Esempio n. 1
0
def test_luna3d_2():
    image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
    image_dir = image_dir + '/test_luna/'
    utils.auto_make_dir(image_dir)

    id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)

    luna_data_paths = [
        '/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311.mhd']

    for k, p in enumerate(luna_data_paths):
        id = os.path.basename(p).replace('.mhd', '')
        print id
        img, origin, pixel_spacing = utils_lung.read_mhd(p)
        lung_mask = lung_segmentation.segment_HU_scan(img)
        annotations = id2zyxd[id]
        x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=img,
                                                                                       pixel_spacing=pixel_spacing,
                                                                                       p_transform=p_transform,
                                                                                       luna_annotations=annotations,
                                                                                       p_transform_augment=None,
                                                                                       luna_origin=origin,
                                                                                       lung_mask=lung_mask,
                                                                                       world_coord_system=True)

        y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')

        for zyxd in annotations_tf:
            plot_slice_3d_3(x, lung_mask_out, y, 0, id, idx=zyxd)
            plot_slice_3d_3(x, lung_mask_out, y, 1, id, idx=zyxd)
            plot_slice_3d_3(x, lung_mask_out, y, 2, id, idx=zyxd)
Esempio n. 2
0
def data_prep_function(data, pixel_spacing, p_transform=p_transform):
    # TODO: MAKE SURE THAT DATA IS PREPROCESSED THE SAME WAY
    lung_mask = lung_segmentation.segment_HU_scan(data)
    x, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=data,
                                                                   pixel_spacing=pixel_spacing,
                                                                   p_transform=p_transform,
                                                                   lung_mask=lung_mask,
                                                                   p_transform_augment=None)
    x = data_transforms.pixelnormHU(x)
    return x, lung_mask_out, tf_matrix
Esempio n. 3
0
def data_prep_function(data, pixel_spacing, p_transform=p_transform):
    # TODO: MAKE SURE THAT DATA IS PREPROCESSED THE SAME WAY
    lung_mask = lung_segmentation.segment_HU_scan(data)
    x, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(
        data=data,
        pixel_spacing=pixel_spacing,
        p_transform=p_transform,
        lung_mask=lung_mask,
        p_transform_augment=None)
    x = data_transforms.pixelnormHU(x)
    return x, lung_mask_out, tf_matrix
Esempio n. 4
0
def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,
                       p_transform=p_transform,
                       p_transform_augment=None):
    # make sure the data is processed the same way
    lung_mask = lung_segmentation.segment_HU_scan(data)
    x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=data,
                                                                                   pixel_spacing=pixel_spacing,
                                                                                   p_transform=p_transform,
                                                                                   luna_annotations=luna_annotations,
                                                                                   p_transform_augment=None,
                                                                                   luna_origin=luna_origin,
                                                                                   lung_mask=lung_mask)
    x = data_transforms.pixelnormHU(x)
    y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')
    return x, y, lung_mask_out, annotations_tf, tf_matrix
Esempio n. 5
0
def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,
                       p_transform=p_transform,
                       p_transform_augment=None):
    # make sure the data is processed the same way
    lung_mask = lung_segmentation.segment_HU_scan(data)
    x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=data,
                                                                                   pixel_spacing=pixel_spacing,
                                                                                   p_transform=p_transform,
                                                                                   luna_annotations=luna_annotations,
                                                                                   p_transform_augment=None,
                                                                                   luna_origin=luna_origin,
                                                                                   lung_mask=lung_mask)
    x = data_transforms.pixelnormHU(x)
    y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')
    return x, y, lung_mask_out, annotations_tf, tf_matrix