markersize=10)
    plt.plot(bins3 + hm, numpy.log10(faint) - dm, '--b', label='faint-end')
    plt.errorbar(lin_xrecon + hm,
                 lin_yrecon - dm,
                 fmt='-k',
                 label='MAP',
                 linewidth=2)
    plt.errorbar(lin_xrecon + hm,
                 numpy.log10(yrecon_avr) - dm,
                 fmt='-g',
                 label='Average')
    #plt.errorbar(numpy.array(L_n),numpy.array(rho_n) -0.4,xerr=[L_ner_d,L_ner_u],yerr=rho_ner, fmt='^c', label='Novak et al 2017')
    #plt.errorbar(numpy.array(L_n2),numpy.array(rho_n2) -0.4,xerr=[L_ner_d2,L_ner_u2],yerr=[rho_ner_d2,rho_ner_u2], fmt='sk', label='Total RLF Novak et al 2018')

    plt.fill_between(lin_xrecon + hm,
                     numpy.log10((yrecon_d)),
                     numpy.log10(yrecon_u) - dm,
                     color='k',
                     alpha=0.2)

    plt.axvline(fsigma, color='k', linestyle='dashed')
    #plt.axvline(sigma,color='g')
    #plt.axvline(Llmin,color='r',linewidth=5)

    plt.xlabel(r'$\rm{log_{10}[L_{3 GHz}/(W}$ $\rm{Hz^{-1})]}$', fontsize=30)
    plt.ylabel(r'$\rm{log_{10}[\rho_m(Mpc^{-3} mag^{-1})]}$', fontsize=30)
    plt.text(19.9,
             -7.7,
             '%.1f < z < %.1f' % (0.1, 0.4),
             fontsize=30,
             alpha=0.6)  # \n $M_i$ < -22
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both', which='major', labelsize=20, width=3)
    plt.tick_params(axis='both', which='minor', labelsize=10, width=2)

    plt.xlim(18, 26.)
    plt.ylim(-7, -1)
    ax.xaxis.set_minor_locator(AutoMinorLocator())
    ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']
    plt.legend(frameon=False).draggable()
    plotf = '%s/LF_recon_s1.pdf' % (outdir)
    plt.show()

    return 0